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A PRIORI ESTIMATES FOR THE GRADIENT
OF THE SOLUTION TO THE SYSTEM OF
VISCOELASTICITY IN SEVERAL DIMENSIONS

PioTr RYBKA

Dedicated to Jean Leray

1. Introduction

The aim of this note is to study a priori estimates for the gradient of strong
solutions u to the system of viscoelasticity

(1) Uy = div (o(Vu) + Vi), u(z,0) = up(z), w(z,0) = uy(z),

on a bounded domain  C R™ with smooth boundary; % : Q — R"®, n > 1. The
main technical assumption is Lipschitz continuity of the nonlinearity and that
o is close to a linear mapping for large arguments. We consider data such that
Vg is in the space of functions of bounded mean oscillation (BMO) or ug, u;
are spherically symmetric and Vg is essentially bounded. For the definition of
BMO we refer the reader to Section 2 or to the original paper (13].

One can hope for such estimates because of a hidden parabolic structure of
(1). Its parabolic structure may be made transparent after a diagonalization
procedure (cf. [14]-[16]): the introduction of new variables P, Q,

div P = uy, Q=Vu-—P,
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where P and @ are gradients, leads to a new system
P, =VdivP+7o(P+Q), Qi = —7wo(P+Q),

where 7 is an integral operator acting by removal of the divergence-free part of
a matrix (vector) field (see Section 2 below).

For ug in W1 we study spherically symmetric solutions and we show that
|V|lco stays bounded in time only if ug has some additional regularity. Other-
wise, the apparent parabolic structure does not prevent instantaneous formation
of singularities at the origin. This suggests that the space of functions of bounded
mean oscillation would be the right substitute for L°°. This seems the right
choice since it is well known that 7 considered on the whole space maps L™
into BMO (see [10]). Indeed, we show that for Vug € BMO the gradient of the
solution u is bounded in BMO. Moreover, no symmetry of data is required.

Our result, which is valid for vector-valued u, is in contrast with the known
results which mostly concern the case of real-valued u. For one-dimensional

problem (1),
uge = (0(ug) + Ugt), in (0,1), u(t,0) =0, (o(ug)+uge)(t,1) =0,

Pego [14] shows that ||us||oo stays finite over time, where v is a strong solution
(see also [5] for related problems). The approach of {14] and (5] is essentially
one-dimensional and cannot be generalized directly to higher dimensions. In a
recent paper Grippenberg [12] considers a larger class of hyperbolic-parabolic
Volterra equations of which the above equation is a special case. He establishes
L™ a priori estimates for weak solutions of equations from this class. Engler (7]
constructs spherically symmetric mild solutions to (1) provided u is real-valued.
Along the way he establishes L a priori estimates for gradients using a method
similar to ours. It turns out that strong dissipation may not prevent formation
of singularities at the origin for spherically symmetric vector-valued solutions.
Thus our result for Vug in BMO is in a sense optimal.

The motivation for this work stems from attempts to model phase transitions
in solids (see [3], [4] and references therein). If we assume that there exists a
smooth function W : R**™ — R such that OW (F)/JF = o(F), then the stored
energy function W has several local minima, and we cannot count on convexity
nor ellipticity of W. The consequence of this fact is that the system of elasticity

uy = divo(Vu)

is ill-posed. The equation (1) is a regularization of the above system, and may
be used as a model for dynamics of the process (see e.g. [14]-[16]).
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The existence of vector-valued solutions u was obtained under the rather
technical assumption that o is globally Lipschitz continuous (cf. [15], [16]). This
assumption puts severe restrictions on the growth of the nonlinearity for large
arguments. Despite this we cannot guarantee that the solution stays in W12 if
ug is in this space. The negative result of this paper suggests that W1 may
not be the proper space of admissible data for dynamics of diffusionless phase
transitions.

The paper is organized as follows. In the second section we revisit existence
theory for (1) in order to make it work for ug such that Vug € BMO(2). We do
that using the variables P, @ introduced in [15], generalizing the one-dimensional
transformation of Pego [14]. In the third section we present the a priori estimates.
‘We deduce them from the solvability of

Qi =—7no(P+Q)

on various function spaces under suitable conditions on o.
Throughout the paper we shall use the following notation: the space of n by
n matrices is denoted by M(n x n) or just R™*™; for a matrix £ € M(n x n) we

€] := (€, &) = (tr&€T)V?,

B, is the ball in R™ centered at the origin with radius p, B, = {z € R" : |z| < p}
and we use the shorthands || - [|x,, (resp. || - [|¢) for || - [|wr.a (resp. || |[Lq), and

define its norm |¢| by

- l« =1 - llemo-
2. Existence revisited

In this section we present concisely the existence results for the system
(2) wy =div(e(Vu)+ Vuy) in Q, u(z,0) = uo(x), us(z,0) = ui(z)
with either Neumann boundary conditions
(3) (6(Vu)+ Vi) -v=0  on 89,
where v is the outer normal to the boundary of §2, or Dirichlet boundary data
(4) u=0.

