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1. Introduction

In recent years there has been an increasing interest in positive solutions of
some nonlinear elliptic problems, where some concentration phenomena enable
one to relate the number of positive solutions to the geometrical properties of
the domain.

Phenomena of this type occur, for example, in some nonlinear problems
involving critical or supercritical Sobolev exponents like the following:

Au+uP~ 1 =0 in Q,
(1.1) u>0 in Q,
u=20 on 012,
where Q is a smooth domain in RN, N > 3, and p > 2N/(N — 2) (the critical
Sobolev exponent for the embedding Hy*(Q) «— LP(12)).
Many papers have been devoted to such problems (see [2], [5], [6], [10]-][12],
[14], [15], [18]-]23], [25], [27], [28], and the references therein).
Here the lack of compactness, due to the presence of the critical exponent,
is just associated with concentration phenomena and, when it is possible to

overcome the difficulties due to the lack of compactness, one can often obtain
multiplicity results for positive solutions.
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But these phenomena can also occur in subcritical problems: for example in
the problem

Au—du+uP~ =0 inQ,
(1.2) w0 in Q,
u=0 on 09,

with 2 < p < 2N/(N —2), when A > 0 is large enough (as pointed out in [3]),
or in the problem

eAu+g(xz,u) =0 in Q,
(1.3) u>0 in €,
u=0 on 092,

with g having subcritical growth, when £ > 0 is small enough (see [4]). These
properties of concentration have been used in order to obtain the multiplicity
results stated in [3], [4], [8], [9].
Analogous concentration phenomena are being investigated (see [14]) for the
equation
Au+ a(z)uP~t =0

with 2 < p < 2N/(N — 2) and a(x) a positive function which behaves like 1/|z|*
(a > 0) near 0. Here the concentration properties are just due to the singular
coefficient of the nonlinear term.

In [24] some concentration phenomena have been pointed out for degenerate
elliptic problems like

(1.4) { div(A(w)Du) + g(z,u) =0 in 9,

u=20 on 092,

where A is a positive function in 2. Even when the nonlinear term is subcritical,
these phenomena occur because of the degenerate character of the differential
equation.

Many papers have been devoted to degenerate elliptic problems (see, for
instance, [13], [17], [27] and the references therein). In [24] it is shown that the
solutions of (1.4) tend to “concentrate” near the degeneration set of A, that is,
the subset of 2 where \ goes to zero.

So the following natural question arises: is it possible to relate the number of
positive solutions of problems like (1.4) to the geometrical properties of the de-
generation set? In particular, is it possible to show that problem (1.4) has several
positive solutions if the degeneration set has several connected components?

In [24] an example was also given where the degeneration set consists of k
spheres and the problem has at least k + 1 distinct positive solutions.
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In the present paper we answer the above question: we consider, for € > 0,
a family of problems

div(ac(x)Du) + g(xz,u) =0 in Q,
(P.(2,9)) >0 in 0,
u=0 on 012,

where (2 is a smooth bounded domain in R, g(x,u) is a subcritical nonlinearity
and, for all € > 0 and almost all x € €, a.(x) is a positive definite symmetric
N x N matrix with coefficients in L>°(€2).

We assume that there exist k pairwise disjoint subsets 97/17 ..., 8, of Q such
that every connected component of Q \ Ule q meets 02 and that the matrix
ac(x) degenerates as € — 0T only in some subsets 1, ..., respectively of
7’1, . 7972. Then, under suitable assumptions on the nonlinear term g(x,u),
we obtain the existence of at least k + 1 distinct positive solutions for problem
P.(£2, g) when € > 0 is small enough.

The paper is organized as follows: we first consider the problem P.(€2,g)
in the particular case where g(z,u) = uP~! with 2 < p < 2N/(N —2). The
multiplicity result given by Theorem (4.4) in this particular case obviously follows
from Theorem (5.1) which concerns the case of a general nonlinearity g(z,u),
not necessarily homogeneous in u. Nevertheless we study the homogeneous case
separately because it is, in some sense, the model problem and also because the
proof, which in this case can be reduced to looking for the critical points of the
energy functional constrained on the unit sphere of LP(2), is used in the general
case and seems to suggest better the behaviour of the solutions uc 1,... , % k41
ase — 0.

The assumptions on the matrix a.(x) are stated in Section 2; in Section 3
we introduce the main notations used in this paper; in Section 4 we prove the
multiplicity result in the case of a homogeneous nonlinearity (Theorem (4.4));
in Section 5 we state the assumptions on the function g : 2 x R — R and prove
the multiplicity result in the general case (Theorem (5.1)). Finally, Proposition
(5.13) provides some qualitative information on the behaviour as e — 0T of the
solutions we 1, ... , e g+1 given by Theorem (5.1).

2. The homogeneous case

In this section we introduce our problem in the simplified case where the
nonlinear term is homogeneous. Moreover, we state the assumptions which allow
us to obtain a result on the multiplicity of positive solutions. The problem is
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the following;:
div(ac(z)Du) +uP~1 =0 in Q,
(P.(2,p)) >0 in Q,
u=20 on 01},
where ) is a smooth bounded domain in RN, N > 3, p € ]2,2N/(N — 2)[ and,
for all € > 0, ac(z) = (al’(x)) is a positive definite symmetric N x N matrix
with a2/ (x) € L=®(Q;R) for all 4,5 =1,... ,N.
We make the following assumptions on a.(z):
(a.1) for all € > 0 and for almost all x € ) there exist two positive constants
Ay (e, ) and Ag(e, x) such that
A€ < al ()65 < Asl¢f

for all £ € RY (here and later on we write, as usual, a®’ (x)&;¢; instead

of YN ald (2)&&));

(a.2)
liminf(inf A ;
im inf(inf Ay(e, )/e) > 0;
(a.3) there exist k > 1 subsets Q1,...,Q of Q (the degeneration subsets for
ae(x)) such that for all 4,5 =1,... ,k,
al—i>I€+ az?(xz)/e = a*?(x) uniformly in LJI Q

with
sup | (z)| < o0
zelUr_, Q,
(see also Remark (5.14));
(a.4) for all n > 0,

lim inf (inf{Al(a,:c) rxeQ\ ij Qs(n)}) >0,

0o+
& s=1

where Q,(n) = {z € Q: d(x,Qs) < n}.

