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1. Introduction

In this paper we study periodic solutions of a second order differential equa-
tion

x′′ = f(t, x, x′) for a.e. t ∈ [0, 1],

subject to some impulses at certain points. Our work was inspired by a paper by
Capietto–Mawhin–Zanolin [1], where the case of no impulses was treated. The
major difference between paper [1] and ours is that instead of topological degree,
we use the elementary method based on essential maps. In this context, we also
give some new contributions to Granas’ theory of continuation principles.

The famous Leray–Schauder continuation principle, a very efficient tool in
proving the existence of solutions for operator equations, can be stated, in one
of its variants, as follows:

Let X be a real Banach space, K a subset of X and Ω an open subset
of K. Whenever we shall be concerned with a subset of K or of K × [0, 1], all
topological notions (open set, compact set, closure, boundary) will be understood
with respect the topology induced on K and K × [0, 1], respectively.
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Proposition A (Leray–Schauder). Assume K is a retract of X and H :
Ω× [0, 1] → K is compact and such that

(a) H(x, λ) 6= x for all x ∈ ∂Ω and λ ∈ [0, 1];
(b) i(H(·, 0),Ω,K) 6= 0.

Then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in Ω.
Moreover, i(H(·, λ),Ω,K) does not depend on λ.

We have denoted by i(F,Ω,K) the fixed point index over Ω with respect to
K for the compact map F : Ω → K with F (x) 6= x on ∂Ω, that is, deg(I −
FR,R−1(Ω), 0), where deg means the Leray–Schauder degree, I is the identity
map of X and R : X → K is any retraction of X into K (see [3, 20.1]).

There are several known elementary approaches and extensions of this prin-
ciple which do not use the subtle notion of degree (see, for example, [13], [6], [14],
[8], [12]). One of them is due to Granas and is based on the notion of essential
map. It can be described as follows:

Suppose K is convex. A compact map F : Ω → K is called admissible if
it is fixed point free on ∂Ω. An admissible map F is said to be essential on Ω
provided that any admissible extension of F |∂Ω to all of Ω has at least one fixed
point in Ω. Now we can state Granas’ variant of the Leray–Schauder principle.

Proposition 1 (Granas). Assume K is convex and H : Ω × [0, 1] → K is
compact and such that conditions (a) and

(b′) H(·, 0) is essential on Ω

hold. Then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in
Ω. Moreover, the maps H(·, λ), λ ∈ [0, 1], are all essential.

The proof of Proposition 1 is elementary and is based only on Urysohn’
characterization of the normal topological spaces.

There is an equivalent statement of Proposition 1 in terms of homotopic
maps, which is known as the topological transversality theorem. Two admissible
maps F and G are called homotopic on Ω if there is a compact homotopy H :
Ω× [0, 1] → K for which F = H(·, 1), G = H(·, 0) and H(·, λ) is admissible for
each λ ∈ [0, 1]. Now, Proposition 1 can be formulated as follows:

Proposition 1′ (Granas). Assume K is convex and F and G are homotopic
on Ω. Then one of these maps is essential on Ω if and only if the other is.

Recall that any constant map x0, where x0 is an arbitrary point in Ω, is
essential on Ω (see [7, 1.2]).

Both variants of the Leray–Schauder principle are concerned with a family of
maps H(·, λ), λ ∈ [0, 1], which are defined on the same domain Ω. The way this
continuation principle applies in proving the existence of solutions for operator
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equations can be described as follows. Suppose we have to solve the equation
F (x) = x in a convex subset K of a Banach space X, where F : K → K is
a completely continuous map. We first embed the map F in a one-parameter
family of the form H : K × [0, 1] → K, where H is completely continuous,
H(·, 1) = F , while H(·, 0) = G is a “simpler” operator. Then we try to find a
bounded open subset Ω of K such that conditions (a) and (b) or (b′) are satisfied.
Finally, we conclude that there is in Ω at least one solution to F (x) = x. This
method has been intensively applied in the study of boundary value problems
(see [7], [5], [10]). However, as was shown in [1], there are various examples of
boundary value problems, especially those where no a priori bounds of solutions
can be obtained, where the above method fails. In this case, an extension of the
continuation principle to maps H(·, λ) having different domains often applies
successfully. Such an extension is known in the context of degree theory [9]:

Proposition B (Leray–Schauder). Assume K is a retract of X, U ⊂ K ×
[0, 1] is open and H : U → K is compact. Define Uλ = {x ∈ K : (x, λ) ∈ U}. If
the following two conditions hold:

(c) H(x, λ) 6= x for every (x, λ) ∈ ∂U ;
(d) i(H(·, 0), U0,K) 6= 0,

then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in Uλ.
Moreover, i(H(·, λ), Uλ,K) does not depend on λ.