We assume that « :  — R" and 2 C R" is bounded with smooth boundary.
We use new variables (see [14], [15])

div P = u;, @ =Vu-— P,
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leading to diagonalization of (2). We assume that P and @ are gradients and P

satisfies

(5) P-v=0 ondQ

in the case of Neumann data (3) or

(6) divP=0 ondQ

in the case of Dirichlet data. In the new variables equation (2) becomes

(7) H = WU(P + Q) + leV Ps Qt = _WU(P + Q)a

N

where 7 = 7V or # = 7P, depending on boundary conditions. Here 7Vv and

7Py, v € LP(Q,R™*"), are continuous projections onto subspaces of gradients

N

satisfying some additional boundary conditions. Precisely, V¢ = 7" v, where

¢ € Whe(Q; R™), 1 < p < o0, if ¢ is a weak solution of

(8w) Ap=divv inQ, (Vop—v)-v=0 ondY

and V¢ = 7Pv, where ¢ € Wol”’(Q; R™), if ¢ is a unique weak solution to
(8p) Ap=divv in Q.

We refer the interested reader to [15, Appendix] and [9] for more details. In
order to simplify the notation, from now on we shall drop the superscripts D
and N. This should not lead to confusion since the form of boundary conditions
is mostly immaterial.

The following existence result is valid.

EXISTENCE THEOREM. Suppose o is Lipschitz continuous, 2 < p < oo,
Py and Qg are initial data for (7) such that P, € nWIP(Q;R™ %), Qo €
wLP(Q2,R™*™) where the region § is smooth, and either

(a) m=a" and Py-v =0;
or

(b) # ==P.
Then there is a unique solution (P(t), Q(t)) of (7) such that

(a) for # =aN, P(t) satisfies the boundary condition P(t)-v =0
or

(b) for # = nP, P(t) satisfies div P(t) =0 on 9Q, for t > 0;
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moreover,

P € C([0, 00); 7WP) N C*((0, 00); mLP) N C((0, 00); iW2P),
Q € G ([0, c0);7L?).
Proor. If p= 2, this result was proved in the present form for both bound-
ary conditions in [15]. Swart and Holmes [16] sharpened the result for Dirichlet

boundary conditions to accommodate p # 2. Actually, their argument can be
extended to boundary data (3) to yield existence in the present form. O

This theorem provides a unique solution to the original problem (2), (3) or
(2), (4) satisfying
us € C([0,00); LP(Q,R™),  Vu € C([0, 00); LP(2, R™*™)),
Vg +70(Va) € C((0, 00); W P (5 R™™)).

This result was proved for p = 2 and either of the boundary conditions (3) or (4)
in [15]. Swart and Holmes [16] sharpened this result to accommodate the case
p > 2 for Dirichlet boundary condition (4). It turns out that their argument
goes through only with minor changes for Neumann condition (3). However, we
shall content ourselves with an immediate corollary to the Existence Theorem:

CoRrOLLARY. If o is Lipschitz continuous, ug € WHP(Q;R™), u; € LP(Q, R"),
then the unigque solution of (2) and (3) (or (2) and (4)) satisfies

u € C([0, 00); WHP(Q;R™)), u; € C([0, 00); LP(2, R™)).

For the reader’s convenience we recall the definition of the function space
BMO((?) introduced by John-Nirenberg [13] (see also [1]):

BMO(Q) = { FeLMQR") :

Iflle = sup {r-n J 1f = Faomnal dz} < oo},
o€, r>0 Q(zo,r)NQ

where fa denotes the mean value of f over the set A,
1
f = _—/ f T dx!
A= 1a J,7®

and Q(z,r) is the cube centered at = with edges of length r parallel to the axes.

We shall prove existence of solutions for (2) with data such that Vuy €
BMO(2) only for Dirichlet boundary conditions. For these boundary conditions
we have a priori estimates for the gradients of solutions of elliptic systems (see

[1])-
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ProprOSITION 1. If we add to assumptions of the Existence Theorem, the
conditions Qo € BMO() and p > n, then Q € C([0, c0); BMO(R2)).

PROOF. Since BMO(Q) C 2, L%(£2), by the Existence Theorem we have
Q@ € C*([0,00); LP). In particular, Q solves

Q: = —7mo(P + Q).