Moreover, we require that the degeneration subsets €q,...,Q satisfy the

following condition:

(a.5) Qi,...,Qy are smooth domains strictly contained in €, i.e. Q, C Q for
all s = 1,... k. For all s = 1,... Kk let us denote by Cs the union
of the connected components of  \ Q4 which do not meet 92, and set
QL := Qs UC;. We require that the subsets 97/17 e ,Qiﬁc are pairwise

disjoint, i.e.

U NQ =0 Vs,te{l,..., k}suchthat s # t.
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Notice that this condition implies, in particular, that every connected component
of O\ Ule QY meets 99.
3. Notations

Before stating the theorem that gives a multiplicity result for positive solu-
tions of P.(Q,p) if € > 0 is small enough, we introduce some useful notation.
Let H& 2 (©2) denote the usual Sobolev space endowed with the norm

1/2
Jull = [ 1Dupar)
Q
/p
oty = [ )

denote the usual norm in the space L?((2).

and let

We denote by u™ and u™ respectively the positive part and the negative part
of a function u € Hy*(Q).
For all u € Hy?(Q), e >0 and s € {1,...,k} we set

abd(z) hy
Ale,u,Q) := Oz, udy,udr, A(s,u):= a7 (2)0z,u0y; u dx.
o

€ Q.

Let A : © — R be a strictly positive function with A € L*>(Q2) and 1/)\ €

L(Q): then
|w@@=(Amewpw)m

is a norm in LP(2) equivalent to the usual norm ||u]|,.
For all s=1,... ,k we set

]
u;s = inf { / Ze g(x)&ciuﬁxjudx cu e Hy? (), / Ax)|u(z)|P de = 1};
0 o

indeed, £, is a minimum since p € ]2,2N/(N — 2)[ and it is strictly positive

because of (a.1). Let the function v,

Forall s=1,...,k set

(z) be a minimizing function for 2 ,.

1o s = inf { / a" ()0, udy,udz 1 u € Hy? (),
Qs

/ | Du|? dx = 0, / Az)|u(x)|P doe = 1};
Qs s

as before, u, is a minimum and it is a positive number. Let v} (x) be a
minimizing function for gy , for all s =1,... k. Set

A A A
P 1= 1oin py,s and  pap = max (-

s=1,... s=1,...,
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When A(x) = 1 for all z € , for simplicity of notation we will write pc s, Ve s, fho,s
and v, instead of ,ug\ys, vg\ys, /‘l’é,s and v())"s respectively.
4. Multiplicity of positive solutions of P.({2,p)
We begin with two general results.

(4.1) PROPOSITION. Assume that the matriz ac(x) satisfies the conditions
(a.1)—(a.b). Let X € L*(Q) be a strictly positive function such that 1/\ €
L>(Q). Then for all s=1,...  k we have (see Notations)

lim 2, = 41g -

e—0+

PROOF. From the definition of x2 , and U&s it follows that

irj
(4.1) pd, < / Ze (x)amiv()\gamjvé‘gdz forall s=1,...,k.
I Q; B IE e
By (a.3),
i,j ]
lim a:"(z) Bmiva\,sazj 118"8 dr = lim a:"(z) Bmiv()\ysaz]. v()\’s dx

e—0Tt o, £ e—0T Q.
i A A A
= [ @ @018 00,0 o = i,
Q.

and this implies that lim sup,_,q+ ués < N())\,s < oo0.
Since (a(z)) is elliptic in Q and liminf, o+ (inf{A;(e,z)/e : © € Q}) > 0,

for any sequence (g,,), of positive numbers such that lim,_,., €, = 0 the corre-
A

En,S

sponding sequence (v) ), is bounded in H}?(£2,); hence there exists a subse-
quence of (v2 ,)n (which we shall call again (v2 ,),) converging to a function
vs € Hy? (), weakly in Hy?(€2,), in LP(€2.) and almost everywhere in (2.

Moreover, since for all > 0,

s ({252 con (o)) -

e—0*t

we obtain [, \Q |Dvg|? dz = 0. Tt follows that

o L agd(z) . o A
liminf pZ o = liminf —=—0, 0, Oz, 07 s dT
n— oo n—oo Jo €n

0]
Zliminf/ Ln(x)a v} 0, v L dx
Qg

ZiYepn,sY%j Yey,S
n— 00 En ns J En,

> / ai’j(x)ﬁmivsazjvs dx > ué"s

s
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because vs € Hy* (%), [o) \Q |Dvg|? dz = 0 and [, A(z)|vs(x)[P dz = 1. From
the arbitrary choice of the sequence (e;,),, the assertion follows. Notice that,
like v ,, also the function v, realizes the minimum u& o O

(4.2) LEMMA. Assume that the subsets Q, ..., satisfy the assumptions

introduced in Section 2. Let X : © — R be a strictly positive function with
A e L®(Q) and 1/\ € L®(Q). Suppose u € Hy*(Q) is such that:
(1) JoA@)|u(@)" dz = 1;
(2) u= Zle up with u, € Hy*(Q) and fﬂ;\ﬂt |Dug|>dx = 0 for all t =
1,...,k;
(3) there exists s € {1,... ,k} such that ng Az)|u(@)|P de =1 =6 with

0.< 8 < (/)P 2.

Then py , < Zle A(t,uy) (see Notations for pp,, pay, o . and A(t, uy)).

PROOF. Suppose that s = 1. Define ¢; := [, A(@)|us(x)? dz and @ (z) =
ut(a:)/c,}/p forallt=1,... ,k. AsO0<d<1l,¢ci=1-0 and Zlect =1, there
exists t € {2,... ,k} such that ¢; # 0. Let us compute:

k

Z A(t7 u) - /J/S,l

Now it suffices to remark that, since we have

k
0<> e < (pp /)P =2,

t=2
it follows that 0 < c; < (u/pag)?/®~2) for some = 2,... ,k and so

A 2/p A

/p

while for ¢ # 7 we have ) ¢;’? — puder > 0, because 0 < ¢, < (/)P =2 for

allt =2,... k.
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(4.3) REMARK. Under the same assumptions of Lemma (4.2), if u € Hy'?(Q)
is such that ||ul(xp,) =1, u= SO ug with u, € HY2 (), fQ’\Qt |Duy|* dx = 0
and

1 (i )P0 < / A(@)|ua(@) P dz < 1,

’
s

then g, < Zle A(t, ug). O

We can now formulate our main result on multiplicity of positive solutions
for problem P.(,p).

