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1. Introduction

Let X be a Hilbert space, K a closed convex subset of X and F:Rx K — X
a nonlinear mapping given by (A,u) — F(\,u). This paper is mainly devoted
to the study of a general nonlinear eigenvalue problem governed by a variational
inequality V.I. (F, A, K) defined as follows:

find A* € R, u* € K such that
VI (F\K):

(F(X*,u*),v—u*) > 0 for each v € K.

This variational inequality arises in numerous engineering problems such as the
buckling of plates [1], [2], [5], [6], [8], [9], [14], the bending of a beam [10], the
double membrane problem [7], and reaction-diffusion systems [19].

1This work was completed while this author was visiting the University of Milano under a
grant of CNR of Italy.
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Our present study leads to a mathematical description of a buckling phenom-
enon which subsumes the case of a thin elastic plate subjected to unilateral con-
ditions [5], [6], [8], [9], [13], [17] (case 1; see Example 2.3.1); to unilateral and
transversal conditions [13] (case 2; see Example 2.3.3); and also the case of plates
lying on a linear elastic body [17] (case 3; see Example 2.3.2.). Indeed, these
problems fit within the framework of a variational inequality V.I. (F, A, K), with
F(A\u) := Tu— A Lu + Au, where K stands for a closed convex cone of a suit-
able Sobolev space, T is a nonlinear operator homogeneous of order p = 3, L is
a linear operator and A a linear operator (cases 1 and 3) or a nonlinear operator
homogeneous of order 1 (case 2). These examples drawn from elasticity theory are
discussed in tandem with the mathematical theory developed for this general varia-
tional inequality. They are not meant to cover all the possible areas of applications
of the theory, but rather to illustrate and motivate the paper.

In the literature, this study is generally done by using the Ly usternik-Schni-
relmann theory [14], [15] and the Galerkin approximation of cones [5], {13]. In this
paper, following the work by P. Quittner, we will use instead the Leray-Schauder
degree theory. This will be done in order to obtain a bifurcation theory for this
general variational inequality which subsumes all of previous cited cases. Eventually
it should be observed that, in contrast to the other approaches, our technique can
also be applied to variational inequalities not involving a gradient operator.

The paper is organized as follows:

In the first two sections we recall those aspects of the Leray-Schauder theory
that we need. We will also briefly outline models which give the equilibrium of an
elastic plate (i) subjected to unilateral conditions; (ii) subjected to unilateral and
tranversal conditions; (iii) lying on a linear elastic body. In Section 3 a general
existence theorem is proved. In Section 4 we develop a bifurcation theory for the
nonlinear eigenvalue problem governed by the general variational inequality V.I.
(F, A, K). Finally, in Section 5 we discuss some aspects of a spectral theory relative
to V.I. (F, \, K).

2. Preliminaries

2.1 Topological degree. Let X and Y be two Banach spaces, K a retract of
X. In what follows, the topological notions (open, closed, boundary) will refer to the
relative topology on K. Let U C X be a bounded open subset of K with closure U
and boundary U in K, and let f : U — Y. We recall that f is a compact mapping if
f is continous and if for every bounded subset B of U, f(B) is a relatively compact
subset of Y. f : X — Y is said to be sirongly continuous if for every sequence
{2 : n € N} which converges weakly to z (z,, — z for short), then f(z,) tends to
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f(z) for the norm convergence (f(z,) — f(z) for short). In general the two classes
of mappings just defined are not comparable: an example of a compact mapping
which is not strongly continuous and of a strongly continuous mapping which is not
compact can be found in [10]. However, if X is a reflexive Banach space then each
strongly continuous operator is compact while if X is a reflexive Banach space and
[ a linear operator, then strong continuity and compactness are equivalent [10].

Given a compact mapping f : U — X, set ®(z) := z — f(z) for each z € U. If
p ¢ ®(0U), we may define the topological Leray-Schauder degree of ® with respect
to U and p, (deg(®, U, p), for short). deg(®, U, p) is an integer which can be viewed
as an estimate of the number of solutions of the equation ®(z) =p, z € U. Let us
summarize some properties of the Leray-Schauder degree which will be used later
on:

P.1. If deg(®,U,p) # 0 then there exists € U such that p = &(z).

P.2. Let f; be a homotopy of compact transformations of U such that ®, :=
I— f, and p ¢ ®:(8U). Then deg(®:, U, p) is independent of ¢ € [0, 1. In
particular, if f and g are compact mappings defined on U such that f = g
on U and p ¢ (I — f)}(8U), then

deg(I — f,U,p) = deg(I — g,U, p).
P.3. If U = J;¢; Ui, with U; open and U; NU; = @ for each i # j, 4,5 € I (I is
a finite subset of N) and p ¢ ®(lJ,.;(0U;)), then
deg(®,U,p) = Y _ deg(®, s, p).
iel
P.4. If K is a closed subset of U and p ¢ ®(K), then
deg(®, U, p) = deg(®,U\K, p).
P.5. If p € U (respectively p ¢ U), then deg(I, U, p) = 1 (respectively deg(I, U, p)
= 0).
P.6. Suppose that U* is a bounded open subset of [0,1] x X, and that
f:U* — X is compact. Let ®; denote the mapping z — x — f(t,z) and

let Uy = {z € X : (t,z) e U’} Ifp ¢ ®,(0U;) for 0 < ¢t < 1, then
deg(®;, U;,p) is independent of ¢ in [0, 1].