We shall see that this equation is well-posed in BMO, and hence the uniqueness
of solutions will follow. We note that P(t) € W1P({;R"*") with p > n, so
P(t) is in BMO. By Lipschitz continuity of o the composition ¢ — o(¢) maps
BMO into itself. It is sufficient to check that (a) the composition ¢ — o(¢) is a
Lipschitz mapping, (b) the projection 7 is continuous.

We begin with (a). We note that if f € BMO(Q) then there is a positive
number ¢ such that

1
[£lle < epll £ll+ + ﬁllflll Vp 2 2.

This can be deduced easily from Sections 1 and 2 of Chapter VI in [11].
Let A > 0 be the infimum of numbers ¢ such that the above inequality holds
for all f in BMO(2) and all p > 2. Thus, if for f € BMO({2) we have

1
< —
11 < ap+ gl £l

then [|f|l« < a/A. Therefore, since o(¢), o(3)) € BMO for ¢,4 € BMO and
L
lo(¢) — o()llp < Lllg — ¥ll, < 2LAp|¢ — 9|, + lﬁl”d) — ¥,

where L is the Lipschitz constant of o, we obtain

lo(¢) — o (@)l < 2LiI¢ — ..

The validity of (b) for 2 = R" follows from the fundamental paper of Fef-
ferman and Stein [10]. For bounded domains the continuity of 7 follows from a
priori estimates in BMO for the gradients of solutions of elliptic systems applied
to (8p) (see e.g. [1])-

From (a) and (b) we easily conclude that @ € C*([0, c0); BMO(Q2)). O

By the definition of P and @ we immediately obtain

COROLLARY. In addition to the assumptions of the Ezistence Theorem, sup-
pose that Vug € BMO(Q). Then Vu € C([0,00); BMO(Q2)).
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3. A priori estimates

We shall examine two cases:

1) BMO estimates, no symmetry of data assumed;
2) L* estimates for spherically symmetric solutions.

Our method of solving these problems is loosely related to the idea of “lineariza-
tion at infinity” due to Evans and Chipot [8]. That is, we assume that for large
£ the term o(§) is linear up to a bounded perturbation, o(£) = Af + E(£). We
now treat equation (72) as

Qi =-7AQ — (AP + nE(P+ Q))

in an appropriate function space X (2). The variation of constants formula yields

(9) Q(t) = exp(—mAt)Qo — /0 exp(—(t — s)mA)m(AP(s) + E(P(s) +Q(S))) ds.

This formula will be justified if A is a continuous mapping on X (2) and P(t) is
continuous with values in X (). Subsequently we deduce the desired estimates

from (9) and additional properties of ¢, A. From now on we assume that
(10) lo(§) —Af{ < M < oo, V€€ M(nxn),

where A € M(n x ) and A is symmetric, positive definite, i.e.

(11) A> X >0

We can now state our main results.

THEOREM 2. Suppose that the assumptions of the Existence Theorem are
satisfied and there is a smooth function W : M(n x n) — R such that o(¢) =
DW (§). In addition, assume that p > n and there is a positive definite matriz
A such that (10) and (11) are satisfied. Then, if Vug € BMO(Q), the solution u
of (2), (4) satisfies

V@)« < [[Vuoll« + K,

where K depends only on M, X\ and u;.

THEOREM 3. Suppose thal the assumptions of the previous theorem hold.
Assume that o is isotropic, i.e:

o(RFRY) = Ro(F)RT, VR e SO(n),
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for all F € M(n x n); up and uy are spherically symmetric (i.e. up = ao(r)z/r
and vy = a1(r)x/r where r = |x|), and up € WH°(By;R™) is such that the
integral

(12) (o) = /0 g

is finite. Then the solution u of (2) with either of the boundary conditions (3)
or (4) satisfies

ao(r)/r — ag(r)
T

dr

IVa()lloo < (I Vuolloo + J(uo) + & + Mt)em*

where the constant K depends only on the nonlinearity o and « depends only on
p, p, the dimension n, and the initial velocity u,. Moreover,

J(w(t) < (IVuolloo + J(ug) + £ + Mt)e™?

for all times t > 0.

The condition J(up) < oo is essential. Its violations may lead to instanta-
neous formation of singularities of u at the origin. We stress that this is possible

only because u is vector-valued.

PROPOSITION 4. There is an isotropic o satisfying the assumptions of the
Eristence Theorem and ug € Wh®(B,; R™) with J(up) = o0, vy € LP(Q,R?),
p > n, such that for no positive C, T does one have

[Vu(t)leo < C
for 0 < t < T; moreover, a singularity forms at the origin, i.e. |Vul(z,t) — oo
as ¢ — 0.

