
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 6, 1995, 265–282

ESTIMATION OF THE SECOND DERIVATIVES
FOR SURFACES EVOLVING UNDER THE

ACTION OF THEIR PRINCIPAL CURVATURES

N. Ivochkina — O. Ladyzhenskaya

Dedicated to Louis Nirenberg

1. Introduction

In our paper [8], we have formulated some results on global unique solvability
of the first initial-boundary value problem for equations of the form

M [u] = − ut√
1 + u2

x

+ f(k(u)) = g in Q = Ω× (0, T ) ⊂ Rn+1,(1)

u− ϕ = 0 on ∂′Q = ∂′′Q ∪ Ω(0),(2)

where ∂′′Q = ∂Ω× [0, T ], Ω(0) = {z = (x, t) : x ∈ Ω, t = 0}, and Ω is a domain
in Rn with a smooth boundary, which only for the sake of simplicity we assumed
to be bounded. In (1), (2), g and ϕ are smooth known functions of z, defined on
Q, and k(u) = (k1(u), . . . , kn(u)), where ki(u)(z) are the principal curvatures of
the graph Tt:

x0 = u(x, t), x ∈ Ω,

of the sought function u( · , t) : Ω → R1 for fixed t ∈ [0, T ].
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266 N. Ivochkina — O. Ladyzhenskaya

In [8] we studied the cases

f(k) = fm(k) = Sm(k)1/m, Sm(k) =
∑

i1<...<im

ki1 . . . kim ,

with m = 2, . . . , n. Contrary to the case m = 1, considered by many authors,
equation (1) with f = fm, m > 1, is non-totally parabolic. Its main domain of
parabolicity is the cone

Γm = {k : k ∈ Rn, Sl(k) > 0, l = 1, . . . ,m} ⊂ Πn
+ =

{
k : S1(k) =

n∑
i=1

ki > 0
}

(for the properties of fm on Γm, see [1], [4]).
Here we recall the principal result of [8]. To formulate it let us include

problem (1), (2) in the family of problems

(3τ )
M [uτ ] = gτ in Q,

(uτ − ϕτ )|∂′′Q = 0, (uτ − ϕ0)|Ω(0) = 0, τ ∈ [0, 1],

where ϕ0(x, t) = ϕ(x, 0), ϕτ = τϕ+(1−τ)ϕ0, gτ = τg+(1−τ)g0 and g0(x, t) =
fm(k(ϕ(x, 0))).

For τ = 1, problem (3τ ) coincides with problem (1), (2) and for τ = 0 it has
the solution u0(x, t) = ϕ(x, 0).

We call a function uτ an admissible solution of (3τ ) if uτ ∈ C2,1(Q), uτ

satisfies (3τ ) and for any z ∈ Q, k(uτ )(z) belongs to Γm.
The following theorem holds:

Theorem 1. Any of the problems (3τ ) with f = fm, m > 1, τ ∈ [0, 1],
including the problem (1), (2) with f = fm, has a unique admissible solution uτ

belonging to H4+α,2+α/2(Q) if the following conditions are satisfied:

(a) ∂Ω ∈ Γm ∩H4+α, g ∈ H2+α,1+α/2(Q), ϕ ∈ H4+α,2+α/2(Q), k(ϕ0)(x) ∈
Γm for x ∈ Ω, ϕ and g satisfy on ∂Ω(0) the compatibility conditions up
to the second order;

(b) inf
Q

g ≥ 0, inf
∂′Q

ut + inf
Q

g ≡ ν1 > 0, gt ≤ 0 in Q,

(c) there is a common minorant c for ∂uτ/∂n, i.e.,

inf
τ∈[0,1]

inf
∂′′Q

∂uτ

∂n
≥ c.

Here Hk+α,l+β(Q) are Hölder spaces with α, β ∈ (0, 1). The symbol ∂/∂n

in (c) is the derivative in the direction of the inner normal to ∂Ω. The inclusion
∂Ω ∈ Γm for m < n means that for ω(x1, . . . , xn−1) defining ∂Ω in local cartesian
coordinates, (k1(ω), . . . , kn−1(ω)) ∈ Γm ⊂ Rn−1, and ∂Ω ∈ Γm for m = n means
that Ω is strictly convex1.

1The first part of the hypothesis b) in Theorem 1 of [8] can be eliminated for T <∞.
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The core of the proof of Theorem 1 consists in getting a priori estimates for
the norms of uτ in the spaces H2+β,1+β/2(Q) with a β > 0. The conditions under
which this was done for problem (1), (2) are satisfied for any of the problems
(3τ ), τ ∈ [0, 1], and majorants could be chosen to be independent of τ . This
is why in what follows we speak only about problem (1), (2) and its admissible
solutions.