For more details about the topological degree, the reader is invited to consult
for instance [16].
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2.2 Variational inequality, complementarity and fixed point formu-
lation. In what follows, X will be a real Hilbert space, whose scalar product is
denoted by (-,-), K a nonempty closed convex cone in X, A: X — X an operator
defined on X, and f € X a fixed element. The problem

{ find v € K such that

VI (A f,K):
(4 1, K) (v —-u,Au— f) >0, for each v € K,

is called the variational inequality associated with A, f and K.
If K* = {y€ X : (y,z) > 0 for each z € K} denotes the dual cone of K, we
may define the general complementarity problem C.P. (4; f,K) :

{ find v € K such that

CP. (4 f,K): A(u) — f € K* and (Au— f,u) =0.

This problem has now been extensively studied since it has important applica-
tions in various areas of applied mathematics, such as for instance, optimization,
mechanics, economic equilibrium and elasticity “heory.

The basic relation between problems V.I. (4; f, K) and C.P. (4; f, K) is the
following;:

PROPOSITION 2.2.1. Let X be a real Hilbert space, K a closed convex cone with
vertex at the origin in X, f € X and A: K — X. Then u* is solution of V.I
(4; f, K) if and only if u* is a solution of C.P. (4; f, K).

Let the set-valued mapping P4 : X — 2% be defined by
Ps(f) :={u € K : u is a solution of V.I. (4; f, K)}.

It has been shown by A. Szulkin in [23] that, if A : K — X has the following
properties:
[H;] A: K — X is continuous on finite dimensional subspaces (i.e. the restric-
tion of A to the intersection of K with any finite dimensional subspace of
X is weakly continuous);
[Hz] there exist & > 0, ¢ > 1 such that

{Au— Av,u—v) > allu—v||? for each u,v € K,

then P, is single-valued, bounded and continuous.

Let A,L, T : X — X be given, and let g be fixed in X. Let us now suppose
that the mapping A is the sum of two operators A; and Aj, with A; satisfying
Szulkin’s assumptions [H;] and [Hs)].

It is by now well known that the complementarity problem admits an equivalent
fixed point formulation [7]; more precisely, we have:
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PROPOSITION 2.2.2. Let U be an open bounded set in K, A € R, and consider
the following problem:

findueU, AeR such that

V.I (A,L,T,g,\T):
( g ) {(Tu,v—u)Z(A-Lu—Au+g,v—u)foreach'vEK.

If A, satisfies assumptions [Hi] and [Hg], then uw € U is a solution of V.L
(A,L,T,g,\U) if and only if u is a solution of the following fired point problem:

{ﬁndueﬁ, A€eR such that

F.P. (A, L,T,\g,0):
( 9:0) u= Py, (-Tu+ - Lu — Ayu+g).

If Po,(—Tu+ X Lu — Asu + g) is compact and if VI. (A,L,T,g, A\, U) has no
solution on 8U, then the topological degree of the mapping

®:=1—Py,(—Tu+ X -Lu—Asu+g)
with respect to U and 0 is well defined.

In Section 3, this fixed point formulation associated with the topological degree
will be the main ingredient in order to obtain existence results for the eigenvalue
problem V.I. {A,L,T, g, ), K). Section 4 is devoted to the existence of nontrivial
solutions and bifurcation points for the variational inequality V.I. (4, L,0, A, K)
(V.I. (A,L,T, A\, K) for short).

REMARK 2.2.1. The degree-theoretic approach to variational inequalities is
due to A. Szulkin and yields useful information relative to our specific problem V.I.
(A,L,T,g, A K). Indeed, this method seems more appropriate than P. Quittner’s.

Throughout the following, we will denote by ok (A, L) the set of all A € R such
that there exists a nontrivial solution to the inequality

_ find w € K, A € R such that
VI(ALAMK):

{Au,v —u) > (A- Lu,v —u) foreach ve K
or to the equivalent fixed point problem

F.P. (A4,L,\U) find u € X, A € R such that
N y LIy Ay " u=PA1()\'L’Ua’"A2u)

2.3 Motivation: examples in elasticity. As mentioned in the introduction,
our study is motivated by problems arising in the engineering literature: contact
problems of sheet piles, tunnels and certain foundation structures. All these prob-
lems may be formulated as problems of type V.I. (A, L, T, g, A, K).
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ExaMPLE 2.3.1. (Elastic plates subjected to unilateral conditions). Let Q be
a thin plate identified with a bounded open connected subset of R? referred to
a coordinate system Ozz2. Assume that  is clamped on Ty C 6Q and simply
supported on I's = ON\I';. 9Q is supposed regular (i.e. 99 is a 1-dimensional
manifold of class C™, m > 1, and 2 is located on one side of 99).

Let X be the subspace of the Sobolev space .

ou A%
Q) := ) o € La(Q); 4,5 =
(@)= {ue @) : Gt so € (@i =12,
defined by
9 Ou
X := uEH(Q):'u:OonI‘,%:O a.e. on I'y

and let K be the closed convex cone of X defined by:
K:={ue X :u>0 ae. in Q}.

In the case of an elastic plate subjected to unilateral conditions, for a fixed real
parameter A measuring the magnitude of lateral loading, the equilibrium of the
plate is governed by the following variational inequality [5], [8]:

find v € K such that {u — A Lu+ Tu,v —u) > 0, for each v € K,

where L is a linear operator describing the lateral loading in the plane of the plate,

and T" a nonlinear operator introduced in the Von Karman nonlinear theory of plates

(see for instance [1] or [4]). The scalar product (-, -) is defined by a continuous

bilinear form a(u,v) [17], which is coercive in the case of I'; nonempty and the

norm defined on X by (a(u,v))'/? is equivalent to the usual norm on H2(f).
These operators satisfy the following additional properties:

(i) L is a self-adjoint compact linear operator;
(ii) T is strongly continuous and positively homogeneous of order p = 3;
(iii) {z,Tz) > 0 for each z € K\{0}; T'(0) =0.
Moreover, if the plate is subjected to a body force of density g, the equilibrium
of the plate is governed by the variational inequality

find v € K such that (v — A+ Lu+ Tu,v — u) > (g,v — u), for each v € K.