REMARK 1. The linear mapping ®5 : M(nxn) — M(nxn), ®5(§) = Aok,
where A € M(n x n), is a rather special example of a linear transformation of
M(n x n) but it has the property that AV¢ = V(A¢) for ¢ € WLP(Q;R™) or

(13) TAV$ = AV§.

Moreover, it is the only map with this property.

PROPOSITION 5. If L : M(n x n) — M(n x n) is linear and has property
(13) for all ¢ € WH(2;R™) then there exists a matriz A € M(n X n) such that
L=2%,.

Proor. It is sufficient to consider smooth, compactly supported functions
¢. If necessary, we can shift the origin so that supp¢ C B, 7 > 0.



A PrioRI ESTIMATES FOR THE SYSTEM OF VISCOELASTICITY 243
The property (13) means that there exists 1 such that
(14) LV¢ =V

and V1 vanishes outside the support of ¢, so we may assume that supp ¢ C B,.
We can take the Fourier transform of both sides of (14) to obtain

(LVY" = L(i®() =i ®¢, ¢ €R?,
or
Liiti et = Yil;-
We have assumed that
(LE)i; = bijribmt
(the summation convention is in force).

Fix b. By the Plancherel-Pélya Theorem we may find a smooth function ¢
such that supp¢ C B, and b = $(C ). Thus, we may vary ¢ and we conclude that
eijktak = @iﬁu
Thus there is a matrix A = {a,-j} such that E,-jk, = aikéj-, namely a;;, = e,;jqu;:.

This yields the desired result. a

The common ingredients of the proofs of Theorems 2 and 3 are: boundedness
of exp(—mAt) in X(2) and L*™ bounds for P. We begin with the first fact. By
Remark 1 we have exp(—t7A) = exp(—tA). Positivity of A yields

(15) lexp(—trA)zllx < e *|lzllx

for X(2) = BMO(?) or X(Q) = L4(,R"*"), 1 < ¢ < 00. Now, the triangle
inequality applied to (9) yields
(16) [1Q#)lx < [Qollx

+ i‘s;l;g(“'lra(P(s) +Q(s)) — A(P(s) + Q(s))l x + [|AP| x).

Now we shall show

LEMMA 6. Suppose that the assumptions of the Existence Theorem and the
conditions (10) and (11) hold. If up € W'?(Q;R") and u; € LP(Q, R™) where
p > n, then

17) sup [|P(t)llec <00 and sup [|P(t)|1,p < co.
0<t<oo 0<t<oo
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PROOF. We shall rely on Theorem 4.6 and Corollary 4.7 in [15] guaranteeing
for either the boundary condition (3) or (4) that

(18) |Pll22 —0  ast— oo,

provided the condition (B) in [15] is satisfled, i.e. provided there are positive
numbers ¢, C, D and a real number d such that

d+clé> < W(€) < D+CIEP?

for all £ € M(n x n).
In order to check the validity of this condition we note that

W© W)= /o: i ()
:/om <"(t%> |§|>dt ]
= < (él) Mg |§|>‘”+/o (Mg )

y (10), (11) and the Young inequality, we obtain

|£|2—ﬂ+W(0)<W( ) < W(0 )+%M2+l

S+ ADIER,

as desired.

So, if n = 2 or n = 3, then by (18) and the embedding W22(Q2) C C°(2)
the lemma follows. A little more work has to be done in order to prove (17) in
general. We only sketch the argument. Set k* = kn/(n — k) for k < n. We note
that k* > k+1/nif k > 1. We put ko = 2, ki1 = (kf)* —1/(nl). This sequence
is increasing, and for some lg, ki, > n, otherwise the sequence would have a limit
g satisfying g = gn/(n — 2g), which is impossible.

We shall show that ||P|l2x, — 0 implies ||P||2,x,,, — 0. Thus after a fi-
nite number of steps we obtain [|Pllz,min{x,,p»} — 0 and (17) holds. Indeed, if
| Pll2x, — O then, by the embedding theorems, ||Pllix; — 0 and || P(|(x:)- — O,
and consequently sup;q ||Pll(zs)» < M. Since 7 is continuous on LI, R™*™)
the inequality (16) implies that ||Q||(x:)~ is bounded, because |[ro (P + Q)| (x;)-
is. Since we know [15, Proposition 4.5] that |[xo(P + Q)|l2 — 0, the Holder
inequality implies that [[mo(P + Q)||x,., — 0. By Lemma 3.3 of [16], which is
valid for either of the boundary conditions (5) or (6), and by an estimate for time
derivatives of solutions of parabolic equations (Lemma A.3 of [14]), we deduce
that