In this paper we estimate supQ |uxx|, supposing that the estimates

(4) sup
Q
|ux| ≤ M1 and sup

∂′Q
|uxx| ≤ M2

are known. We will do that for a class of symmetric functions f (this means that
f is invariant with respect to transpositions of the arguments k1, . . . , kn) which
are defined on a domain D ⊂ Rn containing the values of k(u)(z), z ∈ Q, for
the solution u(z) under consideration. One of the conditions imposed on f is its
ellipticity on D, i.e.,

(5) f i(k) ≡ ∂f(k)
∂ki

> 0, i = 1, . . . , n, k ∈ D.

Other conditions on f will be formulated in Sec. 3. All of them are satisfied for
f = fm, m = 2, . . . , n.

It is known (see [3]) that any real-valued smooth symmetric function f can
be represented as a smooth function F of symmetric matrices which is invariant
under the transformations A → BAB∗ with any orthogonal matrix B. Let us
write this in the form

(6) f(λ(A)) = F (A),

where λi(A), i = 1, . . . , n, are the eigenvalues of A. The properties (5) guarantee
the inequalities

(7)
∂F (A)
∂Aij

ξiξj > 0,

where Aij are the elements of A, and ξ is any vector from Rn with |ξ| = 1. Here
and later, a double repeated index implies summation from 1 up to n.

The principal curvatures ki(u) of the surface Tt for x ∈ Ω are the eigenvalues
of the matrix

(8)
1

γ(u)
g(ux)−1/2uxxg(ux)−1/2 ≡ 1

γ(u)
u(xx),

calculated at the point z = (x, t) ∈ Q. Here and in the sequel we use the
notations: γ(u) =

√
1 + u2

x, uxx is the Hessian of u with the elements uij = uxixj
;
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g(ux) is the metric tensor of the surface Tt, its elements are gij(ux) = δj
i + uiuj ,

where ui = uxi . From this and (6) we have

(9) f(k(u)) = F

(
1

γ(u)
u(xx)

)
≡ F(ux, uxx).

The property (7) implies the inequalities

(10)
∂F(ux, uxx)

∂uij
ξiξj > 0 for all ξ with |ξ| = 1.

2. Estimation of ut

First, we estimate supQ |ut| for the equations

(2.1) − ut

1 + u2
x

+ F(ux, uxx) = g(x, t)

with an arbitrary smooth function F satisfying only the inequalities (10) on
the solution u. Let us differentiate (2.1) with respect to t. The result can be
represented as a linear equation for w = ut:

(2.2) −awt + aijwij + biwi = gt.

Its coefficients are bounded functions, and a > 0 and aij satisfy

(2.3) aijξiξj ≡
∂F(ux, uxx)

∂uij
ξiξj > 0, |ξ| = 1.

A standard reasoning, based on the maximum principle for parabolic equa-
tions, yields

ut(z) ≥ min
∂′Q

ut ≡ ν2 if gt ≤ 0 in Q,(2.4)

ut(z) ≤ max
∂′Q

ut ≡ µ1 if gt ≥ 0 in Q.(2.5)

Let us also find a majorant for ut without the hypothesis that gt ≥ 0. For
this purpose we introduce the function v = we−λt, λ > 0. By (2.2),

(2.6) − 1√
1 + u2

x

(vt + λv) + aijvij + bivi = gte
−λt.

If v attains its maximum on Q at (x0, t0) ∈ Q then at this point we have
vt ≥ 0 and aijvij + bivi ≤ 0, which, together with (2.6), leads to

λv(x0, t0) ≤ −e−λt0gt

√
1 + u2

x

∣∣
(x0,t0)

,

and then

ut(x, t) ≤ eλt sup
(y,τ)∈Qt

{
− 1

λ
e−λτgτ (y, τ)

√
1 + u2

y(y, τ)
}

, Qt = Ω× (0, t).
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If the point (x0, t0) of the maximum of v on Q happens to lie on ∂′Q, then
v(x, t) ≤ v(x0, t0) for any (x, t) and

ut(x, t) ≤ eλt sup
(y,τ)∈∂′Qt

{uτ (y, τ)e−λτ}.

So for both cases, using the arbitrariness of λ > 0, we get

(2.7) ut(x, t) ≤ inf
λ>0

{
eλt max

[
sup

(y,τ)∈Qt

(
− 1

λ
e−λτgτ (y, τ)

√
1 + u2

y(y, τ)
)

,

sup
(y,τ)∈∂′Qt

(uτ (y, τ)e−λτ )
]}

≡ µ2(t),

for all x ∈ Ω and t ∈ [0, T ].
We sum up these conclusions in the following theorem.