ExXAMPLE 2.3.2. (Elastic plate lying on a linear elastic body). Let, moreover,
QY be a linear elastic body identified as a bounded open connected subset of R3,
referred to a coordinate system Ozyz2x3, and let I'] be a part of the boundary 8Q/
supposed to be regular.
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Let Z be the subspace of the Sobolev space

HY ) := {z € L) : % e L), i= 1,2,3},

defined by
Z:={ze (H())*: z=00n I},
and K’ be the closed convex cone of X x Z (X as in Example 2.3.1) defined by
K':={(u,2) e XX Z :u—23>0 ae. inQ}.
In the case of an elastic plate subjected to unilateral conditions, for a fixed ), the

equilibrium of the plate is governed by the variational inequality [17]

find (u, 2) € K’ such that
(u—X-Lu+Tu,v—u) +a'(z,z—2) >0, foreach (v,z) € K',

where L, T and (-, -) are as in Example 2.3.1 and a’(u,v) is the bilinear coercive
continuous form of the strain energy of ' [17].

By the Riesz theorem, there exists a continuous linear map A : Z — Z such
that a’(u,v) = (Au,v), where (-, -) is the scalar product on Z.

If we write

T:XxZ—-Xx2Z, (u,z) = (Tu,0),
I''XxXZ—Xx2Z, (u,2) — (Lu,0),
A XxZ—-Xx2Z, (u,2) = (u, Az),

and {(-,-))={-,-)+(-,-), the problem may then be rewritten as

find y = (u, 2) € K’, A € R such that
((Aly—X-L'y+Ty,h—1y)) >0, foreachhe K’

ExaMmpPLE 2.3.3. (Elastic plates subjected to unilateral and transversal con-
ditions. In this case, for a fixed A, the equilibrium of the plate is governed by the
variational inequality [13]

find u € K such that (u — A- Lu + Tu + Ru,v — u) > 0, for each v € K,

where L, T, (-, -) are as in Example 2.3.1 and R, which describes the transversal
load, is positive, strongly continuous, nonlinear, and homogeneous of order 1; R is
called the contact operator.
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3. A general existence theorem

Let X be a real Hilbert space, and K a closed convex cone. To avoid repetitions,
throughout this section we will refer to the following assumptions:

(1) A: X — X is such that A = A; + As, where
(1.1) Az : X — X is strongly continuous, positively homogeneous of or-
der 1
(i.e. Az(tu) =t- Asx(u) for each u € X, t > 0);
(1.2) A; : X — X is bounded, linear and a-coercive, i.e.
(Aru,u) > of|u|?, for each u € X;
(2) L: K — X is strongly continuous and positively homogeneous of order 1;
(3) T: K — X is strongly continuous and positively homogeneous of order
p>1;
(4) (Tu,u} > 0, for each u € K\{0}.

Let us denote by
K, ={z€K : |z| <r},
the open ball in K of radius r > 0.

REMARK 3.1. (i) It should be observed that Szulkin’s assumptions are fulfilled
for A; and therefore P4, is single-valued, bounded and continuous.

(i) Assumptions (1) to (4) are fulfilled in the previous examples: in Example
2.3.1, take A; = I, Ay = 0; in Example 2.3.2, take A; = A’, A; = 0, while for
Example 2.3.3, take A; = I and A; = R.

We can now state the following:

LEMMA 3.1. Assume that hypotheses (1)—(4) hold. Then there exists ro > 0
depending on A € R and g € X such that, for each r > rg,

deg(u — Pa,(—Tu+ M- Lu — Ayu+g),K.,0) = 1.

PRrROOF. The map v — —Tu + A - Lu — Au + g is compact and since Py, is
continuous, the map u — P4, (—Tu + A - Lu — Au + g) is compact.

Let U be a bounded open set in X such that 0 ¢ &(8U) where ® : U — X is
given by £ — z — P4, (-Tz + A- Lz — Axz + g). Since the topological degree of ®
with respect to U and 0 is clearly well-defined, we may define the homotopy

H)(t,u) := Ps, (—Tu+1t- (A Lu— Au+g)).

We claim that there exists rq > 0 such that for each r > ry, (I — Hx(¢, )(0K,)) #0
for each t € [0, 1]. Indeed, suppose on the contrary, we may find sequences {u,;n €
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N} and {t, : n € N} such that u, € K, t, € [0, 1], limp—00 ||tn|| = 00 and
(Tun + A1Un, v — tp) > tn(A - Lu, — Agu, +g,v — u,), foreachveK.

In particular, for v = 0 we obtain

(3.1) (Ttn + Artin, un) < to(A- Lu, — Agun, + g, Up).

We claim that there exists some 7 > 0 such that (Tup,us) > 7|u,||Pt! for all
n € N. Otherwise, on relabelling if necessary and on setting v, := u,/ llunl| we
would obtain limy, 0o (T'0n, v) = 0. Since we may assume that w-lim, o, v, = Vg,
vp € K, by strong continuity of T we would obtain (T'wg, vp) = 0, and therefore by
Assumption (4}, vo = 0.

Using (3.1) and Assumptions (1.2) and (4) we have

tnA(L’um u,—,,) > (A1un, ’Uun) + tn<A2u'n,; un> - tn<g, un)a
and therefore
tnA(Lvn, vn) 2 @+t {A2¥n, vn) — tu(g, Un) /|| tn -

Hence by passing to a subsequence, if necessary (this is possible since ¢,, € [0,1]),
we may assume that lim,, .. t, = ¢* and we get

t* )\(L’l)o, ’U()) >a+ t* <A2’U(), ’Uo)

and then a < 0, a contradiction.
By applying again (3.1), Assumption (1.2) and the previous claim we have

alln]? + 7llun [P < (Tun + Artin, un)

< M Zunl| - lunll + | A2uall - luall + g]l - ljnll-
In particular, dividing the last inequality by ||us ||Pt! we obtain:
aflunll' 7P + 7 < A Lun |/ llunl? + || Azt |/ l1unl? + llg]/|lan .

