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WRINKLING OF SMOOTH MAPPINGS III
FOLIATIONS OF CODIMENSION GREATER THAN ONE
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To Jürgen Moser on his 70-th birthday

0. Introduction

This is the third paper in our Wrinkling saga (see [EM1], [EM2]). The first
paper [EM1] was devoted to the foundations of the method. The second paper
[EM2], as well as the current one are devoted to the applications of the wrinkling
process. In [EM2] we proved, among other results, a generalized Igusa’s theorem
about functions with moderate singularities.

The current paper is devoted to applications of the wrinkling method in the
foliation theory. The results of this paper essentially overlap with our paper [ME],
which was written twenty years ago, soon after Thurston’s remarkable discovery
(see [Th1]) of an h-principle for foliations of codimension greater than one on
closed manifolds. The paper [ME] contained an alternative proof of Thurston’s
theorem from [Th1], and was based on the technique of surgery of singularities
which was developed in [E2]. The proof presented in this paper is based on the
wrinkling method. Although essentially similar to our proof in [ME], the current
proof is, in our opinion, more transparent and easier to understand. Besides
Thurston’s theorem we prove here a generalized version of our results from [ME]
related to families of foliations.
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1. Folds, cusps and wrinkles

1.1. Folds and cusps. Let M and Q be smooth manifolds of dimensions n

and q, respectively, where n ≥ q. For a smooth map f : M → Q we will denote
by Σ(f) the set of its singular points, i.e.

Σ(f) = {p ∈ M, rank dpf < q}.

A point p ∈ Σ(f) is called a fold type singularity or a fold of index s if near the
point p the map f is equivalent to the map R

q−1 × R
n−q+1 → R

q−1 × R
1 given

by the formula

(1) (y, x) �→
(

y,−
s∑
1

x2
i +

n−q+1∑
s+1

x2
j

)
where x = (x1, . . . , xn−q+1) ∈ R

n−q+1 and y ∈ R
q−1. For Q = R

1 this is just a
nondegenerate index s critical point of the function f : M → R

1.
Let q > 1. A point p ∈ Σ(f) is called a cusp type singularity or a cusp of index

s+1/2 if near the point p the map f is equivalent to the map R
q−1×R

1×R
n−q →

R
q−1 × R

1 given by the formula

(2) (y, z, x) �→
(

y, z3 + 3y1z −
s∑
1

x2
i +

n−q∑
s+1

x2
j

)
where x = (x1, . . . , xn−q) ∈ R

n−q, z ∈ R
1, y = (y1, . . . , yq−1) ∈ R

q−1.
For q ≥ 1 a point p ∈ Σ(f) is called an embryo type singularity or an embryo

of index s+1/2 if f is equivalent near p to the map R
q−1×R

1×R
n−q → R

q−1×R
1

given by the formula

(3) (y, z, x) �→
(

y, z3 + 3|y|2z −
s∑
1

x2
i +

n−q∑
s+1

x2
j

)
where x ∈ R

n−q, y ∈ R
q−1, z ∈ R

1, |y|2 =
∑q−1

1 y2
i . The set of all folds of f is

denoted by Σ10(f), the set of cusps by Σ11(f) and the closure Σ10(f) by Σ1(f).
Notice that folds and cusps are stable singularities for individual maps, while

embryos are stable singularities only for 1-parametric families of mappings. For
a generic perturbation of an individual map embryos either disappear or give
birth to wrinkles which we consider in the next section.

Remark. When q > 1 there is no invariant way to distinguish between in-
dices α and n−q+1−α for folds, cusps, or embryos, be cause this distinction re-
quires a choice of an orientation of Tf(p)/df(Tp(M)) for a singular point p ∈ Σ(f).
Thus one can invariantly define only the reduced index min(α, n−q+1−α) which
takes values 0, . . . , [n− q + 1/2] for folds and 1/2, . . . , [n− q/2] + 1/2 for cusps
and embryos. However, for purposes of this paper this is not essential, because
for all maps which we consider, the 1-dimensional bundle TQ|f(Σ(f))/df(TM)
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will be orientable, and thus we can allow indices to take values 0, . . . , n− q + 1
for folds, and 1/2, . . . , n − q + 1/2 for cusps, by choosing an orientation of this
bundle.

1.2. Wrinkles and wrinkled maps. Consider the map w(n, q, s) : R
q−1×

R
1 × R

n−q → R
q−1 × R

1 given by the formula

(4) (y, z, x) �→
(

y, z3 + 3(|y|2 − 1)z −
s∑
1

x2
i +

n−q∑
s+1

x2
j

)
,

where y ∈ R
q−1, z ∈ R

1, x ∈ R
n−q and |y|2 =

∑q−1
1 y2

i .
The singularity Σ1(w(n, q, s)) is the (q − 1)-dimensional sphere

Sq−1 = Sq−1 × 0 ⊂ R
q × R

n−q,

whose equator {x = 0, z = 0, |y| = 1} ⊂ Σ1(w(n, q, s)) consists of cusp points
of index s + 1/2. The upper hemisphere Σ1(w) ∩ {z > 0} consists of folds of
index s, while the lower one Σ1(w) ∩ {z < 0} consists of folds of index s + 1.