Theorem 2. Let u be a smooth solution of (2.1) with smooth F and g, and
F satisfying (2.3). Then:

(a) ν2 ≡ min
∂′Q

ut ≤ ut(x, t) ≤ max
∂′Q

ut = µ1, (x, t) ∈ Q,

if gt ≡ 0;
(b) ν2 ≡ min

∂′Q
ut ≤ ut(x, t) ≤ µ2(t), (x, t) ∈ Q,

with µ2(t) from (2.7), if gt ≤ 0.

For a complete investigation of the problem (1), (2), we need to have some
bounds for the values of f(k(u))(z), z ∈ Q. In virtue of (1), the equality
f(k(u)) = ut/

√
1 + u2

x + g and Theorem 2 with F(ux, uxx) = f(k(u)) we come
to the following conclusions.

If infQ g ≥ 0, ν1 ≥ 0 and gt ≤ 0 in Q, then

f(k(u)) =
ut√

1 + u2
x

+ g ≥ 1√
1 + u2

x

(ν2 + inf
Q

g)(2.8)

≥ ν1√
1 + M2

1

≡ ν3,

with M1 from (4) of Sec. 1. Under the same hypothesis about g the majorant
µ2(t) in (2.7) is nonnegative and therefore

(2.9) f(k(u)) =
ut√

1 + u2
x

+ g ≤ µ2(t) + sup
Q

g ≤ sup
t∈[0,T ]

µ2(t) + sup
Q

g ≡ µ3.

So, if infQ g ≥ 0, ν1 > 0 and gt ≤ 0 we have

(2.10) 0 < ν3 ≤ f(k(u))(z) ≤ µ3.

Note that if ν2 = min∂′Q ut ≥ 0 then instead of (2.8) there is another mino-
rant for f that does not require the condition infQ g ≥ 0, namely,

(2.11) f(k(u)) ≥ ν2√
1 + M2

1

+ inf
Q

g ≡ ν̃3 if ν2 = min
∂′Q

ut ≥ 0.
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Under the conditions of Theorem 1, we have thus found some positive bounds
ν3 and µ3 for f(k(u))(z). The inequality f(k(u))(z) ≥ ν3 > 0 guarantees that
k(u)(z) in the course of evolution never leaves the cone Γm of ellipticity for
f = fm.

In the next section we will make use of

(2.12) ν4 ≤ f(k(u)) ≤ µ4, z ∈ Q,

for the solution u(z).

3. Bounds for second derivatives

Let u be a smooth admissible solution of (1) with f satisfying (5), and let
the majorants Mk in (4) and constants ν4, µ4 in (2.12) be known. We require
additionally that

(3.1) S1(k) =
n∑

i=1

ki ≥ Φ(f(k)), k ∈ D,

with a nondecreasing continuous function Φ : R1 → R1. This and (2.12) imply

(3.2) S1(k(u))(z) ≥ Φ(ν4) ≡ c1, z ∈ Q.

If we find a majorant c2 in

(3.3) sup
z∈Q

ki(u)(z) ≤ c2, i = 1, . . . , n,

then we can conclude from (3.2) and (3.3) that

(3.4) −ki(u)(z) ≤
∑
j 6=i

kj(u)(z)− c1 ≤ (n− 1)|c2|+ |c1|, i = 1, . . . , n.

Now a majorant c in

(3.5) sup
Q
|uxx| ≤ c

is calculated elementarily.
To find c2 in (3.3), we use the invariance of the left-hand side of (1) with

respect to the choice of cartesian coordinates in the space En+1 of variables
(x, x0). As above, we consider t in u(x, t) as a parameter and associate with
u( · , t) the surface Tt in En+1 determined by the equation

x0 = u(x, t), x ∈ Ω.

Fix a point P 0 ∈ Tt0 in En+1 with coordinates (x0, u0 = u(x0, t0)), x0 ∈ Ω,
t0 ∈ (0, T ], and denote by ν0 the unit normal to Tt0 at P 0 directed according to
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increasing x0, i.e.,

ν0 = ν(Tt0)(P 0) =
n∑

i=1

(
−uxi√
1 + u2

x

)
(x0, t0)ei +

(
1√

1 + u2
x

)
(x0, t0)e0.