Since Az and L are continuous positively homogeneous of order 1, there exist
T4,, 't > 0 such that

|A2z|| < T4, ||zl|, for each z € K,

and
|Lz]| < Tr||lz||, for each z € K.

This yields
lun]|* 7P + 7 < IMTzflunl*? + T ag unl|P + lgl] - [lun]| 2,

and therefore by taking the limit as n tends to +00 we obtain 7 < 0, a contradiction.
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Using now Property P.2 of the topological degree we have
deg(®, K, 0) = deg(I — H,(1,"), K, 0)
= deg(I - H,\(O, ')7Kra0)
= deg( — P4, (—Tu), K, 0).
We now define the homotopy Gia(t,w) := P4, (—t - Tu); we claim that for each
r >0, I —Ga(t,-)(0K,) # 0 for each t € [0, 1].
Indeed, suppose, on the contrary, that there exist r > 0, t* € [0,1] and u* € K

with ||u*|| = r such that
u* = Pa,(—t-Tu*),

or equivalently,
(Ayu* +1* - Tu*, v —u*) >0, foreachveK.
For v = 0, we get
(Aju* +¢* - Tu*,u*) <0,

from which, by Assumption (4) and properties of A; we derive af|u*||> < 0. This
yields ©* = 0, a contradiction. Thus,

deg(®, K,.,0) = deg(I — Pa,(—Tu), K,,0)
— deg(I - Ga(1, ), K+, 0)
= deg(I - GA(0,"), K+, 0)
= deg(] — P4,(0), K, 0).
Since A; is coercive, necessarily Py, (0) = 0, and therefore by virtue of property

P.5 of the topological degree we obtain deg(®,K,.,0) = 1 and the desired result.
O

THEOREM 3.1. Assume that hypotheses (1)—(4) hold. Let g € X be fized. If
there exists ug € K such that (g, ug) > 0, then for each X € R, there ezists u()\) € K
such that (i) u(A) # 0 and (ii) u(A) € K and

(Au(A) — X Lu(A) + Tu(X),v —u(X) = {g,v —u(A)), foreachv e K.

PRrROOF. The existence of u(A), solution of V.I. (A,L,T, g, \, K) follows from
Lemma 3.1 and property P.1 of the Leray-Schauder degree. For zero to be a solution,
it is necessary that (g,v) <0, for each v € K, and thus u(A) # 0. O

EXAMPLE 3.1. Assume that  C R¥ is a bounded open domain with smooth
boundary I'. Let p* be the critical exponent for the Sobolev imbedding H;
L?, ie. p* := 2N/(N —2) if 2 < N, and +oo if not. Let A € R, g € L3(),
2<p<pand K := {u € H}(Q) : u > Oa.e. in Q}. If there exists ug € K such
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that fn gug dx > 0, then by a simple application of Theorem 3.1, the variational
inequality

uEK:/VuV(v—u)da:—A/u(v—u)dx
Q Q

+/ WPy — u)dz > / gv—w)ydz WweKk,
Q ¢}
has a solution.

EXAMPLE 3.2. If the plates in 2.3.1-2.3.3 are subjected to a body force of
density g, and if there exists up € K such that {g,u¢) > 0, then we may apply
Theorem 3.1 to get the existence of an equilibrium of such plates.

Theorem 3.1 gets interesting when zero is not a solution for V.I. (4, L, T\, g, A, K).
If g = 0, then u = 0 is a solution of V.I. (A, L, T, A, K) and in this case, it is nec-
essary to study the existence of a nontrivial solution and possjble bifurcation from
the line of trivial solutions. This case is the object of the following section.

4. Bifurcation theory for the nonlinear eigenvalue problem
governed by the variational inequality V.I. (4, L, T, A\, K)

We denote by Co = {(A,0) : A € R} the curve of trivial solutions of V.I.
(A,L,T, X\, K). We say that g is a bifurcation point for V.I. (4, L, T, A\, K) (with
respect to the curve Cp) if in every neighbourhood of u(A, 0) there exists a solution
of V.I. (4, L, T, A, K) which is not contained in Cy (that is, a nontrivial solution),
or equivalently if there exist sequences {A, : n € N}, {#,, : n € N} of solutions of
V.I (A, L, T, A\ K) such that uy, # 0, lim,_,e un =0, and lim,_, A, = Ag.

Let us define

:=cl{(A\,u) € Rx K\ {0}: u solution of V.I. (4, L, T, X\, K)},

(we recall that cl A stands for the closure of A). The following lemmas turned out
to be important for the sequel:

LEMMA 4.1. Let (X, (-, -)) be a Hilbert space, K a closed convex cone in X,
F:RxX — X a strongly continuous operator and G : X — X a weakly continuous
operator (i.e. T, — z = Gz, = Gz) such that the map x — (z, Gz) is weakly lower
semicontinuous. If {u, : n €N} C K, {A:n€N}CR, and {e,: ne N} CR
are sequences such that for each n € N,

(4.1) (Gupn — F( A, un), v — tn) > —€pllv —uy|, for eachve K,
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and
w- nli—{%o Uy = u¥, nllngo An =AY, nll)n;o €n =0,
then
(i) limp—o0(GUn, un) = (Gu*, u*},
(i) (Gu* — F(\*,u*),v—u*) >0, foreachveEK.

Moreover, if G is the identity mapping, then lim, o, |u, — u*|| = 0.