To our knowledge, no version of this result in terms of essential maps has
been given yet. We shall fill in this gap in the first part of the present paper. So,
we shall be able to state and prove a variant “without degree” of a continuation
theorem due to Capietto–Mawhin–Zanolin [1], and then, in the second part of
the paper, to apply it to periodic boundary value problems with impulses.

2. Elementary approach to some continuation theorems

Throughout this section, X is a real Banach space, K is a convex subset of
X and U ⊂ K × [0, 1] is open in K × [0, 1]. For any V ⊂ X × [0, 1] we denote by
Vλ = {x ∈ X : (x, λ) ∈ V } the section of V at λ.

We start with a consequence of Proposition 1, which can be considered as an
elementary variant of Proposition B.

Proposition 2. Assume H : U → K is compact and such that conditions
(c) and

(d′) F : U → K × [0, 1], F(x, λ) = (H(x, λ), 0), is essential on U

hold. Then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in
Uλ. Moreover, the map
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H(·, µ) : U → K × [0, 1], H(x, λ, µ) = (H(x, λ), µ),

is essential on U for every µ ∈ [0, 1].

Proof. We apply Proposition 1 to the Banach space X × R, to its convex
subset K × [0, 1], to Ω = U and to the compact map

H : U × [0, 1] → K × [0, 1],

H(x, λ, µ) = (H(x, λ), µ) for (x, λ) ∈ U and µ ∈ [0, 1].

By assumption (c), we easily check that

H(x, λ, µ) 6= (x, λ) for all (x, λ) ∈ ∂U and µ ∈ [0, 1].

Thus, H satisfies both conditions (a) and (b′) and we can apply Proposition 1.
It follows that for each µ ∈ [0, 1], there exists a fixed point (x, λ) ∈ U of H(·, µ).
Hence, H(x, λ) = x and µ = λ, and so, x ∈ Uµ and H(x, µ) = x. The result is
therefore proved.

Remark 1. In case U is of the form U = Ω×[0, 1], where Ω is an open subset
of K, condition (d′) implies (b′). Indeed, if F : Ω → K is any admissible map
such that F and H(·, 0) coincide on ∂Ω, then the map F : Ω× [0, 1] → K× [0, 1],
F(x, λ) = (F (x), 0), is admissible on Ω× [0, 1] and

F(x, λ) = (H(x, 0), 0) for (x, λ) ∈ ∂U.

On the other hand, the maps (H(x, 0), 0) and (H(x, λ), 0) are homotopic via the
homotopy

U × [0, 1] 3 (x, λ, µ) → (H(x, µλ), 0).

Thus, by (d′), the map (H(x, 0), 0) is essential on U , whence it follows that F
is also essential on U . Consequently, F has at least one fixed point in U , that
is, F has at least one fixed point in Ω. Therefore, H(·, 0) is essential on Ω, as
claimed.

The next result is concerned with a sufficient condition for (d′) to hold,
namely that H(·, 0) be homotopic on U0 to a constant map x0, for some x0 ∈ U0.

Corollary 1. Assume H : U → K is compact and satisfies (c) and

(e) (1− µ)x0 + µH(x, 0) 6= x for all (x, 0) ∈ ∂U , 0 < µ < 1,

for some x0 ∈ U0. Then, for each λ ∈ [0, 1], there exists at least one fixed point
of H(·, λ) in Uλ.

Proof. We prove that (e) implies (d′) and we apply Proposition 1. For this,
we consider the homotopy

U × [0, 1] 3 (x, λ, µ) → ((1− µ)x0 + µH(x, λ), 0) ∈ K × [0, 1],
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which, by (e) and (c), is admissible. This homotopy connects the map (H(x, λ), 0)
with the constant map (x0, 0), essential on U , because (x0, 0) ∈ U . Thus, ac-
cording to Proposition 1, the map (H(x, λ), 0) is also essential on U . Thus, (d′)
is checked. Now the conclusion follows from Proposition 2.

Next we use Corollary 1 to prove a variant without degree of a continuation
theorem due to Capietto–Mawhin–Zanolin [1].