Here e1, . . . , en, e0 is the orthogonal basis in En+1 corresponding to the coordi-
nates x1, . . . , xn, x0. Choose another orthogonal basis ξ1, . . . , ξn, ξ0 with ξ0 = ν0.
The matrix B = (bαβ) with bαβ = (εα, eβ), α, β = 1, . . . , n, 0, is orthogonal and
its elements b0β = (ε0, eβ) = (ν0, eβ) are fixed. Later we will define the other
rows of B in a proper way, always keeping the orthogonality of B. For now they
are taken arbitrary.

Denote by (y1, . . . , yn, y0) the cartesian coordinates in En+1 corresponding
to ξ1, . . . , ξn, ξ0, so that we have in En+1 the relation

(3.6)
n∑

i=1

(xi − x0
i )ei + (x0 − u0)e0 =

n∑
i=1

yiξi + y0ξ0.

The surface Tt with t near t0 can be represented near P 0 by the equation

(3.71) y0 = v(y, t), y = (y1, . . . , yn),

where the function v is determined by the identity

(3.72)
n∑

i=1

(xi − x0
i )ei + (u(x, t)− u0)e0 =

n∑
i=1

yiξi + v(y, t)ξ0.

In fact, it follows from (3.72) that

xi − x0
i =

n∑
j=1

bjiyj + b0iv(y, t), i = 1, . . . , n,(3.81)

u(x, t)− u0 =
n∑

i=1

bi0yi + b00v(y, t),(3.82)

and

yi =
n∑

j=1

bij(xj − x0
j ) + bi0(u(x, t)− u0), i = 1, . . . , n,(3.91)

v(y, t) =
n∑

j=1

b0j(xj − x0
j ) + b00(u(x, t)− u0).(3.92)

Relations (3.9k) determine the functions

(3.10) Yi(x, t) =
n∑

j=1

bij(xj − x0
j ) + bi0(u(x, t)− u0), i = 1, . . . , n,
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if we consider u : Q → R1 as a given function, and they also determine the
functions Xj such that

(3.111) yi = bij(Xj(y, t)− x0
j ) + bi0[u(X(y, t), t)− u0], i = 1, . . . , n,

for all y and t near y = 0, t = t0. The function v from (3.71) is determined by
the equality

(3.112) v(y, t) = b0j [Xj(y, t)− x0
j ] + b00[u(X(y, t), t)− u0].

By the orthogonality of B, from (3.111), (3.112), we get the equalities

Xi(y, t)− x0
i =

n∑
j=1

bjiyj + b0iv(y, t), i = 1, . . . , n,(3.111)

u(X(y, t), t)− u0 =
n∑

i=1

bi0yi + b00v(y, t),(3.122)

which are identities near y = 0 and t = t0. We can consider them also as the
identities

xi − x0
i =

n∑
j=1

bjiYj(x, t) + b0iv(Y (x, t), t),(3.131)

u(x, t)− u0 =
n∑

i=1

bi0Yi(x, t) + b00v(Y (x, t), t)(3.132)

with respect to (x, t) near (x0, t0), since the vector-valued function Y ≡
(Y1, . . . , Yn)(x, t) is inverse to X = (X1, . . . , Xn)(y, t).

So, for t close to t0, the surface Tt, near P 0 = (x0, u0), has the equation

(3.14) y0 = v(y, t),

where v is determined by (3.112). Note that the new variables y and v depend
on z0, but we will choose z0 at a step and will not change it after that. Therefore,
we do not indicate explicitly the dependence of the new variables on z0.

The quotient ut/
√

1 + u2
x is invariant with respect to the change of variables

(x, u, t) → (y, v, t), i.e.,

(3.151)
ut√

1 + u2
x

(x, t) =
vt√

1 + v2
y

(y, t)

for the corresponding (x, t) ↔ (y, t), since both sides of (3.151) give the velocity
of the shift of Tt in the direction of the normal ν(Tt) to Tt. This will also follow
from our subsequent calculations.
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The analytical expressions for the principal curvatures ki(Tt) of Tt in variables
(x, x0) and (y, y0) also coincide, so we have

(3.152) f(k(u))(x, t) = f(k(v))(y, t).

But g(x, t) in the new variables will depend on v, namely,

(3.16) g(x1, . . . , xn, t)

= g(x0
1 + bj1yj + b01v(y, t), . . . , x0

n + bjnyj + b0nv(y, t), t) ≡ ĝ(y, t, v).

So, equation (1) in the new variables has the form

(3.17) − vt(y, t)√
1 + v2

y

+ f(k(v))(y, t) = ĝ(y, t, v).