(4.4) THEOREM. Assume that the domains Q,Qq,... Qi and the matriz
ac(x) satisfy the conditions introduced in Section 2. Then there exists € > 0 such
that for all e € ]0,2[ problem P-(Q2,p) has at least k+1 solutions ue 1, ... , Ue f+1-
Moreover, these solutions have the following properties:

(D) limg g+ lue sl =0 foralls=1,... ,k+1;

(IT) there exists § € )0, 1[ such that for all s =1,... ,k and for all € €]0,2]

the solution u. s minimizes the functional

U / al? (2)8y, udy,u dx
Q
in the set

1,2 . _
{u € Q) : ully = e

- P> (1) / |u<x>|pdx}

(the subsets Q have been introduced in Section 2);
(II1) for all s=1,... ,k,

. fg/ ‘UE,S(xNP dx
lim ——=——«————— =
e—0t [q e s(z)|P dz

b

(IV) forall s=1,...,k,

i Jo ab7 (), te sOp, e, s d:
im =

e—0+ ellue, |2

= Mo,s

(see Notations for pg s);
(V) N
Jo 047 ()0, U k102, Ue 41 da

M < liminf =2
five= T ellte 112

< Timsup Jo abi () O, Ue k41 O, Ue kg1 A
I ellue k1112
< 2=2/p

where pinv = MaXs—1,.. k Ho,s-
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PROOF. The solutions of problem P.(2,p) correspond to the positive func-
tions w which are critical points of the functional

i,J
fe(u) :/ de (x)amiuaggjudx
Q 9

constrained to lie upon the manifold

V, = {u € Hy?(Q) : /Q(uﬂpdx = 1}.

In fact, a function u which is a constrained critical point for f. on V, is a weak
solution of the equation

div(ac(z)Du) + pe(uT)P~1 = 0;
multiplying the last equation by u~ we see that « > 0 and it solves the equation
div(ac(x)Du) + puP™ =0

with pe = ef.(u), so that [ef.(u)]/P=2)y is a solution of P.(2,p) and it is
strictly positive by the maximum principle.

We now prove that for all s =1,... ,k,
(4.2) lim(i)llf <inf {fa(u) tu €V, / lu(z)Pdz=1— 5}) > po,s,
E— Qé

where 0 < § < (ftm /)P P~2) with

........

By contradiction, assume that there exist a sequence (g,), — 0 of positive
numbers and a sequence (uy,),, of functions in V,, such that

(4.3) / |un(x)Pde=1—4§ foralln €N,
2
(4.4) lim fe, (un) < po,s-
n—oo

Since a(x) is elliptic in  and liminf, o+ (inf{A;(e,2)/e : © € Q}) > 0, the
sequence (u,), has to be bounded in Hy*(2); hence there exists a subsequence
of (up), (which we shall denote again by (u,)n) converging to a function u €
Hy?(Q), weakly in Hy(€2), in LP(Q) and almost everywhere in €.
Moreover, since for all n > 0
k

oo M)

1 f f{———: Q Q; =

mjnt (e {2252 10 e VU aitng ) =
we must have fQ\U?ﬂQj |Du(z)|*dz = 0, which implies u(z) = 0 for all z €

Q\Uf:1 Q) because u € Hy?(Q) and every connected component ofﬁ\Ufz1 Q;
meets I (see Section 2).
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Since the subsets Q, ..., are pairwise disjoint, we have u(z) = u;(z) +
...+ ug(x), where u; € H(%’Z(Q;)7 1<j<k,and [, |u(z)Pde=1-34.

So, the assumptions of Proposition (4.1) (with )\(x) =1 for all x € Q) are
satisfied and, by the choice of §, we have

k k
Ho,s < ZA(Lu) < limianA(sn,un,Qt) < lim f;, (un),
contrary to (4.4). So (4.2) is proved.
Now, let us verify that, for all s=1,... &,
(4.5) lim sup <inf {fg(u) tu €V, / lu(x)P dx > 1 — 5}) < po,s;
e—0+ Q

in fact, let vy s be the positive function which realizes the minimum ug, i.e.
1,2 .
vo,s € Hy (), vo,s > 0 in O, fsz; v s|P dz =1, fQ;\Sls |Dvg 5% dz = 0 and

0,J _
/ a j(x)aa:ivo,sazij,s dx = Ho,s-
Qs

It is easy to verify that lim. .o+ fe(vos) = fo,s, which implies (4.5), for all
s=1,... k.
From (4.2) and (4.5) we infer that for all € > 0 small enough and for all

s =1,...,k there exists a function %, s which is a minimum for the functional

fe in the set
{u eV, / lu(z)|P de >1— 6}.
Q/

The solutions wue s = [Efg(ﬂsﬁs)]l/(p_z)ﬂg’s have property (II) with 0 < ¢ <
(ftan/ pinp )P/ P=2) by construction. Moreover, it is evident that

(4.6) limsup fe (e s/ ||tte sllp) < pos forals=1,... k.

e—0t
We now prove that there exists another critical point %, ;41 for f. on V.
Suppose that uym = po1; let v : [0,1] — V, be a continuous path joining the
functions vp 1 and g o:

TVo,1 + (1 — T)’Uo)g

T)= )
"= v + (1ol
One can verify that
(4.7) limsup{f. o y(7) : 7 € [0,1]} < 2=2/2,.
e—0*t

Let & > pm be such that (see (4.2)) @ < liminf. o+ (inf{fe(u) : v € V,,
fQi |u(z)|P dz = 1 —6}). For ¢ small enough, vy and v 2 belong to {u €V, :
fe(u) < @} and they are not connected in that sublevel, which does not meet
the set {u € V, : fQ/l |u(z)|P dz = 1 — 0}; while the two functions vp,; and v o
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are connected in the sublevel {u € V,, : fo(u) < p.}, with g = max{fe oy(7) :
7 € [0, 1]}, in which the curve « lies (see (4.7)).

Moreover, as liminf, o+ (infyeq A1(g,2)/e) > 0and p € |2,2N/(N — 2)], the
functional f, constrained on V), satisfies the well-known Palais-Smale condition.
Hence, by the Mountain Pass Theorem of Ambrosetti-Rabinowitz, there is a
critical value for f. on V,, in the interval |fi, pc] if € is small enough.