PROOF. (i) Since the mapping  — (Gz,z) is weakly lower semicontinuous
we have (Gu*,u*) < liminf,_,o0{Gun,uy). Also, it suffices to prove the reverse
inequality. If we take v = 0 in (4.1) we obtain

(Gtin, tn) < (F(An, tn), un) + €nllunll;
and by virtue of the assumptions, limsup,, .. {Gun, Un) < {F(A*,u*),u*). On the
other hand, (4.1) applied to v = u, + u* gives

(Gun, u") 2 (F(An, un), u”) — enliw’],
from which we get (Gu*,u*) > (F(A\*,u*),u*), and therefore

(Gu*,u*) > nlLIEO(Gun,un).

(ii) For each v € K, combine (4.1) and (i). If G is the identity, then limyp_,o [|uy |
= ||lu*||, and by using the fact that in every Hilbert space the norm is Kadec, we
derive that lim,,_,o u, = u* and the proof is complete. O

LEMMA 4.2. Let X, (-, -) be a Hilbert space, K a closed convez cone in X,
F: RxX — X a strongly continuous operator and G : X — X an operator
satisfying assumptions [Hi| and [H]. If {un: n€N}C K and {A\n,: n €N} CR
are sequences such that for each n € N

(Gup — F(An,tn),v —un) >0 for eachv € K,
and

w- lim u, =u*, lim A, = A%,
n—oo n—oQ

then

(1) img,—eo un = u*,
(i) (Gu* — F(A*,u*),v—u*) >0, foreachve K.

ProOF. Using the fixed point formulation, we have

Up = PG(F()‘n;un))a
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and by strong continuity of the map Pg(F (A, u)), we get our result. m]

PROPOSITION 4.1. Let X be a real Hilbert space and K a closed convez cone
in X. Suppose L, T : K — X are compact mappings and A : K — X satisfies
A = Ay + Ay, with A, bounded, linear, a-coercive and Az compact. Let Ay < Ao
and ro > 0 be given. Then there ezists a bifurcation point Mg € [A1, 2] of V.L
(A, L, T, A, K) provided the following conditions are fulfilled:

(1) VL (A,L,T,\,K) and V.I. (A,L,T, Az, K) have no solution on 8K, for
each 0 <r < 1.

(2) deg(u— Pa,(—Tu+ Ay - Lu — Agu), K, 0) # deg(u— Pa, (—Tu+ Ay Lu—
Asu), K,,0) for each 0 < r < 1y (i.e. v sufficiently small).

PROOF. By compactness of Az, L and T, and Assumption (1), the degree of the
map u — u— Py, (—Tu+ X\ Lu— Ayu) with respect to K, (0 < r < rp) and 0 is well
defined for A; and A. If we suppose that there is no bifurcation point Ay € [Ay, Ag]
for V.I. (A,L,T, ) K), then this problem has no solution for each A €[);, A2] on
0K, for r sufficiently small.

Thus for each r sufficiently small, r < rg, the homotopy

H(t,u) :== Py, ((—Tu + [(1 —t)A1 +tAg] - Lu — Agu), K.,,O)
is such that u # H(t,u) for each u on K, and each ¢ € [0,1] . Hence by Property
P.2 of the topological degree, we obtain
deg(u — Pa,(—Tu+ A; - Lu — Asu), K, 0)
= deg(u — H(0,u), K;,0)
= deg(u — H(1,u), K, 0)
= deg(u — P4, (—Tu+ Xz - Lu — Ayu), K., 0),

a contradiction to Assumption (2). |
REMARK 4.1. Proposition 4.1 is closely related to the results of [18] and [19].

REMARK 4.2. Lemma 3.1 determines the corresponding degree for r large
enough and this knowledge does not seem to be useful for the localization of bifur-
cation points.

PROPOSITION 4.2. Assume that hypotheses (1)—(4) hold. Then each bifurcation
point Ao for V.I. (A, L, T, \, K) belongs to ox (A, L).

PROOF. Let A be a bifurcation point for V.I. (A,L,T, A, K). Then choose
{An : n € N} and {u, : n € N} such that u, # 0, lim, o0 un = 0, lim, o0 Ap, = Ag
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and
(Tu, — A - Ly + A, v —up) >0 for each v e K.

According to Proposition 2.1, we also have

(4.2) (T, Un) = (A - Ltiyy — A, up,)
and
(4'3) <Tun7y) 2 (’\n - Lup, — Aup,y), foreachye K.

If we divide (4.2) by ||un||, we obtain

{Ttin, un)/tnI* = An{Lun/llunl)) — Altn/l[un])), tn/ luall))-

Set v, = uyn/||us||; on relabelling, if necessary, we may suppose that w-limy, o v, =
v*. We have

(Avp, — AnLu,,v —v,) > —<%ﬂ,v —’un>, for each v € K
(3

since by Assumption (3), there exists C' > 0 such that ||Tu| < C||ul|?, for all u € K,
we derive
(Avp — Ap - Lvp, v — vp) = —Cllun||P~ v — vn||, for each v € K.
Hence, using Lemma 4.1, we get
(Av* — XgLv*, v —v*) >0, foreach ve K.
We claim that v* # 0. Indeed, we have
@ < (An, Un) = An(Ln, Vn) = (T0p, v) / [unlP ™ = {A2v5, v0);
computing the limit we derive
a < Ao{Lv*,v*) — (Agv™,v").
By contradiction, this yields v* # 0 and thus Ag € ox (A4, L). O

REMARK 4.4. All the assumptions of Propositions 4.1-4.2 are satisfied in the
examples of Section 2.

REMARK 4.5. Using the homotopy Hx(t,u) = Pa(—t-Tu+A-Lu— Aqu+g), it
is also easy to prove that for each A ¢ ox (A, L), for 7 small enough, the topological
degree of the map u — P4, (Tu+ A+ Lu — Agu) with respect to K, and 0 does not
depend on T i.e. deg(u — Pa,(—Tu+ A - Lu — Asu), K,,0) = deg(u — Pa, (A Lu —
Aqu), K,,0). See also [18].
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In the sequel we will assume that
(5) {zx e K: (Az,z) = 0} = {0}.