Later, we will have to differentiate (3.17) with respect to ym and twice with
respect to y1. For this purpose, let us calculate these derivatives for ĝ:

(3.181) ĝym
= gxi

∂xi

∂ym
= gxi

(bmi + vym
b0i)

and

(3.182) ĝy1y1 = gxixj
(b1j + vy1b0j)(b1i + vy1b0i) + gxi

vy1y1b0i.

Using (3.10), we also calculate the relations between ui ≡ uxi
and vj ≡ vyj

.
From (3.132), it follows that

uj = bi0
∂Yi

∂xj
+ b00vi

∂Yi

∂xj
= (bi0 + b00vi)(bij + ujbi0),

and from this and orthogonality of B we get

uj(1− bi0bi0− b00bi0vi) = uj(b00− bi0vi)b00 = bi0bij + b00bijvi = (−b0j + biivi)b00

and therefore

(3.19) uj =
−b0j + bijvi

b00 − bi0vi
, j = 1, . . . , n.

Introducing the vector fields

(3.20) ν(v) = − vi√
1 + v2

y

εi +
1√

1 + v2
y

ε0,

we rewrite (3.19) in the form

(3.21) uj = − (ν(v), ej)
(ν(v), e0)

, j = 1, . . . , n.

From (3.21), it follows that

(3.221) 1 + u2
x = (ν(v), e0)−2
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and

(3.222)
1√

1 + u2
x

= (ν(v), e0) =
1√

1 + v2
y

(b00 − bj0vj).

For vt we have from (3.112),

vt = b0j
∂Xj

∂t
+ b00

(
uj

∂Xj

∂t
+ ut

)
= (b0j + b00uj)b0jvt + b00ut

= (1− b2
00 + b00b0juj)vt + b00ut.

After reduction of similar terms this gives

ut = (b00 − b0juj)vt

and from this and (3.21) we get

ut =
(ν(v), ε0)
(ν(v), e0)

vt.

Using this relation, (3.222) and (3.20), we find

ut(ν(v), e0) =
ut√

1 + u2
x

= vt(ν(v), ε0) =
vt√

1 + v2
y

,

i.e. (3.151).
Now we start to calculate the majorant c2 in (3.3). Let z0 = (x0, t0) be a

point of Q where the maximum M of all functions

(3.231) h(η)ki(u)(z), i = 1, . . . , n, z ∈ Q,

is realized. Here h( · ) is a smooth function of

(3.232) η =
1√

1 + u2
x

.

It will be chosen later and defined on the interval

(3.233) [b1, 1], b1 =
1√

1 + M2
1

.

It is sufficient to consider the case when z0 ∈ Q, since for z0 ∈ ∂′Q a majorant
for h(η)ki(u), and therefore for ki(u), is given by (4).

So, let z0 = (x0, t0) lie in Q. We now use the new variables y, t, v described
above, choosing for the origin of coordinates (y, y0) the point P 0 = (x0, u0 ≡
u(x0, t0)) of En+1 and as ε0 the unit normal

ν0 = −
n∑

i=1

◦
ui√

1 +
◦
u2

x

ei +
1√

1 +
◦
u2

x

e0,
◦
ui ≡ uxi(x

0, t0),
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to Tt0 ⊂ En+1 at the point P 0. We direct the other basis vectors ε1, . . . , εn in
En+1 along the lines of the principal curvatures of Tt0 at P 0, and enumerate
them in such a way that k1(u)(z0) ≥ ki(u)(z0), i = 2, . . . , n.

It is sufficient to consider the case when

(3.24) k1(u)(z0) ≡ vy1y1(0, t0) > 0.

In the new variables the functions from (3.231) have the form

(3.25) h

(
1√

1 + v2
y

(b00 − bj0vj)
)

ki(v)(y, t), i = 1, . . . , n.

They are defined in the vicinity

Q̂ε = {(y, t) : |y| ≤ ε, t ∈ [t0 − ε, t0]}

of z0 ↔ (y = 0, t = t0) ≡ ẑ0 and have their local maximum at ẑ0.
The same local maximum M > 0 and also at the same ẑ0 is realized by the

function

(3.261) Ψ(y, t) =
[
h(η)

v11

γ(v)(1 + v2
1)

]
(y, t), γ(v) =

√
1 + v2

y,

where

(3.262) η =
1

1 + v2
y

(b00 − bj0vj) =
1

1 + u2
x

and, as above, vi = vyi
, vij = vyiyj

. In contrast to ki(v), the smoothness of Ψ
depends only on the smoothness of v, and therefore at the maximum point ẑ0 of
Ψ we have

(3.27) (lnΨ)yi
= 0, (lnΨ)t ≥ 0 and (lnΨ)yiyi

≤ 0.