Let @, k11 be the corresponding critical point; then the function

Ue o1 = [Efe (e o)) PP Ue g

is a solution of P-(f,p) and it is distinct from the previous ones because it
corresponds to a greater critical level.
Let us prove (I). Since

limsup fe(Ues) <oo foralls=1,...,k+1

e—0*+
and liminf, g+ (inf.eq A1(e,2)/e) > 0, it follows that, if we choose A\; > 0
such that inf,cq Aj(e,z)/e > A1 > 0 for all ¢ > 0 small enough, then, for all
s=1,...,k+1,

Ai(e,x €
lee.l” = /Q Dol d = /Q 1(5 ! ' Ai(e,2) Do do

< i/ M|Dus,s|2d$ < ife(us,s)
Q ¢ M

="
Lt oD 1 i
= X[Efa(ue,s)] fs(ua7s) —0 ase—0".

Let us prove (III). Since U, s = ue s/ ||te s||p for all s =1,... , k, we have

/ TP do < 1.

By contradiction, assume that there exists an infinitesimal sequence (g,), of
positive numbers such that

(4.8) lim [T, .s|P dx < 1.

n— o0 Q

Since limsup,,_, ¢ fe, (@e,.s) < po,s and liminf, o+ (infreq A1 (e, z)/e) > 0, the
sequence (@, s), is bounded in Hy?(Q) and then (7., .)n, or a subsequence,
converges in Hé () weakly, in LP() and almost everywhere in 2 to a function
. Since @ € Hy?(Q) and since for all 7 > 0 we have

linrr_ligf<inf{Al< eQ\UQt }) = o0,

it follows that w(z) = 0 for all z € Q\ |J}_, €} and fﬂ/\Q | Du(x)|? dx = 0 for all
t=1,...,k As fQ, [u(x)[P dz > 1—4§ and, if (4.8) holds, then fQ, [u(x)|P dz < 1,
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there is t € {1,... ,k}, t # s, such that [, [u(x)[” dz # 0. By the choice of §
(see Remark (4.3)),

k k
pos < Y A(tT) <liminf Y Ae,, Uz, 6, ) < Jim fe, (e, ) < pio,s,

n— 00
t=1 t=1

which is a contradiction.
Let us prove (IV). By construction, the functions Ue s = e s/||ue s ||p are such
that

limsup fe(Te,s) < po,s foralls=1,... k.
e—0*t

If, by contradiction, there exists an infinitesimal sequence (g,,),, of strictly posi-
tive numbers such that

(4.9) lim A(en, Te,,s, ) < Ho,s,

n—oo

then it is easy to prove that the sequence (@, ), is bounded in H,*(€) and
that one of its subsequences converges in LP(2) and almost everywhere in Q to
a function @, which is zero in 2\ €. It follows that

Ho,s < A(s,us) < lim A(Emﬂstg)’

n—oo
contrary to (4.9).

Property (V) is a simple consequence of the fact that fe(Ue k1) € [T, fte]
with 7 > py and limsup, g+ pe < 207272y (see (4.7)).

5. The nonhomogeneous case

This section is devoted to the more general semilinear problem having the
nonlinear term not necessarily homogeneous.
We are concerned with the following problem:

div(ae(z)Du) + g(z,u(r)) =0 in Q,
(P.(Q,9)) u>0 in Q,
u=>0 on €,
where  is a smooth bounded domain in RV, N > 3, and, for all ¢ > 0, a.(z) =
(a%(z)) is a positive definite symmetric N x N matrix (a%/(z) € L>(Q;R) for
alli,j=1,...,N).
Both Q and a.(x) satisfy the assumptions required in Section 2 for the ho-

mogeneous problem P (2, p).

The requirements on the function g : 2 x R — R are the following:

(g.1) for all t € R, g(x,t) is measurable with respect to z; for almost all
x € Q, g(z,t) is a C*-function with respect to t;
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(g.2) there exist a positive constant a > 0 and ¢ € ]2,2N/(N — 2)[ such that
for all ¢ > 0 and for almost all x € €,

lg(z,t)| < a+at!™! and |g)(z,t)] <a+at??,

where g;(x,t) denotes the derivative of g with respect to t;
(g.3) there exist p € ]2,2N/(N — 2)[ and a strictly positive function A :
Q — R with A € L*°(Q2) and 1/)\ € L>(Q) such that

tl_i)r(l)’lJr g(x,t)/tP~ = X(z) uniformly on ©;
(g.4) there exists 6 € ]0,1/2[ such that
Gz, t) < Otg(z,t)
for all £ > 0 and for almost all x € 2, where

{ fotg(x,T) dr ift >0,
0

G(zx,t) =
(1) otherwise;

(g.5) for all ¢ > 0 and for almost all x € Q,

;lt{g(?t)] > 0.

We have the following result on the number of solutions of problem P.(£2, g).

(5.1) THEOREM. If the domains ,Q1,... ,Qk and the matriz a.(x) satisfy
the conditions introduced in Section 2 and if the above conditions on g are sat-
isfied, then there exists € > 0 such that for all € € ]0,2[ problem P-(£2,g) has at
least k41 solutions uz1,... ;U jt1-

Let us observe that a positive function u. € Hy?(Q) is a solution of P if
and only if u, is a critical point for the functional F : H5’2 (Q) — R,

irj
F.(u) = ;/Qafg(x)ﬁmuawjudz é/QG(x,u(x))dx.

Define the set

M. ={ue Hé’Q(Q) cu#0in Q and J.(u) = 0},

Je(u) = Fl(u)[u] = /Q a?];x)aziuamjudx - %/ g(z, u(x))u(x) dz.

Q

We will now prove some properties of M, which we need for proving Theo-
rem (5.1).
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(5.2) PROPOSITION. For all ¢ small enough, M. is a Ct-manifold of codi-
mension 1 in HY?(€).

PROOF. First observe that for all u € M.,
meas{z € Q : u(zx) >0} > 0.

In fact, if © < 0 in 2, since it is not restrictive to assume that g(z,¢) = 0 for all
t < 0 and for almost all 2 € Q and J.(u) = 0, we have [, a? (2)8,,ud,,udx = 0,
which implies u = 0.

Therefore, by (g.5), for all v € M.,

i

JL(u)[u) = Q/Q ET(I)@muaxjudx* %/Qgg(:v,u(:v))u(x)2 dx

1
- f/Qg(x,u(z))u(x) dx

€
1

= 7/ gz, u(@))u(z) de — 7/ gi(z, u(x))u(z)® dz < 0.