(This assumption is realized if for instance A, is positive, as is the case in the
examples given below.)

The following three theorems contain interesting information for our practical
problems.

Let p and p' be defined by

1/p= sup (Lz,z)/(Az,z),
ze K\{0}

; _ .
1/ = it (Lv,2)/(45,2)

In the case of:
Example 2.3.1: 1/p = supy (o) (L, u)/[[ulf?,
Example 2.3.2: 1/p = supgn (o3 (Lu, w)/(J[ul|® + a'(2, 2)),
Example 2.3.3: 1/p = sup g (o3 (Lw, w)/(||ul|® + (Ru, u)).
These numbers are well known to be the positive critical load of the plate (negative

critical load for the corresponding ¢'). In the sequel we consider the case of positive
A. Our theory can easily be extended for negative .

PROPOSITION 4.3. Assume that hypotheses (1)—(5) hold. Suppose 0 < p < +o0.
Then for each A € (0, p], u =0 is the unique solution to V.I. (A,L,T, )\, K).

PROOF. If u is a nontrivial solution of V.I. (A, L, T, A, K), then by Proposition
2.1, we have
(Au,u) — MLu,u) = —(Tu, u).
Since A # 0 and u # 0, using Assumptions (4) and (5) we have

1/X < (Lu,u)/{Au,u) < 1/p,
a contradiction. O

The following lemma completes our information about the number deg(l —
Ps (—Tu+ A - Lu — Asu), K,,0).

LEMMA 4.3. Assume that hypotheses (1)—(5) hold. Suppose 0 < p < +oo0.
Then:

(i) for each A € (0,p| and each v > 0 we have deg(I ~ Pa,(~Tu + A - Lu —
Au), K,,0) =1;

(ii) Assume A and L linear. If there exists G, € ker(A* — pL*) N K such that
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A*T, € int K* (that means p is an eigenvalue for the couple of adjoints (A*, L*) and
we can choose a corresponding eigenvector T, in K and such that (A*T,,v) > 0,
for each v € K\ {0}), then for each A € (p,+00), we have deg(I — Pa, (—Tu+ A-
Ly — Agu), K,.,0) =0, for all r small enough.

(iii) Assume A and L linear, and suppose that p is an isolated eigenvalue for
the couple (A,L). If B()) :== dimker(A — AL) = 1 for 8 = p, and if there exist
u, € ker(A—pL)Nint K and U, € ker(A*—pL*)Nint K such that (Au,,T,) > 0, then
for each A > p, A close to p, we have deg(I — Ps,(—Tu+ A- Lu— Aqu), K,,0) = 0,
for all v small enough.

PROOF. (i) Suppose that there exists r > 0 such that
deg(I — Pa,(—Tu+ A - Lu — Ayu), K;,0) # 1.
For R sufficiently large, thanks to Lemma 3.1 we have
deg(I — Pa,(—Tu+ A- Lu — Azu), Kg,0) =1,
and therefore by virtue of Property P.3 of the topological degree we get
deg(I — Pa,(—Tu+ X - Lu — Aqu), Kp\K,,0) # 0.

As a result, we derive the existence of a nontrivial solution and a contradiction with
Proposition 4.3.

(ii) We shall split the proof of (ii) into several steps.

Step I: Define the homotopy

H(t,u) := Pa,(—t-Tu+ A+ Lu— Agu).
We claim that for r small enough, and for each ¢ € [0, 1],
I — H,\(t,-)(0K,) #0.

Indeed, suppose that, on the contrary, we may find sequences {u, : n € N} and
{tn : n € N} such that u, € K, t, € [0,1], im, s ||us|| =0 and

(Atn, v — ug) > (A« Ltg, v — Up) — to{Tn,v —u,), foreachve K.

Set vy, := un/||un; by considering a subsequence if necessary, we may assume that
w-limv, = v* and v* # 0 (if not we get a < 0, a contradiction). As usual, using
Proposition 2.1, we get

(4.4) (Av*, v —v™) 2 (X- Lv*,v —v*), foreachve K.
If we put v := 7, + v*, we obtain

(Av*,T,) > AM(Lv*,6,),



NONLINEAR EIGENVALUE PROBLEMS 269

and therefore
p(v*, L*G,) = (v*, A*u,) > A(v*, L*T,).
Hence p > A, a contradiction. Thus, for A > p, and r small enough, we have
deg(l — Pa,(—Tu+ A - Lu — Apu), K;,0) = deg(I — P4, (A - Lu — Aju), K,,0).
Step II: Define the homotopy
G,\(t, u) 1= Py, ()\ -Lu— Agu+t- ﬂp).

We claim that for each ¢ € [0,1], I — GA(t,-}(8K;) #0 (r > 0).
Indeed, if the claim is not true, there exist ¢ € [0,1], u € K such that |u| = r,
and

(4.5) (Au— A - Lu —tu,,v—u) >0, foreachv e K.
Put v := u 47, in (4.5). Then we get
HTI? < (Au— - L, By) = (p— X)L, By} = (0 — N)/p)(u, AT, ).
Hence t|u,|? < 0, a contradiction. Thus, for A > p, and r small enough, we have
deg(I — Pa,(—Tu+ X- Lu — Au), K,,0) = deg(I — P4, (A- Lu — Aqu+7,), K, 0).

The proof of the claim is complete.
Step III: To complete the proof of (ii), it is sufficient to check that

deg(I — Pa,(A- Lu — Ayu —%,), K,,0) = 0.
Indeed, assume that, on the contrary, there exists u € K such that
(4.6) (Au— du —T,,v — u) >0, for each v € K.