”Pt”l,kt-u -0, ”Qt”k1+1 — 0,
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s0 ||(P + Q)tllkiy. — 0 and ||Pl2,x,,, — 0. The inequalities (17) follow. a

ProOF OF THEOREM 2. Having established (17} our result is a straightfor-

ward application of (16) since
Im(e(P + Q) — A(P + @)l < M||xll.,
and finally by (17),
[Vu@)ll« < [[Vuolls + %IIWII*(M + 1Al sup [1P(5)lloo) +sup [1P(8)lloo < 00
for Vu=Q+ P. O
It remains to consider the case of spherically symmetric data in W1 (Q; R"),
ug(z) = ap(r)z/r, uy(x) = ay(r)z/r,

where 7 = |z|. We note that if y(x) = a(r)z/r belongs to W'?(B,;R") then

xT

D2 fra/(r) — a(r)].

Vy(z) = EY—)Id+ ;

One can check that Vy has the following symmetry:
RVy(z) = Vy(Rz)R
for all R € SO(n). We shall call a tensor field A : B, = M(n X n) spherically
symmetric if
(19) RA(z)RT = A(Rz) VR € SO(n).
We note that if o is isotropic, then ¢(Vy) is a spherically symmetric matrix field

for y(z) spherically symmetric. Moreover, a spherically symmetric matrix field

can be easily characterized. Namely, we have
PROPOSITION 7. If A: B, — M(n x n) satisfies (19) then

@z
r2

A(z) = ar)Id + 8(r)

for some functions a and B.

PROOF. Fix z = re, r > 0, e being a unit vector. Consider all R € SO(n)
such that Re = e. If we choose an orthonormal basis ey, ... , e, such that ¢; = e,

then Lo
m=(o n)
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Are) = (g 2)

A= (4 %),
and RA(re)RT = A(Rre) = A(re) then

M wT _ m wT RT
v AI - RI'U R/AIR/T )
that is, for all R/, one has R'v = v and R'w = w. Therefore v =w = 0.
We now observe that A’ has only one eigenvalue. If v and w are unit eigen-

vectors orthogonal to e corresponding to @ and 3, then there is R’ such that

R'Ty =w and

and A takes the form

For, if

av = A'(re)v = R A'(RTre)R'"Mv = R'A'(re)w = uR'w = fu.

Hence o = (.
Moreover, A’ is symmetric. If we take arbitrary vectors v, w orthogonal to
e, then there is R’ such that R'v = w and we have

(A'v,w) = (A'v, Rv) = (RTAR R'Tv,v) = (A'w,v).
Thus there exists an orthogonal transformation R; such that
R A'(re)RT = o(r)Id
for some a. Hence A'(re) = a(r)Id. Finally,
Aw) =BT ® T +a(r)Id,

where 8(r) = u{r) — a(r). |

We note that if v(z) = a(r)ld + B(r)z ® z/r? then divv = (/(r) + F/(r)+
(n=1)B(r)/r)x/r, so that divv is also spherically symmetric. Thus, 7v also en-

joys this property and it is then legitimate to restrict # to spherically symmetric
tensor fields. We count on great simplifications. Indeed, if we set

LP

rad

B, ,R™*") = {f € L?(B,,R™"™) : f is spherically symmetric
P P

then we have
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LeEMMA 8. For v = o(r)ld + B(r)z ® z/r?, where o, 8 are in L™(0, p), we
have n¥v = Vy where y(z) = a(r)z/r and

a(r) = ri=n /O ' (a(s) + %ﬂ(s))s"_l ds

+r(n—1) (pin /0 ’ (a(s) + %ﬂ(s)) s+ - f,, ' ﬁ—(:—) ds),

dry=(QQ—-n)r ‘/: (a(s) + %ﬂ(s)) s" lds

+(n—1) (pin /: (a(s) + ;11—;6(3)) s lds+ % fr @ ds)
+ afr) + B(r), ’

ie. m: L3y(B,, R**™) — L2 (B,,R"*™) is continuous for q < co.

REMARK 2. It is well known that 7 : L°(R") — BMO(R") (cf. [10]), so
it is not surprising that these formulas show that finite L® norm of v does not
imply that mv will stay bounded. This is why the condition J(up) < 0o has been
introduced.

REMARK 3. Similar formulas are valid for Dirichlet boundary conditions;
however, we shall not present here the calculations which are analogous to those
below.