€ Ja € Ja

So the assertion follows as J. € C1. O

(5.3) PROPOSITION. For all € > 0 small enough there exists v > 0 such that
[lw|| > r for all uw e M..

PRrooFr. It is sufficient to prove that there exists a constant r > 0 such that
Jo(u) > 0 for all u # 0 with [|u| <. Since F. € C2(Hy*(Q);R) and F/(0) = 0,
it suffices to prove that F(0)[v][v] > 0 for all v € Hy*(Q)\ {0}. By calculation,
we have

@l =2 [ 1

Q €
Since g;(x,0) = 0 for almost all € Q from (g.1) and (g.3) and since we have
infreq Ai(e, ) > 0 for € > 0 small enough, we can conclude that F/'(0)[v][v] > 0
for all v € Hy () \ {0}. O

02,00y, v dx — é / gi(z,u(z))v(z)? de.
Q

(5.4) PROPOSITION. For all € > 0 small enough,
inf{F.(u) :u e M.} >0.

PRrROOF. Let u € M, with ¢ fixed. By (g.4) we obtain

4,7
Fg(u)zl/ L(m)am.uax.udm—l/G(;v,u(x))dx
2 Jq ¢ v € Jo

1 L 1
> f/ de (x)amuamudx— 79/ g(x,u(z))u(z) dx
2 Jq € ’ e Ja

1 L 1 infyeq A
—(=-—9 /ae (x)awvuax_udxz Z_9 MPM.
2 0 & Cmt% 2 e

The conclusion follows from Proposition (5.3) and from (a.2). O
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(5.5) PROPOSITION. Set S := {u € Hy*(Q) : ut # 0}. Then for every
u € S there exists a unique a. € RT such that

ag/az’j(x)axiuamjudx:/g(x,asu(x))u(x)d;v.
Q Q

PROOF. Letu € S and consider the map R 3 z — F.(zu). It is continuous; it
achieves its maximum as, by (g.3) and (g.4), z = 0 is a strictly local minimum and

lim, o0 F(zu) = —c0. Let z = o, be such a maximum point. Then necessarily
0 07 1
—F.(zu) = aa/ a:"(x) Oz, u0y udr — 7/ g(z, acu(x))u(z) dr =0,
82 —a Q € ’ g Jo

=C¢e

from which the existence of a. follows. The uniqueness of . follows by observing
that (g.5) means that g(x, zu(x))/(zu(x)) is a strictly increasing function of z,
for all x € Q such that u(z) > 0. O

Roughly speaking, Proposition (5.5) says that, if we fix ¢ > 0 and u € S,
the half-line connecting the origin in HO1 ’2(9) with u meets the manifold M, in
a unique point au.

(5.6) REMARK. By the implicit function theorem, the function ¢, : S — R
defined by 9. (u) = a. if and only if F. () is the maximum value of the function
R >z F.(zu) (i.e. acu € M.) is continuous (C?!) for all € > 0 small enough.

(5.7) PROPOSITION. For all € > 0 and for every pair of functions (us,u;) €
M. x M. such that u, € Hy*(.), us € Hy> () (see Section 2) there exists a
continuous path v : [0,1] — M. connecting us to uy,

Ye(T) = ac(7)[rus + (1 — 7)us)

with ac(7) a real number, depending on € and on T, such that a.(7) > 1 for all
T €1[0,1].

PRroOF. Existence and continuity of 7. follow from Proposition (5.5) and
Remark (5.6).

Let us show that a.(7) > 1 for all 7 € [0,1]. Observe that a.(0) = 1 and
a.(1) = 1. Consider the functional

Rz F.(z(tus + (1 — T)us));
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if £F.(2(Tus+(1—7)us))|.=1 is greater than 0, then a.(7) > 1 for all 7 € ]0, 1.
Let us compute, by using the definition of M.:

0
an(z(Tut + (1 —7)uy))

z=1

i,j i,J
= 7'2/ = {—j($> aziuta:rj up dz + (1 — T)Q/ %T@aziusaxjus dx
Q .

’
t

-1,
S ) PR

g(x, Tu)Tus do — é / g(x, (1 = T)us)(1 — Tus dz
Q

’ ’
t el

19 Q; T
1—17)2 1-— s
+ a-r" / [g(:v,us) _ 9@ (= T)u,) )} ugdr >0
3 Q) 1—7
where the last inequality is a consequence of (g.5). O

(5.8) LEMMA. The following statements are equivalent:
(i) ue >0, ue # 0 is a critical point of F;
(ii) ue > 0, ue € M. is a critical point of F. constrained on M,.
PRrROOF. (i)=(ii). Since J.(u.) = F!(uc)[u:] = 0 it follows that u. belongs
to M, and it is a constrained critical point of F. constrained on M..
(ii)=-(i). By assumption there exists u € R such that F!(u.) = pJ.(u.) and
u: € M.. So we have

0= Jo(ue) = F(ue)[ue] = pJZ(ue)[ue]
with J.(ue)[ue] < 0 (see the proof of Proposition (5.2)). Consequently, u = 0.0
(5.9) DEFINITION. For all ¢ > 0 and for all s =1,... , k, we set
fio, = inf{F.(u) : u € Hy*(,) N M.}
and we denote by w., € Hy*(,) N M. a function which realizes M s For
simplicity of notation, we write 7z, ; and vg s instead of ,uéys and Ué‘,s respectively
(see Notations), where A(x) is the positive function appearing in the assumption
(g:3). Let fi. ,, = miny<o<p fi. s and Ty = maxy <s<p fle -
(5.10) LEMMA. Forall s=1,... k,

. He. s 1 1 —p/(p—2)
J <|lz==
hin %up 5/ (r—2) < >u0’s ,

where p is the number in |2,2N/(N — 2)[ which appears in (g.3).