Let H : K × [0, 1] → K be a completely continuous map. Define

S = {(x, λ) ∈ K × [0, 1] : H(x, λ) = x}.

For any fixed x0 ∈ K, we set

S(x0) = {(x, 0) ∈ K × [0, 1] : (1− µ)x0 + µH(x, 0) = x for some µ ∈ [0, 1]}.

Also consider a continuous functional φ : K × [0, 1] → R.

Theorem 1. Assume there are constants c− and c+, c− < c+, such that, if
we set V = φ−1(]c−, c+[), the following conditions are satisfied:

(i1) S ∩ V is bounded;
(i2) φ(S) ∩ {c−, c+} = ∅;
(i3) there is x0 ∈ K such that S(x0) is bounded and included in V .

Then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in Vλ.

Proof. Consider the set

S∗ = φ−1([c−, c+]) ∩ S ⊂ K × [0, 1].

Since φ is continuous and (i1) and (i2) hold, we see that S∗ is compact in
K× [0, 1], V is open in K× [0, 1] and S∗ ⊂ V . It follows that there is a bounded
open subset U1 of K × [0, 1] such that

S∗ ⊂ U1 ⊂ U1 ⊂ V.

On the other hand, by (i3), S(x0) is another compact set included in V . Thus,
there is again a bounded open subset U2 of K × [0, 1] such that

S(x0) ⊂ U2 ⊂ U2 ⊂ V.

Now we apply Corollary 1 with the choice U = U1 ∪U2. To do this, first observe
that, since H is completely continuous on K× [0, 1] and U is bounded, it follows
that H is compact on U . Next, using ∂U ⊂ V \U1 and ∂U ⊂ V \U2, we easily
check conditions (c) and (e). Thus, Corollary 1 can be applied and the result
follows.

We now state a consequence of Theorem 1 which is more suitable in applica-
tions. The result is also a slightly modified version, without degree, of a result
by Capietto–Mawhin–Zanolin [1].
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Recall that the functional φ is said to be proper on S provided that φ−1(]a, b[)
∩ S is bounded (and so, relatively compact) for each bounded interval ]a, b[.

Corollary 2. Assume

(i1′) φ is proper on S;
(i2′) φ is bounded below on S and there is a sequence (cj) of real numbers

such that cj →∞ and cj 6∈ φ(S) for all j ∈ N;
(i3′) there is x0 ∈ K such that S(x0) is bounded.

Then, for each λ ∈ [0, 1], there exists at least one fixed point of H(·, λ) in K.

Proof. In order to apply Theorem 1 we need to find two constants c− and
c+, c− < c+, such that assumptions (i1)–(i3) be satisfied. For this, observe
that, from (i3′) and complete continuity of H, it follows that S(x0) is, in fact,
compact. Hence, since φ is continuous, there are constants a and b, a < b, such
that a < φ(x, λ) < b for every (x, λ) ∈ S(x0). Now, taking into account (i2′), we
can choose c− and j sufficiently large that

c− < inf{φ(x, λ) : (x, λ) ∈ S}, c− ≤ a and c+ = cj ≥ b.

Finally, it is easy to check (i1)–(i3). Hence, Theorem 1 can be applied and the
result follows.

Remark 2. For U bounded, all the results of this section remain true if
instead of completely continuous maps, we use more general condensing maps.
Notice that similar results can be stated for set-valued maps and also for maps
in Hausdorff locally convex spaces.

3. Application to periodic solutions for second
order differential equations with impulses

In this section we shall give an application of Corollary 2 to the existence of
solutions for the following periodic boundary value problem with impulses:

(P)

x′′ = f(t, x, x′) for a.e. t ∈ [0, 1],

x(0) = x(1), x′(0) = x′(1),

x(t+k ) = αk(x(tk)),

x′(t+k ) = βk(x(tk), x′(tk)), k = 1, . . . , m,

where the points tk are fixed and such that

(T) 0 < t1 < . . . < tm < 1.

We first require that the following condition holds:

(h1) αk : R → R and βk : R2 → R are continuous functions, while f :
[0, 1]× R2 → R is an L1-Carathéodory function.
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(Recall that f is said to be an L1-Carathéodory function provided that f(·, u, v) is
Lebesgue measurable for each (u, v) ∈ R2, f(t, ·, ·) is continuous for a.e. t ∈ [0, 1],
and for each r > 0, there exists γr ∈ L1[0, 1] such that |f(t, u, v)| ≤ γr(t) for a.e.
t ∈ [0, 1] and u2 + v2 ≤ r2.)