PROOF OF LEMMA 8. First assume that v is smooth. We may write the
equation (8x) for y using the spherical symmetry of data as

n n—1

~La(r) = o/(r) + B(r) +

" n—1, _
a”(r) + " a'(r) .

a'(p) = alp) + B(p)-

0 —=6(r),

We rewrite (20) as a first order ODE,
(21) X' =AX+G +H,

where X7 = (Xo, X;) = (a,a),

0 1 0 0
A= ) 0=(odp) 7 (ady)

We deal here with a special example of a singular ODE of the second kind. We
need quite precise information about the solution, so we prefer to solve the above
equation directly, instead of invoking the general theory of singular ODE.
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Easy calculations yield that the matrix

(23) 2= (o Loy 1)

is the fundamental matrix of the system such that ®(p) # Id. The variation of

constants formula allows us to write solutions of (21) as
X(r) = 2r)e ()D+ &(r) [ 87(s)(G'(e) + H(s)) do
P

where D is to be determined according to our needs. After an integration by

parts, this equation takes the form
X(r) = &(r)@~}(p)D

o) [ "1 (s)(A(s)C(s) + H(s)) ds + G(r) — B(r)8 " (5)G(p)
P

where we used (&7!) = ~®1®'®~! = —®1A. The solution has to satisfy
the boundary condition (20;) and to be continuous at r = 0, for it belongs to
WLP(B,;R™), p > n. If we take

b= (=no | ’ (o 20)m dsale) + 606))

then the above requirements are satisfied for essentially bounded a and 8.
We can combine the results of calculations into formulas for a(r) and a/(r):

a(r) =i /0 ' (a(s) + %B(s))sﬂ—l ds

+r(n— 1)(/% /O,, (a(s) + %ﬂ(s))s"—ldw%/: @ds),

ad(r)y=(1-n)yr " /or (a(s) + %,B(s)) s lds

+(n— 1)(% /Op (a(s) + %ﬁ(s))sn_l ds+ L / -ﬂ(s—s) ds)
+a(r) + B(r). ’

3

We can now drop the smoothness assumption on data. The above formulas make
sense for arbitrary a, 8 in L%, and an easy argument shows that y(z) = a(r)z/r

with a(r) as above is a weak solution to (8y), i-e.

/ (Vy—v)-V¢dz =0
B,
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for all ¢ € C*(B,;R™). 0

PROOF OF THEOREM 3. It is not difficult to check that the solution will
be spherically symmetric for spherically symmetric data, provided that o is
isotropic.

Let us explore further the consequences of isotropy of o (cf. [2], §§3, 4, and

[6], §1.3),
Ro(F)RT =o(RFRT) VR € 80(n).

If F' is the gradient of a spherically symmetric deformation, then the Rivlin-
Ericksen Theorem implies that ¢ has the form

o(F) =vld+mB

where B = FFT and +;, 2 = 0,1, depend only on the invariants of B/2, On
the other hand, we assumed that o is a derivative, o(F) = DW(F), and W is
isotropic, i.e. W(F) = ®(Ay,...,A,) where ® is a symmetric function and \;
are eigenvalues of (FFT)1/2; and then

ow

W(F) = ®,1d + (&, — B3)z @ z/72,

where

o0
B = 2" (A1, \).
6/\1,( 1 )
Thus the assumption (10) reads |®; — pwv;| < const for some u > 0 or A = pId.
In the sequel we shall write

F=V(¢(r)z/r) = (¢(r)/r)Id + (¢/(r) — ¢(r)/r)z @ 2r~?,
P =V(n(r)z/r), Q=V(0(r)z/r).

Thus
o(F) = ald + Bz ® zr 2,
where
a1, A2) = v0(A1, A2) + A2y (AL, Ag),
B(A1,22) = (A2 — A1) (A2 + M) (A1, A2),
and

AL = é(r)/r, Az = ¢/ (r).
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As before, we consider (72) in an appropriate function space. For this purpose

we introduce the space
LG aa (Bpi R™™) = {Vf : [ is radially symmetric,
f € Wh(ByR™), J(f) < 0o}

The functional J defined by (12) is in fact a seminorm. The space TL3,4(By;
R™*") equipped with the norm || - ||j,00 = || lloc + J(-) becomes a Banach space.
We shall show that if Z is in 7L3,,q(B,; R™*") then mo(E) is in this space too.
Moreover, this map is locally Lipschitz coatinuous. We also need

(24) J(P) < C(n,p)p* ™/?||P|l1,p-
Hence the existence and uniqueness of
Qi =—7o(P+Q)

in TLS,,4(Bp; R™*") follow.