PROOF. By Proposition (5.5), for all € > 0 there exists a unique positive
constant «. such that o 7o, € M., where Ty, is the function in HéQ(Q;) that
realizes 1 -
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Let us first observe that lim,_, o+ ae. = 0; in fact, by contradiction suppose
that there is an infinitesimal sequence (&,), such that lim, . a., = a > 0.
Since lim,_o+ al (x)/e = a™ () uniformly in Q, and [, \Q, |Dvg | dx = 0, we

have

lim F (e, To,s)
n—oo

a? a(x 1
= lim {;"/ e )@Cﬁg,s@xj%,s de — — G(z,ae,Tos) dx
Q!

n—o0 gn gn Q_/g
a’ ij - _ 1 _
= — a7 (x)0z,V0,502,;0,s dv — lim — G(z,avy,s) dx = —o0,
2 Q n—oo &y Jor
El S

which contradicts the fact that F; (ae,7os) > 0 for all n > 1 since a.,Tg,s be-
longs to M., and it is the maximum point for the function R* 3 2 +— F_ (27 s)

(see Proposition (5.5)).
/(p—2)
»S :

We next prove that lim,_,q+ 045/51/(”_2) = ﬁ(l) In fact, since a7 s

belongs to M, for all € > 0, a. satisfies the equation
/ al? (x) 1 / 9(x, a:lo,s (x)) o, s (2) d
—_— x.
Q Q

Ba:iio,sa:rjﬁo,s dr = — )
€ € o

(5.1)

We are now going to evaluate the limits as e — 01 of both sides of the above
equation. By (a.3),
ay’ (x) ay’ (x)

lim 02,0050, 00,s dr = lim
e—0t Jo € e—=0% Jq.

aac,‘@O,saxj@O,s dx = ﬁo,s-

In order to evaluate the other limit, we write

Z.

L[ gmadnn(eiaden) ,,_ of? [ glo ool
Q Q

€ a2 e (g s(x))P1

/ ’
s s

Since lim,_,¢+ @ = 0 and (g.3) holds,

lim g(m,agﬁo)s(w))ﬁo,s(x)p _ )\(l')ﬁo S<x)p

n (T2 (1)) for almost all = € Q..
£ eV0,s

Moreover, from (g.2) and (g.3) (where we can assume ¢ > p), there exist C' > 0
and n > 0 such that

’ 9(, oo s (7))o s ()P
(a5§075(:c))p71

< ()\((E) + C)EO,S(x)p if v € Q{sa |04550,s(1')‘ S 1,

(a/nP~ + a(aebp s (2) T P Yo s(2)P  if € Q, |aDos(x)| > 1,
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.2). From the Lebesgue

where a is the positive constant which appears in (g.2)

N [ Nalouop do

Theorem we deduce that
1 / 9(x, 0T s () Vo s () dr — ( 1im
O e—0+ IS

lim — 5
e—0+ € o?
5
pP—2

aE

’
s

= lim
e—0t €

Passing to the limit as e — 01 in (5.1), we see that

i /08 = 0

e—0*t

The conclusion is quite near; in fact, by definition of 7_ ,

ﬁs,s F, (asﬁo,s)
(5'2) e2/(p—2) — £2/(p—2)
2 1,5
_ o ag’(z) o _
T 92¢2/(p-2) /Q/ 020,502, 00,6 d

! / G(z, a0 5(z)) dz
Q/

T 2l |,

2 i (z)
Q a? (x
£ £ - -
/ 0z, 00,502,V0,s dx
QL

= 2¢2/(p—2)
Oéz.s7 G(.’L’, aEEO,S(x))EO’S(x)p
B - 0, - dx.
ep/(p QL (aevo,s(x))

Since lim,_,¢+ @ = 0 and (g.3) holds, we see that
G(x, oo s(x))To s ()P _ )\(z)@o,s(iﬂ)p
p

i
et (02To.s(2))P

for almost all z € Q;

(g.2) and (g.3) ensure that there exist constants C,n,b > 0 such that

' G(z, aeTo s (x))Vo,s ()P
(0‘650,8 (x))p

<{@@M+@mﬂﬂ
T /nP + b(avo s (2) TPV s (2)Pif @ € QL |acTo s ()] > 1.

if 2 € Q, |avos(x)| <,

From (a.3) and the Lebesgue Theorem, if we pass to the limit ¢ — 0T in (5.2)

we finally obtain

. He. s 1 1 —_p/(p—2)
1 ) < | - == .
1€lellp 2/(p—2) < >/1’O,s
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(5.11) COROLLARY. For 6 € (0,1) and for all s=1,... ,k we have

inf{Fy.(u) : w € Hy*(Q) N M., fQ’s Alx) |||§\(I?j|:) dz >1- 46}
1 1 _
(1 1\ -2
= (2 p)/’(‘O,s

(5.12) LEMMA. There exists 6 € (0,1) such that for all s=1,... ,k

lim sup 2/

(see Notations for Hu||(A,p))-

inf { F.(u) 1w € Hy*(Q) 0 M, [, Ma) ol -6}

Tl
L1\ /o 2).
> —_
<2 p)/‘LO,s

PROOF. By contradiction assume that there exist a sequence (¢,), — 0 of

Pty 2D

positive numbers and a sequence (uy, ), of functions such that w, € M, _,

(5.3) / )\(.I)Md:E:l—(s foralln=1,2,...
A,
and
g Lo (n) (1 1N pp-2).
(5.4) Jim 2/-2) sz~ 5 ) Fos

Let () := un(2)/||unl(rp) and Uy (z) := up(x)/||unllq (we can assume g > p
without any loss of generality). The proof consists of the following three steps.

STEP 1. We prove that the sequence (), is bounded in Hj*(2). In fact,
if we set By, = ||unllq, from (g.4) we see that

F., (un) 1 1 2 [ @ n( z)
65 S 2 ape (2 - 9) g2 [ 25y 0, i da,

En

Y]

which, in particular, implies 3, — 0. Since u,, € M., and [, [ti,(x)|? dz =1 for
alln =1,2,..., there exist two positive constants C; and C3 such that

agt(x)

(5.6) 0<Ci < / O U O ; U, dx = L 7 / g(x, Bpiiy) Bty dz
Q €n En Q
p—2 ~ ~ D—2
_ Bh / g(z, ﬂn?n(f))un(x) dz < Cy ﬂ
en Ja U (z)Pt En

the last inequality is due to (g.2) and (g.3). Since liminf, _ g+ (inf.ecq A1 (e, ) /€)
> 0, if we choose Ay > 0 such that inf,ecq Ai(e,2)/e > Ay > 0, from (5.5) and
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(5.6) it follows that

,J
2/-2) 2 o € ’

1
> <—0>B)\1/ | D, |2 da
2 Q

with suitable positive constants A and B. Then (T, ), is bounded in Hy*();
hence there is a subsequence of (uy,), (which we still call (u,),) converging to
a function & € Hy(Q), weakly in Hy?(Q), in LP(2), in L(2) and almost
everywhere in €.