The solutions to (P) are assumed to be C1 on each interval [0, t1], ]tk, tk+1]
(k = 1, . . . , m− 1) and ]tm, 1], with possible discontinuities of the first kind for
x and x′ at points (T).

The topological transversality method of Granas was recently used by Erbe
and Krawcewicz [4] in the study of some systems of impulsive differential inclu-
sions. One of the main hypotheses in [4] is a modified form of the sign (coercivity)
condition: uf(t, u, 0) > 0 for large |u|. Our approach to (P) does not use this
condition and is essentially based on the results of Capietto–Mawhin–Zanolin [1],
[2]. The difference to [1] will be that, in the case of equations with impulses, the
values of the “winding number” functional φ on large solutions are not necessar-
ily integers. Nevertheless, we can arrange that φ takes values in some disjoint
intervals and, by this, that condition (i2′) in Corollary 2 be satisfied.

Our goal is to make transparent the use of the abstract theory just described
in the previous section. So, we do not consider here the most general assumptions
for the solvability of (P). We only deal with maps with linear growth and we find
the analogue for problems with impulses of the classical nonresonance condition.

First we give the operator form of (P). We work in the function space

C1
T = {x : [0, 1] → R : x and x′ are everywhere continuous except possibly

at points (T) of discontinuity of first kind, at which x

and x′ are left continuous},

endowed with the usual C1-norm, ‖x‖2 = sup{x2(t) + x′2(t) : t ∈ [0, 1]}. Notice
that C1

T can be identified with the Banach space
∏m

k=0 C1[tk, tk+1] (t0 = 0,
tm+1 = 1). Thus, C1

T is also a Banach space. Moreover, write L1 = L1[0, 1] and

W 2,1
p = {x ∈ C1

T : x′ is absolutely continuous on each ]tk, tk+1[,

k = 0, 1, . . . , m and x(0) = x(1), x′(0) = x′(1)}.

It is clear that, if x ∈ W 2,1
p , then x belongs to the Sobolev space W 2,1[tk, tk+1]

for k = 0, 1, . . . , m.
Now, for each c > 0, we consider the map

L : W 2,1
p → L1 × Rm × Rm,

L(x) = (x′′ + c2x, {x(t+k )}m
k=1, {x′(t+k )}m

k=1).

This map is invertible and its inverse,

L−1 : L1 × Rm × Rm → C1
T ,
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is linear bounded. Indeed, to get its inverse, we have to solve m initial value
problems:

x′′ + c2x = y for a.e. t ∈ [tk, tk+1],

x(tk) = uk, x′(tk) = vk (k = 1, . . . , m− 1),

and

x′′ + c2x = ỹ for a.e. t ∈ [tm, 1 + t1],

x(tm) = um, x′(tm) = vm,

where ỹ(t) = y(t) for t ∈ [tm, 1], ỹ(t) = y(t − 1) for t ∈ [1, 1 + t1] and y ∈ L1,
u = {uk}m

k=1 ∈ Rm, v = {vk}m
k=1 ∈ Rm.

Thus, the unique solution x ∈ C1
T to L(x) = (y, u, v) is the function

(∗) x(t) =



uk cos c(t− tk) + vkc−1 sin c(t− tk) + c−1

∫ t

tk

sin c(t− s)y(s) ds

for t ∈ ]tk, tk+1], k = 1, . . . , m− 1,

um cos c(t− tm) + vmc−1 sin c(t− tm) + c−1

∫ t

tm

sin c(t− s)y(s) ds

for t ∈ ]tm, 1],

um cos c(1 + t− tm) + vmc−1 sin c(1 + t− tm)

+ c−1

∫ 1+t

tm

sin c(1 + t− s)y(s) ds for t ∈ [0, t1].

Also we define a family of nonlinear maps Nλ, λ ∈ [0, 1],

Nλ : C1
T → L1 × Rm × Rm,

Nλ(x) = λ(f(·, x, x′) + c2x, {αk(x(tk))}m
k=1, {βk(x(tk), x′(tk))}m

k=1).