We first check (24). We note that P is continuous since p > n and from the
form of P = (n(r)/r)Id + (7'(r) — n(r)/r)z ® zr~? it follows that #'(r) — n(r)/r
goes to 0 as r — 0. One can check, in a manner similar to that of the proof of
Lemma 4.1 in [2], that

P
/ " (r)Pr™t dr < ([Pl
0
Next we calculate

J(n) = / "\ (r) = () el e

- [|[ sor@-nemasr2a= [ "2 [ lsds

_ o\ p/(p-1) p
<(Z=p) e [Cweeta
b— 0

and (24) follows.
We now investigate wo(F). By the representation no(F) = Vy, y(z) =
a(r)z/r, we must show that a(r)/r and &/(r) are in L®. Our estimates are as

follows:

1 1 n—1 1
<= - n—- -
lla(r)/7lloo < n”a + nﬁ”m + - “a + nﬂ

o0

+ LI @)+ ¢ 0Dl
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and similar calculations are also valid for a/(r). Since we assumed that o and B
are Lipschitz continuous, and by the structural assumptions (10) and (11), we
deduce that

ol < (Ml + Pellp+M, 181 < (Ml + o)) + M,
for some positive L, m where A; = ¢(r)/r and Ay = ¢'(r). In this way we obtain
[Volloo < IVl + J(8)) (1 + M) + M.

Now, we estimate J(y). We see that

@ —ra/r = %((a-l—ﬂ) - rln /OT (a + g)sn_lds)

dr</p - /rla(s)—a(r)ls"‘lds
“Jo ™t Jy

+ [ [ 1on s+ [ Lo a
A== s s . ; (r)dr
=I1+12+I3.

We immediately obtain

M dr < (u+ M)J(4),

I < [8()/r + & () millo /0 ’

and
L <6/ + ¢ mlle /Op s /0 I¢(s)/5 — ¢'(s)]s™ " ds.

An integration by parts yields

L <(u+ M) /0 UOLETIG A

r

+ (u+ M) (p-" [ 1800 = ¢ i ar
+lime™ ["loty/r= ¢ (e ar)
<2u+ M)( /0 | o(r)/r = #'(r)

r

dr + |4~ ¢/rnoo).
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Finally, we estimate I;. Since o is Lipschitz continuous, from the definition of o

we obtain
nst e "(16(s)/5 — $(r) /7 + 19'(5) — ¢ (r)])s™ ds

where L is the Lipschitz constant of o, and by the triangle inequality we have

nst [ 2 [ 6e)/s = g/l + 1665 = 46)
+ |p(r)/r — ¢’ (r)|)s" ' ds = L(I11 + L2 + L13).

The integrals I12 and I;3 are easy to estimate:

o< [/ |E0r=20)

and after one integration by parts ;2 may be estimated as
P Y
o< (|24
0 : T

In order to estimate I1; we again integrate by parts to obtain

dr,

dr + 6(r) /oo + ||¢'||oo)'

I < /0 /0’”|<¢>(r)/r)'|s"-1ds+2||¢>(r)/r||o°
PO =)
<o [ |20 ot oty )

We can thus combine our estimates into one:

(25)  [IVyllseo < (u+ M + L)n(J($) + | Véllo) < nlpp + M + L) || V] 1,00

Our proof of Lipschitz continuity of 7o besides utilizing the above estimates uses
a simple fact:

CraM. Ifg: R — R is C* and 2?g(x) is Lipschitz continuous, then rg(z)

is also Lipschitz continuous.

For, by Lipschitz continuity we have |z2g(z)| < M|z| + m, where X is the
Lipschitz constant, so |zg(z)| < A+ m. On the other hand,

X > |(@Pg(z))| = l2*g (z) + 2zg(z),
so |z2g'(x)| stays bounded by 3X + 2m. Therefore,

|(zg(z))'| = |zg(z) + g(x)| < 4X+3m
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and our claim follows.
Let us estimate ||a;(r)/r — az(r)/7||co- Set F; = V(¢i(r)z/r), i =1,2. Then

Jox(r)/r = aa(r)/rloo S LIIFx ~ Folo
+(u+ ) [ 161 = 01/9)— (¢4~ gafs)ls ds

+ [ lonso - BG4+ 1/ )
— (¢ + d2/3)71(02)]| ds.

The first two terms require no further work, the third is estimated by the above

Claim, and so

llai(r)/r — az2(r)/rlloo < LIIV$1 — V2|0
+ (p+ M)J(¢1 — ¢2) + | F1 = Fallood($1)(4L + 3M).

In order to estimate J(y; — y2) we note that

T d T
CYE‘T) _ T:H / a(s)s" lds = o (r‘“/ a(s)s™ ! ds) a.e.,
0 0
SO

/0" EdF (r_n /0’ a(s)s"_l) ds = ( /E+ B /E_ );i‘i,, (T‘" /0 ra(s)s"‘l) ds=1I.