Let us calculate (3.27) at ẑ0, keeping in mind that at ẑ0 we have

(3.28) vi = 0, ki(v) = vii, vij = viiδ
i
j .

First, we calculate

(3.291)
∂yi

γ(v) =
vkvki

γ(v)
, ∂yi

1
γ(v)

= − vkvki

γ(v)3
,

ηi ≡ ηyi
= − vkvki

γ(v)3
(b00 − bj0vj)−

1
γ(v)

bj0vji.

From these equalities, it follows that at ẑ0,

(3.292) ∂yiγ(v) = 0, ∂yi

1
γ(v)

= 0, ∂2
yiyi

γ(v) = v2
ii, ηi = −bi0vii

and also

(3.293) ηii ≡ ηyiyi
= −v2

iib00 − bj0vjii, where vjii ≡ vyjyiyi
.
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Now, computing (3.27) and bearing in mind (3.29k), we obtain at ẑ0 the
relations

(3.301) (lnΨ)yi =
h′

h
ηi +

v11i

v11
− vkvki

1 + v2
y

− 2v1v1i

1 + v2
1

= 0,

(3.302) 0 ≥ (lnΨ)yiyi
=

h′

h
ηii +

(
h′

h

)′

η2
i +

v11ii

v11
− v2

11i

v2
11

−
∑n

k=1 v2
ki

1 + v2
y

− 2v2
1i

1 + v2
1

,

(3.303) 0 ≤ (lnΨ)t =
h′

h
ηt −

v11t

v11
.

These relations and (3.28) give us

(3.311)
v11i

v11
= −h′

h
ηi =

h′

h
bi0vii,

(3.312)
v11ii

v11
≤ h′

h
(v2

iib00 + bj0vjii)−
[(

h′

h

)′

−
(

h′

h

)2]
b2
i0v

2
ii + v2

ii + 2v2
1i

= v2
ii

{
b00

h′

h
− bi0

[(
h′

h

)′

−
(

h′

h

)2]
+ 1

}
+

h′

h
bj0vjii + 2v2

1i

and

(3.313) −v11t

v11
≤ −h′

h
bj0vjt.

Let us now make use of the equation (3.17) for v and the representation

(3.32) f(k(v)) = F (A(v)),

where
A(v) =

1
γ(v)

v(yy), γ(v) =
√

1 + v2
y,

and

(3.33) v(yy) = g(vy)−1/2vyyg(vy)−1/2

(see the end of Sec. 1). The numbers ki(v)(y, t) are the eigenvalues of the matrix
A(v)(y, t). The elements of the matrix g(vy)−1/2 have the form

(g(vy)−1/2)ij = δi
j −

vivj

γ(v)(1 + γ(v))
,

and the elements v(ij) of the matrix v(yy) are

(3.34) v(ij) = vij −
vivkvkj

γ(v)(1 + γ(v))
− vjvkvki

γ(v)(1 + γ(v))
+

vivjvkvlvkl

[γ(v)(1 + γ(v))]2
.

It is also known that (a) convexity of f(k) with respect to k implies convexity
of F (A) with respect to A, and (b) at a point A ∈ Mn×n

sym with A diagonal, the
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matrix ∂F (A)/∂A is diagonal with elements ∂F (A)/∂Aij . (These facts have
been noticed and used, for example, in [1], [2].)

At ẑ0 we have

(3.35)
γ(v) = 1, A(v) = v(yy) = vyy =

 v11 0
. . .

0 vnn

 , ki = vii,

∂F (A)
∂Aij

=
∂F (A)
∂Aii

δj
i =

∂f(k)
∂ki

δi
j ≡ f i(k)δi

j .

Let us introduce the notation

(3.36) F i =
∂F (A)
∂Aii

(ẑ0) = f i(k)(ẑ0) ≡ f i.

Below, we also use

(3.37)
∂yk

v(ij) = vijk,

∂2
y1y1

v(ii) = vii11 − 2vi1v11v1i = vii11 − 2v3
11δ

1
i at ẑ0,

where vijkl = ∂4
yiyjykyl

v.
We rewrite equation (3.17) in the form

(3.38) −vt + γ(v)F
(

1
γ(v)

v(yy)

)
= ĝ(y, t, v)γ(v)

and differentiate it with respect to ym:

(3.39) −vtm + γ
∂F (A)
∂Aij

∂ym

(
1
γ

v(ij)

)
+ ∂ym

γF = ∂ym
(ĝγ),

where A = 1
γ(v)v(yy). At ẑ0, (3.39) has the form

(3.40) −vtm + F iv(ii)m = ∂ym
ĝ.