Since u # 0 (because [[ull; = 1), we have |||z p 0 and so w, =
Un/||Unl|(xpy converges in LP(Q) to @ := u/||ul|(x,p) € Hy%(Q). We can also
assume that for this subsequence there exists

: az (x)
lim 2
n—oo O 5n

axiﬂnaxjﬂn dx = o

then 77 < oo and, if we set av, = [|un|(x p), since i, € M, foralln =1,2,...,
we get, arguing as in the proof of Lemma (5.10),

(5.7) lim o2 ?%/e, = 7.

n—oo

STEP 2. We prove that 11 < i, . By using (5.4), for n large enough we have

L 1\ _p/p-2) o Fr,(anlin)
68 (g2 T

2

a abi(x)
n En _ _
/ O U O U, dx
Q

1
T 2.2/(-2) En

,%/Q(;(x,anﬂn(x))dm;

Eg/(p—Z

now, since u,, — @ in LP(Q) and in L1(Q), and (g.2), (g.3) hold, we can use the
Lebesgue Theorem as in the proof of Lemma (5.10) to obtain, as n — oo,

1 1 _p/(p—2) . an(anﬂn) 1 1 —p/(p—2)
<2p>#0,s Zhﬁsolipw 2 5*5 H

and consequently
(59) ﬁ S ﬁO,s'

STEP 3. We arrive at a contradiction. Since for all n > 0

Ai(e,2) r
liminf | infd =227 . 2 € Q Q —
imjas (e {23 s e\ Yuto}) = oo
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we must have fQ\Uf=1 o |Du|? dz = 0. Since @ € Hy?(Q) and every connected
component of '\ Ule Q; meets 09, it follows that w(x) = 0 for almost all
v e\ UL, 9.

As Qi,’flﬁﬂig2 = ( for all t1,t5 € {1,...,k}, t1 # t2, W can be written in
the form @(x) = @y (x) + ... + () with @, € Hy? () for all t = 1,... , k.
Since [, A(@)[u(x)[Pde = 1 and [, A(z)[u(x)[?dz = 1 — 0, there exists at
least one t € {1,... ,k}, t # s, such that fQ; Ax)|u(z)|P de > 0. Moreover,
fQé\Qt |Du(x)|>dr = 0 for t = 1,... k. Hence u satisfies the assumptions of

Lemma (4.1) if § € 10, (i, /7)™ @~ [ and so

k i,j
o al (x
fig s < Z/Q a"? ()0, U0z, Us dz < lim inf £ )&Eﬁn@m]ﬂn dx
t=1

n—oo [o En

abI (z
< lim & (@)

n—oo [ En

az,ﬂnam7 Uy dx = A,

contrary to (5.9). O

We are now ready to prove Theorem (5.1).

PROOF OF THEOREM (5.1). The solutions of problem P.(€2, g) are the crit-
ical points of the functional

i,J
F.(u) = %/Q al E(I) Oy u0y udy — é A G(z,u(r)) d

constrained to lie upon the manifold

M, = {u € Hy?(Q) :u #0 and /Qaé’j(:r)amiuazjudx = /Qg(x,u(x))u(x) dm}

(see Lemma (5.8)). According to Corollary (5.11) and Lemma (5.12) there exists
d €]0,1] such that, for all s=1,... ,k,

inf{F.(u) : u € M, fQ; Az) \I‘ZI(\?”:) dr =1-6}
T 1\ /-2
> (2 p)ﬂo,s

(5.10) liminf Qe
inf{F.(u) : u € Mc, [, M) @ g > 1 — 6}

e—0+ 52/(1”—2)
Tull?y )
1T 1\ /o
<2 - )/’Lg,/s(p )
p

and

(5.11) hfi%lip 5/=2)

IN
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From (5.10) and (5.11) we can infer that there exists € > 0 such that for all
e €10,g[and for all s = 1,... , k, there exists a function wu. s which is a minimum
point for the functional F. in the set

P
{ueMsz A(w)'u()dx>1—5}.
Q ||UH(>\ »)
Moreover, it is evident that
Fe(ue,s) 1 1 P/ (P=2)
(5.12) hg%lipm < 37 P Ho.s

We now prove that there exists another critical point wu, 41 for F; on M,.
Fore >0 and s =1,...,k we have already defined

fie, = inf{F.(u) : u € Hy* () N M.}

let w., € Hy?(Q) N M. be a function that realizes fies Let fi_y\ =
max;<¢<y i, for € € |0,Z[. Suppose fi. \y = ficq; let vo : [0,1] — M. be a
continuous path joining the functions w, ; and we o,

Ve = aeftwes + (1 — T)we 1]

with @, a positive constant depending on € and on 7 € [0,1] (see Proposition
(5.7)). Define m. := max{F. ov.(7) : 7 € [0,1]}. It is clear that 7. \; = i, <
me. Let . > i, be such that

u;<inf{ L (u) ueMg,/ * da 16}.
‘ |u||(>\p

For € € ]0,2[, we,1 and we 2 belong to {u € M, : F.(u) < ul} because of Lemma
(5.10) and they are not connected in that sublevel, which does not meet the set

{ueME: A(@dez 1—5};

Q) HUH (\,p)
while the two functions w, ; and w, > are connected in the sublevel
{ue M, : F.(u) <m.}

to which the curve ~. belongs.

Moreover, as liminf, o+ (inf,eq A1(e,z)/e) > 0and p € 12,2N/(N — 2)] (see
(g.2)), the functional F; constrained on M. satisfies the well-known Palais—Smale
condition. Hence, by the Mountain Pass Theorem of Ambrosetti-Rabinowitz,
there is a critical value for F. on M, in the interval Ju., m.]. Let u. x+1 be the
corresponding critical point: it is a solution for P.(€,¢g) and it is distinct from
the previous ones because it corresponds to a greater critical level. O

The next proposition provides some qualitative information on the behaviour
of the solutions g 1,. .. , Ue g+1 Of problem P.(€, g) when e goes to 0.
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(5.13) PROPOSITION. For € > 0 small enough and s = 1,... k+ 1, let

Ues € Hy?(Q) be the solutions of problem P.(Q,g) given by Theorem (5.1).
They have the following properties:

(1) forall s=1,...  k+1,
lim ues||? =0;
e—0t

(I1) for all s=1,... k,

P
lim A x)w dr =1;
=0t Joy l[ue,s 10 p)