From the assumption that f is an L1-Carathéodory function, we deduce that Nλ

is well-defined, continuous and bounded. Moreover, again by this assumption
and by (∗), it follows, via the Ascoli–Arzelà theorem, that the map

H : C1
T × [0, 1] → C1

T , H(·, λ) = L−1Nλ,

is completely continuous. We observe that the operator equation x = H(x, λ) in
C1

T is equivalent to the following problem:

(Pλ)

x′′ + c2x = λ(f(t, x, x′) + c2x) for a.e. t ∈ [0, 1],

x(0) = x(1), x′(0) = x′(1),

x(t+k ) = λαk(x(tk)),

x′(t+k ) = λβk(x(tk), x′(tk)), k = 1, . . . , m.
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Hence, the equivalent operator form of (P) is

x = H(x, 1) (x ∈ C1
T ).

Now, since H(·, 0) ≡ 0, we remark that condition (i3′) trivially holds with
x0 = 0, the null element of C1

T .
Next, as in [1], we consider the functional

φ : C1
T × [0, 1] → R+,

φ(x, λ) = cπ−1

∣∣∣∣ ∫ 1

0

[x′2 − λxf(t, x, x′) + (1− λ)c2x2]θ(cx, x′) dt

∣∣∣∣,
where θ(a, b) = min{1, 1/(a2 + b2)}. It is immediate to check that φ is continu-
ous.

Suppose that (x, λ) ∈ S satisfies

c2x2(t) + x′2(t) ≥ 1 for all t ∈ [0, 1].

Then x has a finite number of simple zeroes in [0, 1]\{tk : 1 ≤ k ≤ m}. Assume,
for the moment, that x(t+k ) 6= 0 and x(tk+1) 6= 0 for any k ∈ {0, . . . , m} and
denote by nk the number of zeroes in ]tk, tk+1[. Then we have

Jk = c

∫ tk+1

tk

{[x′2 − λxf(t, x, x′) + (1− λ)c2x2]/(c2x2 + x′2)} dt

=
∫ tk+1

tk

(− arctan c−1x′/x)′ dt

= nkπ − arctan c−1x′(tk+1)/x(tk+1)

+ arctan c−1βk(x(tk), x′(tk))/αk(x(tk))

for 1 ≤ k ≤ m, while for k = 0,

J0 = n0π − arctan c−1x′(t1)/x(t1) + arctan c−1x′(0)/x(0).

In order to make precise the behaviour of x at the possible zeroes from (T),
we require that the following condition holds:

(h2) αk(a) = 0 if and only if a = 0, and there is q1 > 0 such that bβk(0, b) > 0
whenever |b| ≥ q1 (1 ≤ k ≤ m).

Thus, if for some k, one has x(tk) = 0 and |x′(tk)| ≥ q1, then

αk(x(tk)) = 0 and x′(tk)βk(0, x′(tk)) > 0,

i.e., x is continuous at tk and x′ has the same sign to its left as to its right.
Under the above conditions, we have

φ(x, λ) =
∣∣∣∣n + π−1

∑
x(tk) 6=0

(
arctan

βk(x(tk), x′(tk))
cαk(x(tk))

− arctan
x′(tk)
cx(tk)

)∣∣∣∣,
where n denotes the number of zeroes of x in ]0, 1].
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Let us assume that the following condition is satisfied:

(h3) there exist 0 ≤ δ < cπ/(2m) and q2 > 0 such that |βk(a, b)/αk(a) −
b/a| ≤ δ whenever a 6= 0, a2 + b2 ≥ q2

2 , 1 ≤ k ≤ m.

Then, since |arctan s− arctan s′| ≤ |s− s′| for all s, s′ ∈ R, we get

φ(x, λ) ∈ [n−mδ/(cπ), n + mδ/(cπ)] ⊂ ]n− 1/2, n + 1/2[

whenever x2(t) + x′2(t) ≥ q2 for all t ∈ [0, 1], where q = max{1, c−1, q1, q2}. It
is now clear that (i2′) holds with cj = j + 1/2, j ≥ j0 and j0 sufficiently large,
provided that the following condition, already introduced in [1]–[2], is satisfied:

(h4) for each r1 > 0 there is r2 ≥ r1 such that if (x, λ) ∈ S and inf{x2(t) +
x′2(t) : t ∈ [0, 1]} ≤ r2

1, then ‖x‖ ≤ r2.

The last hypothesis is

(h5) for each n ∈ N there is Rn ≥ 0 such that if (x, λ) ∈ S and φ(x, λ) ∈
[n−mδ/(cπ), n + mδ/(cπ)] then inf{x2(t) + x′2(t) : t ∈ [0, 1]} ≤ R2

n.