Now we differentiate (3.39) for m = 1 with respect to y1 and write the result
at ẑ0, keeping in mind (3.28) and (3.35):

(3.41) − vt11 + F iv(ii)11 +
∂2F (v(yy))
∂v(ij)∂v(kl)

v(ij)1v(kl)1 + γ11(F − F ivii)

= ∂2
y1y1

ĝ + ĝγ11.

Here we have used the notations

v(ij)1 = ∂y1v(ij), v(il)11 = ∂2
y1

v(il), γ11 = ∂2
y1

γ,

and later we will take into account that γ11 = v2
11 > 0 at ẑ0. By concavity of

F (A), (3.41) implies the inequality

(3.42) j1 ≡ −vt11 + F iv(ii)11 + v2
11(F − F ivii) ≥ ∂2

y1y1
ĝ + ĝv2

11 ≡ j2.
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By (3.31k) and (3.18k),

(3.431) ∂ym
ĝ(ẑ0) = bmigi(z0), where gi = ∂xi

g,

and

(3.432) j2 = gij(z0)b1ib1j + gi(z0)b0iv11(ẑ0) + g(z0)v2
11(ẑ

0),

where gij = ∂2
xixj

g.

So, (3.40) gives the equality

(3.44) −vtm + F iv(ii)m = bmigi(z0) at ẑ0.

Using (3.313) and (3.37), we deduce from (3.42) that

j2 ≤ j1 ≤ −h′

h
bj0vjtv11 + F i(vii11 − 2v3

11δ
1
i ) + v2

11(F − F ivii)

= −h′

h
bj0vjtv11 + F ivii11 − 2F 1v3

11 + v2
11(F − F ivii).

From this, (3.312) and F i > 0 we get the inequality

j2 ≤ − h′

h
bj0vjtv11 + F iv2

iiv11

(
b00

h′

h
+ 1

)
(3.45)

−
n∑

i=1

F iv2
iiv11b

2
i0

[(
h′

h

)′

−
(

h′

h

)2]
+

h′

h
bj0v11F

ivjii + v2
11(F − F ivii)

=
h′

h
bj0v11(−vjt + F ivjii) + F iv2

iiv11

(
b00

h′

h
+ 1

)
−

n∑
i=1

F iv2
iiv11b

2
i0

[(
h′

h

)′

−
(

h′

h

)2]
+ v2

11(F − F ivii).

Using (3.44) and (3.37), we exclude from (3.45) the terms with vjt and vjii and
obtain an inequality containing only the space derivatives of v of the first and
second orders. Namely,

j2 = gijb1ibij + gib0iv11 + gv2
11(3.46)

≤ h′

h
bj0v11gibji −

n∑
i=1

F iv2
iiv11b

2
i0

[(
h′

h

)′

−
(

h′

h

)2]
−H0F

iv2
iiv11 + v2

11(F − F ivii),

where

(3.471) H ≡ H(η) = −b00
h′(η)
h(η)

− 1
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and

(3.472) H0 = H(η0), η0 = η(ẑ0) =
1√

1 + u2
x(z0)

∈ [b1, 1], b1 =
1√

1 + M2
1

.

We choose for h(η) the solution

(3.48) h(η) =
1

η − b
, b ∈ (0, b1),

of the equation (h′/h)′ − (h′/h)2 = 0 (precisely this function h was used in [2]
for the estimation of second derivatives of solutions to the stationary problem
(1), (2)). Such an h is positive on [b1, 1],

H0 = H(η0) =
b00

η0 − b
− 1 =

η0

η0 − b
− 1 =

b

η0 − b
≥ b

1− b
≥ 0

as b00 = (ε0, e0) = 1/

√
1 +

◦
u2

x = η0, and, in addition,∣∣∣∣h′(η0)
h(η0)

∣∣∣∣ =
1

η0 − b
≤ 1

b1 − b
.

By all this, we obtain from (3.46) the relations

(3.49) v2
11(g − F + F ivii + H0F

iv2
iiv

−1
11 )

≤ −gjib1ib1j − gib0iv11 +
1

b1 − b
v11|bj0gibji|

≤ c3(1 + v11),

with a c3 = c3(b) under control. Let us introduce the functions

(3.50) j3(k, b) = −f(k) + f i(k)ki +
b

1− b
f i(k)k2

i k−1
1

and

(3.51) j4(z0, b) = g(z0) + j3(k(u)(z0), b).