Necessarily u # 0, since otherwise we get (@,,v) < 0, for each v € K, and in
particular ||@,||? < 0, a contradiction.
Put v :=7%, + v in (4.6). Then we get

111" < ((p = M p)(u, A*Gp) < 0,

a contradiction.
(iii) Under our assumptions, p is isolated in ok (A, L) (see Theorem 5.2). Define
the homotopy
C,\(t, u) = P, (tﬂp +A-Lu-— Azu)

We claim that for A > p, A close to p and r small enough,
deg(I — Pa,(\ - Lu — Ayu), K,.,0) = 0.

Indeed, for t = 0 the map Cx(t, u) is admissible, while for 0 < ¢ < 1, the equation
u = C)\(%,u) is not solvable for X close to p.
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Otherwise, we can choose {u, : n € N} C K and {\, : n € N} C R such that
An > p, lim, o0 Ay, = p, and

(4.7 (—tu, + An, Lu, + Atg,v — un) >0, for each v € K.
If we put v := %, + u, in (4.7), we obtain
(Aunaﬁp> < _tplﬁplz/(’\" - P)

The last relation proves that {u, : n € N} is unbounded, so that we may define
Un = Un/|[us|. By considering a subsequence if necessary, we may assume that
w-limv, = v* and v* # 0. It is easy to prove (see [17] or the proof of Theorem 5.1)
that v* & Ker(A — pL).

Thus, since 3(p) = 1, there exists a > 0 such that v* = au,. But we have
(Av*,1,) <0, a contradiction. O

- THEOREM 4.1. Assume that hypotheses (1)—(5) are fulfilled, with A and L
linear. Let p > 0 be as in Proposition 4.3. If p is isolated in o (A, L), and if there
ezists U, € ker(A* — pL*) N K such that A*G, € int K*, then T, := T U {(p,0)}
contains a subcontinuum Lo such that (p,0) € T'g, which either (i) is bounded, or

(i) To N {R x {0}} # {(, 0)}.

PROOF. If we suppose that each subcontinuum I’y meeting (p,0) is bounded,
then using Remark 4.5 and the fact that p is isolated in ox (4, L), we can prove
that there exists a bounded open subset D of R x K such that:

(i) (p,0) € D;
(ii) dDNT =0 and
(ili) D contains no trivial solutions of V.I. (4,L,T, ), K) except those in
B((p,0), é), where

6 < dist (p, 0k (A, L) \ {p}).

(this is classical in bifurcation theory and the proof is similar to the one given in
[22] for example).

Now let D), := {u € K : (\,u) € D}. If u is a large number then by (ii) and
(iii), Dy = 0. For X close to p, deg( — Pa,(—Tu+ ALu— Aau), Dy, 0) is constant.
By choosing r small enough, it can be assumed that, for 0 < [A — p| < §, (A,0) is
the only solution of V.I. (A4, L,T, A\, K) and for |A—p| > 6, 0,A < u, K, N Dy = 0.

Hence, by Property P.6 of the topological degree, we have, for A close p, A # p,

deg(u — P4, (~Tu+ A - Lu — Au),,0)
= deg(u — Pa,(-Tu+ p - Lu — Aqu), K, \ Dy, 0)
=deg(u — Py, (—-Tu + p - Lu — Ayu),,0) = 0.
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Thus for A < p, A close to p, by virtue of Lemma 4.3(i), we get

deg(u — Pa,(=Tu+ A - Lu — Au), Dy, 0)
=deg(u — Pa,(—Tu+ A Lu — Ayu), K,.,0)
+deg(u — Pa,(—Tu+ A - Lu — Agu), K, \ D),0) =1,
while for A > p, A close to p, by using Lemma 4.3(ii), we have
deg(u — P4, (—Tu + A - Lu — Agu), D,,0) = 0.

Since deg(u — P, (—Tu+ A - Lu — Azu), Dy, 0) is constant for X close to p, we get
a contradiction. The proof of Theorem 4.1 is complete. m]

If p > 0O is isolated in ok (A, L), then from Theorem 4.1 we can deduce the
existence of a subcontinuum of nontrivial solutions which either meets infinity or
meets (7, 0) where 7z # p. In Section 5 we give some conditions for p to be isolated
in o (A, L). Using part (iii) of Lemma 4.3, we derive, similarly to Theorem 4.1,
also the following:

THEOREM 4.2. Assume that hypotheses (1)—(5) hold, with A and L linear.
Let p > 0 be as in Proposition 4.3. If p is isolated in ox(A, L), B(p) = 1, and
if there exist u, € ker(A — pL) Nint K and T, € ker(A* — pL*) Nint K such that
(Au,,T,) > 0, then T, contains a subcontinuum I'y such that (p,0) € Ty, which
either (i) is unbounded, or (ii) To N {{0} x R} # {(p,0)}.

THEOREM 4.3. Assume the hypotheses (1)—(5) hold, with A and L linear. Let
p >0, (p) <0) be as in Proposition 4.3. If there ezists T, € ker(A* — pL*) N K
such that A*u, € int K*, then:
(i) for each A€ (0,p], V.I.(A, L, T, A\, K) has a nontrivial solution;
(ii) p is a bifurcation point for V.I. (A, L, T, \ K).

PROOF. (i) Use Lemma 3.1 (with g = 0), Lemma 4.1, and Property P.3 of the
topological degree.

(ii) We give the proof for p > 0. Let ¢ > 0 be sufficiently small. By Lemma
4.3 (i), for each r > 0 we have

deg(u — Pa,(—Tu+ (p — €)Lu — Agu), K,,0) = 1,
and by Lemma 4.3 (ii), for 7 small enough we have
deg(u — P4, (—Tu + (p+ €)Lu — Azu), K,,0) = 0.