By continuity of [, f dz with respect to the integration set, for a given ¢ there is
6 > 0 so that if the measure |E| is less than § then | [, fdz| < e. The sets E*,
E~ can be approximated by open ones, i.e. there are a;, b;, ¢;, d;, i = 1,2,...,
such that |{J;(a:,b;) \ Et| < 6/2, |U,(ci,d:) \ E~| < 6/2. Then

r r=b; T
I< (r‘"/ a(s)s"_lds> = (’r“"/ a(s)s™! ds)
0 r=a; 0

4
I< _”a”oo +e.
n

T‘=d.,;

+e

T=C;

and

Since ¢ was arbitrary we obtain I < £||a||c. Thus, this estimate combined with
the estimates for the integrals I, I3 yields

J(y — y2) LI F — B0
+n(p+ M)(J(¢1 — ¢2) + | Fi = F2|loo) + J(#1)[|1F1 — Fa|loo
+ (1 + M)J (41 — ¢2) + J($1)|| F1 — Fallo
< |F1 = Falloo(L + n{pe + M) + 2J(¢1))
+ J(¢1 — ¢2)(n + 1) (1 + M).
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This completes the proof of local Lipschitz continuity of 7o on mLF, .4 (Bp; R™*™).
The information we obtain from the differential equation for @ is the follow-
ing: Q(t) is continuous with values in 7L3,,q(Bp; R™*") and the integral

Q)= - [ mo(@+P)(e)is

is well defined. Recalling that Vu = @ + P we obtain

IVu®) oo < IVuoll 00 + IPE) 5,00 + jot e (P + Q)(8)l.,00 ds.
By (25) we obtain
IVu®) 15,00 < 1Vt0lla00 + C(1,8)0" 2| P(®)11,5 + Pl oo
+ /Ot(n(p + M + L)||P + Q[ s,00 + M) ds,
and the Gronwall inequality yields
IVa(®)lls00 < (V0| 5,00 +C(n, p)O* ™PIPE) 1,5+ P(2) lloo+ Me)em bt MHL,
Finally, inequalities (17) yield

IVu(t)ls0 < (l[Vuollseo
+ sup (C(n,p)p* P |P(t)l1p + [PE)lloo) + Me)er WML < oo,
0<t<oo
|

ProoOF OF PROPOSITION 4. Set
o(F) = —|An = Ai[Id +2|A — M|z @ 212,

where A; > X2 > ... > A, > 0 are the eigenvalues of (FFT)'/2, For radially
symmetric deformations the above formula reduces to

o(F) = —|¢'(r) — ¢(r)/r[ld + 2|¢'(r) — ¢(r)/rlz @ zr~2.

Certainly o(F) is isotropic and Lipschitz continuous.
For initial data we choose u; = 0 and ug(z) = 8p(r)z/r, where 6y is contin-
uous, #p(0) = 0 and

A ifa i <r< (a,- +a,—+1)/2,
I if (ai +a,-+1)/2 <r<a;

o) = {
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where 0 < A < u and {a;} is a strictly decreasing sequence of positive numbers
such that a; < Ma;4;. Then one can check that u — A > [6)(r) — Oo(r)/r| >
(#—A)/(M +1) = 6, and obviously J(ug) = oo.

Suppose that for o defined as above and any spherically symmetric 1 €
W1 (B,;R™) there are positive C, T such that

[Vu(t) oo <C for0<t<T.

By Lemma 8 the equation
Qi =—mo(P+Q)
for our choice of o takes the form
/) =T ,0,6)+ 2722 [ 1(0(6) +6)Y = (a(s) + 8(s))s 5™ s
(6’ —0/r)e = Tz(n, 7', 6,8'), '

where T1, T; are bounded maps from L™ into itself. Moreover, the right-hand

sides are Riemann integrable in L, so we can write

(6/7)(#)  (0/r)(s) = / (Tl (n,17,0,8)

(26) #2772 [10009) +06)) = (0(e)+0(0)s™ s~ a5 ar,
@ =0/ = O~ 6/ = [ Tatn,6,0)dr

By assumption, the left-hand side is essentially bounded in z for 0 < ¢ < T, so
the same is true for the right-hand side. Moreover, if T is sufficiently small we
have ||T2||T < 6/2. Thus we have

16" = 0/r)(£) — (0 — bo/7)lle0 < 6/2,  t<T,

and
[(8" —0/r)(t)| >6/2 ae. z.

Hence J(0(t)) = oo for 0 <t < T Since J(u(t)) = J(6(t)) — J(n(t)) = oo, equa-
tion (26;) allows us to conclude that 6(r,t)/r remains unbounded and Vu(z, t)
has a singularity at the origin for all 0 < ¢ < T. 0
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