We consider them for b ∈ (0, b1) and for

k ∈ Γ̂ = Γ̂(ν4, µ4)(3.52)

= {k : k ∈ Γ, ν4 ≤ f(k) ≤ µ4, k1 ≥ 1, k1 ≤ ki, i = 1, . . . , n},

where Γ is a domain of ellipticity of f , i.e. where (5) of Sec. 1 is satisfied.
If we can guarantee a positive minorant ν5 in

(3.53) j4(z0, b) ≥ ν5 > 0

for some b ∈ (0, b1) and all z0 ∈ Q, then we obtain from (3.49) the estimate

(3.54) k1(z0) ≤ c4, c4 =
c3 +

√
c2
3 + 4c3ν5

4ν5
.
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Let us define the following characteristic of f :

ν6(b) = inf
k∈bΓ

j3(k, b), b ∈ (0, b1).

If

(3.55) inf
Q

g + ν6(b) ≡ ν7 > 0,

then (3.53) holds with ν5 = ν7. If f(k) is a 1-homogeneous function of k, then

(3.561) j3(k, b) =
b

1− b
f i(k)k2

i k−1
1 > 0, k ∈ Γ̂,

and
ν6(b) =

b

1− b
inf
k∈bΓ

f i(k)k2
i k−1

1 .

Thus, the inequality (3.55) will be satisfied if

(3.562) inf
Q

g > 0.

For f(k) = fm(k) = Sm(k)1/m, m > 1, we have the estimate

(3.57) f i
m(k) ≡ ∂fm(k)

∂ki
≥ 1

m
· fm(k)

f1(k)
for all k ∈ Γm,

which is easily derived from the consequence Sm(k)/S1(k) ≤ ∂kiSm(k) of the
fact that the ratio Sm(k)/S1(k) is an increasing function of any ki ([9]). Using
it and ∑

j k2
j∑

j kj
k−1
1 ≥ 1√

n

we obtain the estimates

(3.581) j3(k, b) =
b

1− b
f i

m(k)k2
i k−1

1 ≥ b

1− b
· 1
m
√

n
fm(k) ≥ b

1− b
· ν4

m
√

n

for k in

(3.582) Γm(ν4, µ4) = {k : k ∈ Γm, ν4 ≤ fm(k) ≤ µ4}.

Under the hypothesis of Theorem 1, we have proved the positivity of ν4, and
therefore condition (3.53) for f = fm will be satisfied if

(3.59) inf
Q

g +
b

1− b
· ν4

m
√

n
≡ ν8 > 0.

Let us mention that in the stationary case

(3.60) f(k)(x) = g(x), u|∂Ω = ϕ, x ∈ Ω ⊂ Rn,

we have

j4 = g − f(k) + f i(k)ki +
b

1− b
f i(k)k2

i k−1
1 ≥ f i(k)ki, k ∈ Γ, k1 > 0,
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and the hypothesis

(3.61) f i(k)ki ≥ c0 > 0

for k ∈ Γ(ν4, µ4) ≡ {k : k ∈ Γ, ν4 ≤ f(k) ≤ µ4} just corresponds to hypothesis
(8) from Introduction of [2]. It guarantees (3.53) with ν5 = c0.

Finally, let us show how to calculate a majorant c2 in (3.3), having (3.54) at
hand. If

sup
z∈Q, i=1,...,n

ki(u)
η − b

≡ M

is achieved at a point z0 ∈ Q, then we have found the estimate (3.54) and hence

M = Ψ(z0) = (h(η)k1)(z0) ≤ c4

b1 − b
.

In this case, for all z ∈ Q and any i = 1, . . . , n,

c4

b1 − b
≥ M ≥

(
ki(u)
η − b

)
(z) ≥ ki(u)(z)

1− b
.

In the other case, when the supremum M is achieved at ∂′Q, it does not exceed a
constant c5, determined by majorants M1 and M2 of supQ |ux| and sup∂′Q |uxx|,
which we suppose in this work to be known. Hence

ki(u)(z) ≤ c5(1− b).

Thus, in any case we have

(3.62) sup
z∈Q, i=1,...,n

ki(u)(z) ≤ c2 = (1− b) max
{

c4

b1 − b
, c5

}
.

So we have proved the following theorem:

Theorem 3. Let u be an admissible solution of (1), for which constants
ν4 and µ4 in (2.12) and majorants M1 and M2 for supQ |ux| and sup∂′Q |uxx|
respectively are known. If we also know a positive minorant ν5 in (3.53), then
we can calculate a majorant c for supQ |uxx|.
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