Then (i1′) follows and so we have proved the following result:

Theorem 2. Suppose that conditions (h1)–(h5) hold for some c > 0. Then
there exists at least one solution x ∈ C1

T to (P).

Example. Let us consider equations with linear growth:

(LG) f(t, u, v) = −c2u + g(t, u, v),

where g(t, u, v)/(u2 + v2)1/2 → 0 as u2 + v2 → ∞, uniformly a.e. in t ∈ [0, 1],
and c > 0.

First we check that (h4) is satisfied. Indeed, let (x, λ) ∈ S be such that

inf{x2(t) + x′2(t) : t ∈ [0, 1]} ≤ r2
1.

Suppose that this infimum equals inf{x2(t) + x′2(t) : t ∈ ]tk, tk+1]} for some k,
0 ≤ k ≤ m. Then, as in the proof of Proposition 3 in [1], one can find r2,k ≥ r1

depending only on r1 and k such that

sup{x2(t) + x′2(t) : t ∈ ]tk, tk+1]} ≤ r2
2,k.

In particular, |x(tk+1)| ≤ r2,k and |x′(tk+1)| ≤ r2,k. By the continuity of αk and
βk, we can find r1,k+1 ≥ 0 depending only on r2,k and k such that

α2
k+1(x(tk+1)) + β2

k+1(x(tk+1), x′(tk+1)) = x2(t+k+1) + x′2(t+k+1) ≤ r2
1,k+1.

Hence,

inf{x2(t) + x′2(t) : t ∈ ]tk+1, tk+2]} ≤ r2
1,k+1.
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Next, we apply the same reasoning for the interval ]tk+1, tk+2] to get r2,k+1 ≥
r1,k+1, r2,k+1 ≥ r2,k and r1,k+2 ≥ 0 such that

sup{x2(t) + x′2(t) : t ∈ ]tk+1, tk+2]} ≤ r2
2,k+1

and

x2(t+k+2) + x′2(t+k+2) ≤ r2
1,k+2.

Thus, the successive application of these arguments yields two systems of num-
bers

r1 ≤ r2,k ≤ r2,k+1 ≤ . . . ≤ r2,k+m

and

r1,k+1, r1,k+2, . . . , r1,k+m

such that

x2(t+j ) + x′2(t+j ) ≤ r2
1,j , j = k + 1, . . . , m,

x2(t+j ) + x′2(t+j ) ≤ r2
1,m+j+1, j = 0, . . . , k − 1,

sup{x2(t) + x′2(t) : t ∈ ]tj , tj+1]} ≤ r2
2,j , j = k, . . . , m,

sup{x2(t) + x′2(t) : t ∈ ]tj , tj+1]} ≤ r2
2,m+j+1, j = 0, . . . , k − 1.

It is clear that r2 = max{r2,k+m : k = 0, . . . , m} satisfies (h4).
To check (h5), we use the arguments from the proof of Theorem 3 in [1]

(with h1(t, x1, x2) = −c−1f(t, x1, cx2), h2(t, x1, x2) = cx2, f1(t, x1, x2;λ) = cx2,
f2(t, x1, x2;λ) = c−1(λf(t, x1, cx1) − (1 − λ)c2x1)). Thus, we can prove that a
sufficient condition for (h5) is

c/π 6∈ [n−mδ/(cπ), n + mδ/(cπ)] for all n ∈ N,

or equivalently,

(NR) πN ∩ [c−mδ/c, c + mδ/c] = ∅.

Recall that 0 ≤ δ < cπ/(2m), so 0 ≤ mδ/c < π/2.
Therefore, for maps of the form (LG), conditions (h4)–(h5) are satisfied pro-

vided that (NR) holds.
Notice that if, in addition, the inequality

aαk(a) > 0 for all a ∈ R\{0}, k = 1, . . . , m,

holds, then the number of (simple) zeroes in ]0, 1] of any large solution x of (Pλ)
is even and, in consequence, it suffices to demand, instead of (NR), that

(NR′) 2πN ∩ [c−mδ/c, c + mδ/c] = ∅.
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The conditions (NR), (NR′) generalize to the case of impulses the classical hy-
pothesis of nonresonance

c 6= 2nπ for every n ∈ N,

which corresponds to the case m = 0 (no impulses).
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