Thus by Proposition 4.1, there exists a bifurcation point in [p — ¢, p+¢€]. Since ¢
is arbitrary, p is necessarily a bifurcation point for V.I. (A, L, T, A, K). m]
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5. Spectral analysis of the set ox(A, L)

Let F : K — X be a continuous positively homogeneous operator of order 1.

PROPOSITION 5.1. Assume that hypotheses (1)—(2) hold. Then the set o (A, L)
is closed.

ProoF. Take a sequence {\, : n € N} with A, € ox(A,L) and such that
lim, .00 An = A*. Since A, € ox(A4,L), there exists u, € K \ {0} such that
|un|l =1, and

(Aup, — Ay - Lug,up) =0
and
(Aun — A - Lug,y) >0, for each vy € K.

On relabelling if necessary, we can suppose that
w- lim u, = u",
n—00
and thus taking the limit in the above relations, we obtain, by Lemma 4.1
(Au* — X" - Lu*,u*) =0

and

(Au* — A* - Lu*,v) >0, for eachye€ K.
Lemma 4.1, applied to F(\ u) := Aou — ALu and Gu := Au, gives (A;u*,u*)
= limy, 00 {AUn, un) > a and therefore u* € K \ {0}. Hence A* € ox (A4, L) and
the proof is complete. ]

The following proposition gives some bounds for the set o (A, L).

Let p > 0 be as in Section 4. The following result tells us that if A and L are
linear and self-adjoint, p always belongs to ox(A,L). This agrees with Theorem
4.2, since p is a bifurcation point for V.I. (4, L, T, A\, K).

PROPOSITION 5.2. Let X be a real Hilbert space, and K a closed convez cone
in X. Suppose that L, A: K — X are linear and self-adjoint. Then p € ox(A,L).
PROOF. By the definition of p, we have
(5.1) (Au—p- Lu,u) >0, foreachue€ K,
and there exists u* € K \ {0} such that

(5.2) (Au* — p- Lu™,u*) =0.
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Let v be arbitrary in K, a > 0 and put  := @-u*+wv in (5.1). We obtain, by (5.2),
(Av—p - L, v) + 20(Au* — p- Lu*,v) > 0.
Hence,
(1/a){Av — p- Lv,v) + 2(Au™ — p- Lu*,v) > 0, for each v € K.
Taking the limit as @ — 400, we obtain
(Au* —p-Lu*,v) >0, foreachwve K.
By virtue of (5.2) and Proposition 2.1 we get
(Au* — p- Lu*,v—u*) >0, foreachve€ K,

and therefore, p € o (A, L). O

Suppose now that A, L : X — X are bounded and linear; we may then define
the resolvent set r(A, L) of the pair (A4, L) as the set of all A € R such that A—\-L
has a bounded inverse, and the spectrum of the pair (A, L) as Sp(A, L) = R\r(4, L).

We say that A € Sp(A4, L) is an eigenvalue for the couple (A, L) if dim ker(A—\-L) >
1. We denote by o(A, L) the set of eigenvalues of the pair (4, L) [3].

Moreover, A € R is said to be a simple eigenvalue for the pair (4, L) if [3]:
(i) dim ker(A—X-L)=1,
(ii) codim R(A—A-L)=1,

(ii) kerf(A—A- LY@ R(A-X-L)=X.

This concept generalizes the notion of simple eigenvalue of the classical problem
Au = X - u; some properties of this concept can be found in [7]. The number
B(A) = dim ker(A — A - L) is called the geometric multiplicity of A relative to the
pair (A, L).

LEMMA 5.1. Let X be a Hilbert space. Then
yeK*,y#0,2€ K and (y,2) =0= 2 € dK.
PROOF. By contradiction, suppose that z € int (K). Then for each ® € X,
there exists ¢t > 0 such that z +{® € K.

Hence for each y € K*, we have (y, z) £ t(y, ®) > 0 from which, since {y,2) =0,
we derive (y,®) =0, for all ® € X, a contradiction. 0O

By a simple review of a similar result of P. Quittner [18], we now obtain a suf-
ficient condition for A € R to be isolated in ok (A, L):
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THEOREM 5.2. Assume that hypotheses (1) and (2) hold, with A and L linear.
Let Ag > 0 be an isolated eigenvalue in o(A, L) satisfying:
(i) B(x)=1;
(i) there exists ug € ker(A — Ao - L) Nint K;
(iil) there exists uf € ker(A* — Ag- L*)Nint K.
Then Ap is isolated in ox (A, L).

Proor. Indeed, suppose that, on the contrary, there exist sequences {A, : n €
N} and {un : n € N} C K (u,, # 0) such that

(5.3) lim A, = Xg, (Aup — An - Lug,v—u,) 20 for each v € K.
n—oo

By using the fact that Ao is isolated in (A, L) we know that Au, # A, - Luy;
hence by virtue of Proposition 2.1 and Lemma 5.1, u, € K. Also, without loss
of generality, we may suppose w-lim,_,o, 4, = z; computing the limit in (5.3), we
obtain, by application of Lemma 4.2, lim,, o 4, = 2,

(Az— Ao - Lz,v—2z) >0 for each v € K,

and also since 9K is closed, z € OK.
Now let ® € X; since uj € int K there exists § > 0 such that

v=z+u,+té- e K.

Therefore, we have
0< +6{(Az— Xo-Lz,®)+ (Az — X~ Lz,ug)
< +6{(Az — Ag- Lz, ®) + (z, A"ug — Ao - L ug)
< +6{Az — Ao - Lz, D).

This yields Az — A - Lz € X+ = {0}.

Now, let z € 8K since for each a > 0, a - up € int K, there does not exist
any t > 0 such that ug = ¢ - 2. As a result, we have dim ker(Au — Ag - Lu) > 1,
a contradiction with the fact that 8(Aq) = 1. O
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