(III) for all s =1,... k, if we set Ue () = ue s(7)/||ue,s (x,p), we have

lim sup ||z, ¢|| < oo;
e—0t

moreover, if for a sequence (g,,)n, — 0, the sequence (e, s)n — Us

in LP(Q), then u, € Hy*(Y,) and it is a function which realizes the
mingmum fig s;

(IV) forall s=1,... k,

m Fe(ue,s) (1 . 1)17/(17—2)'

cmor e2/-2) — \2~ p)Hos

Proor. (I) Since liminf, o+ (infzeq A1(e,z)/€) > 0, we can choose A; > 0

such that inf,eq A1(e,z)/e > A\ > 0. Then, from (g.4), for € > 0 small enough
and for all s =1,...,k, we have

e,

A (e, x) € 5 l/Al(E,x) 5
= . Du, s(z)]* dx < — ———|Du. s(x)|* dz
|2 et < 5 [ Dt o ()

€
1/2—-90 ald(z)
T A(1/2-90) /Q

8m,¢u5,samjus,s dx

g
I S P C) 6
= N0 {2 /Q . Op,Ue sOg  Ue s d 6 /Qg(x, Ue () )uc o (2) dx}
1 1 [ a(z) 1
< " . . . — = X
> )\1(1/2 _ 9) |:2/Q - axlue,saxjus,a dx - /glG($7uE’6(I)) dgj:|

1
= F.(ue,s
(12 =g) e
with lim_ o+ F.(ue ) = 0, because of (5.12).

If s =k + 1 the same conclusion holds. In fact, the proof of Theorem (5.1)
shows that

lim sup Fe (ue k1) /Te v < 00
e—0+



394 M. Musso D. PASSASEO
and consequently, by Lemma (5.10),

limsup F. (ue 1)/ P2 < co.
e—0t
(IT) If we define . s(7) := ue s(x)/[|uc sl|(rp) for s =1,...k, it is evident
that fQ, x)|Te,s(z)|P de < 1. By contradiction, assume that there exists an
infinitesimal sequence (ey,), of positive numbers such that

(5.13) lim M), s (z)|P de < 1.

n oo
= Jar

Since
. F. (ue s) 1 1 —p/(p—2)
) < o
IIEIILSOEP 22/(p—2) =\ 2 p Ho,s
and liminf, g+ (infyeq A1(e,2)/e) > 0, it can be proved that (@, s)n, or a
subsequence, converges in L?(2) and almost everywhere in ) to a function @, €
H3’2(Q), in the same way as we proved it in Lemma (5.12). Moreover, we can
assume that, for this subsequence, there exists
L
im

n—oo QO gn

6w,iﬂan,s8xjﬂan,s dr =T < oo.

Since limy, o ||te, sl|(xp) = 0 (see (I)) and u., s € M, , we can obtain

1/(p—2) _*1/(19 2)

lim fluc, s |
oo

n— (A:p) /E

arguing as in step 1 of the proof of Lemma (5.12). From (5.12) and by using the
Lebesgue Theorem we see that

LI\ ow/0-2) 5 i e 2o (ens) o (12 1N p/60-2)
(2_p)ﬂo,s lemSUPWz 5—]; H

n— oo

and so 1 < fig -

Moreover, since for all n > 0 we have

1inniioréf<inf{A1< eQ\UQt })z 00,

we conclude that fQ\ULl Q |Du,(z)]2dz = 0. Since Ty € Hy*(Q) and every
connected component of '\ Ule Q) meets 99, we have T, (z) = 0 for almost all
€N\ Uf 1 %

Since [, A(z)[us(2)|P dz = 1 and, by (5.13) fQ, z)|us(x)|[P de < 1, there
exists ¢ € {1,...,k},t # s, such that fQ, |us( )|p dx # 0. Moreover, 1 —¢ <
fQ, x)|us(x |p dx with 0 € 10, (ﬂm/ﬂM)p/(p 2] (see proof of Theorem (5.1))
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and fﬂ’\ﬂt |Duig(z)|?> dx =0 for all t = 1,... , k. Therefore Remark (4.3) assures
that

Tig.s < Z/ )8y, s (2) Oy, s () daz

atl (x
< lim inf 2 )3wiﬂ5n,s(x)8mjﬂsn,s(x) dx
n—oo Jo en
abd(x
< lim E"7()&cﬁsms(:1,’)<'9$Jﬂ€ms(z) dz = [i.

n—oo [o En
This is a contradiction with what was previously proved.
(IIT) The proof of property (III) can be easily obtained with the same argu-
ments used for (II) and in the proof of Theorem (5.1).
(IV) Because of (5.12), it suffices to prove that
Fr(ue,s) L1\ _p/o- 2
en\res) s [ Z 2
g Sor-a 2 (2 p)Fos
We argue by contradiction and suppose that there exists a sequence (g,), of
positive numbers such that lim,,_,., £, = 0 and
FEn (u€n75) 1 1 p/(p 2)
(5.14) A e <37 p )P
Then one can prove that the sequence ., s = uc, /| te, s[(rp) or one of its
subsequences converges in LP(Q2) and almost everywhere in € to a function ws
which belongs to Hy*(Q) and is zero in Q\ 2, (argue as in the proofs of Lemma
(5.12) and of (I)).
Since for all n > 0,

limi§f<inf{A AGL rr e\ UQt }) —

e—0
we have fﬂg\ﬂs |Du,|? dz = 0. Moreover, T, € Hy>(€) fQ, x)|us(x)|P dz
=1 and from the fact that u., s € M., it follows that
. ||ugn,s p) g B B 1/(p—2)
nan;O W = /{/ a"? (1)0y,Us Oy, Us dx .

From (5.14) we find, by using (a.3) and the Lebesgue Theorem (as in the proof
of Lemma (5.12)),

L1 . p/(p—2)
() omnase)
2 p Q.

< lim Fen(usn,S) < (1 _ 1>Mp/(p2)
p

~ n—oo 2/(p—2) 2 0,s ’
En

ie. f a"I ()0, UsOy, s dr < [ig ,, contrary to the definition of 7, . O
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(5.14) REMARK. In order to obtain the multiplicity results stated in Theo-

rems (4.4) and (5.1), it would be sufficient to require that

. 1
limsup— sup As(e,z) < o0
e—0t € el Qs

instead of condition (a.3). However, in this paper we have assumed (a.3) for the

sake of simplicity and also because it has been useful in studying the asymptotic

behaviour of the solutions.
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