A map f : U → Q defined on an open subset U ⊂ M is called a wrinkle
of index s + 1/2 if it is equivalent to the restriction of w(n, q, s) to an open
neighbourhood Wn of the disk Dq = Dq × 0 ⊂ R

q × R
n−q. Sometimes we will

use the term “wrinkle” also for the singularity Σ(f) of a wrinkle f .

Remark. The neighbourhood Wn in the definition of a wrinkle is not fixed,
though one could choose a (small enough) “canonical” Wn

0 , such that for any
neighbourhood Wn ⊃ Dq there would exist Wn

1 ⊂ Wn with w(n, q, s)|Wn
1

equiv-
alent to w(n, q, s)|Wn

0
. However, we do not need such a degree of canonization.

Notice that for q = 1 the wrinkle is a function with two nondegenerate critical
points of indices s and s + 1 given in a neighbourhood of a gradient trajectory
which connects the two critical points.

Restrictions of the map w(n, q, s) to the subspaces y1 = t, viewed as maps
R

n−1 → R
q−1, are non-singular maps for |t| > 1, equivalent to w(n− 1, q − 1, s)

for |t| < 1, and to embryos for t = ±1.
Although the differential dw(n, q, s) : T (Rn) → T (Rq) degenerates at points

of Σ(w), it can be canonically regularized. Namely, we can substitute the element
3(z2 + |y|2 −1) in the Jacobi matrix of w(n, q, s) by a function γ which coincides
with 3(z2 + |y|2 − 1) outside an arbitrary small neighbourhood V of the disc
D and does not vanish along V ∩ {x = 0}. The new bundle map R(dw) :
T (Rn) → T (Rq) provides a homotopically canonical extension of the map dw :
T (Rn \ Wn) → T (Rq) to an epimorphism (fiberwise surjective bundle map)
T (Rn) → T (Rq). We call R(dw) the regularized differential of the map w(n, q, s).

A map f : M → Q is called wrinkled if there exist disjoint open subsets
U1, . . . , Ul ⊂ M , such that f |M\U , U =

⋃l
1 Ui, is a submersion (i.e. has rank
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equal q) and for each i = 1, . . . , l the restriction f |Ui is a wrinkle. Notice that
the sets Ui, i = 1, . . . , l, are included into the structure of a wrinkled map.

The singular locus Σ(f) of a wrinkled map f is a union of (q−1)-dimensional
wrinkles Si = Σ1(f |Ui ) ⊂ Ui. Each Si has a (q − 2)-dimensional equator Ti ⊂ Si

of cusps which divides Si into 2 hemispheres of folds of 2 neighbouring indices.
The differential df : T (M) → T (Q) can be regularized to obtain an epimorphism
R(df) : T (M) → T (Q). To get R(df) we regularize df |Ui for each wrinkle f |Ui .

1.3. Fibered wrinkles. All the notions from Section 1.2 can be extended
to the parametric case.

A fibered (over B) map is a commutative diagram

U
f−−−−→ V

p↘ ↙q

B

where p and q are submersions. We will often write the fibered map as just
f : U → V if B, p and q are implied from the context.

Given a fibered map

X
f−−−−→ Y

p↘ ↙q

B

we denote by TBX and TBY the subbundles Ker p ⊂ TX and Ker q ⊂ TY .
They are tangent to the foliations of X and Y formed by preimages p−1(b) ⊂ X,
q−1(b) ⊂ Y , b ∈ B.

The fibered homotopies, fibered differentials, fibered submersions and so on
are naturally defined in the category of fibered maps (see [EM1]). For example,
the fibered differential of f : X → Y is the restriction dBf = df |TBX : TBX →
TBY . Notice that dBf itself has the structure of a map fibered over B:

TBX
dBf−−−−→ TBY

p↘ ↙q

B

Here p and q are compositions of p and q with the projections TBX → X and
TBY → Y .

Two fibered maps

U
f−−−−→ V

p↘ ↙q

B

and
U ′ f′

−−−−→ V ′

p′↘ ↙q′

B′

are called equivalent if there exist open subsets A ⊂ B, A′ ⊂ B′, W ⊂ V ,
W ′ ⊂ V ′ with f(U) ⊂ W , p(U) ⊂ A, p(U ′) ⊂ A′, f ′(U) ⊂ W ′, f(U ′) ⊂ A′ and
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diffeomorphisms

φ : U → U ′, ψ : W → W ′, s : A → A′

such that they form the following commutative diagram

�
U W

f

U ′ W ′f′

A

A′

s

qp
p′ q′

ϕ ψ

For any integer k, 0 ≤ k ≤ q − 1, the map w(n, q, s) can be considered as a
fibered map over R

k. Namely, we have a commutative diagram

R
k × R

q−1−k × R
1 × R

n−q w(n,q,s)−−−−−−→ R
k × R

q−1−k × R
1

pr↘ ↙pr

R
k

where pr is the projection to the first factor. We shall refer to this fibered map
as wk(n, q, s). A fibered map equivalent to the restriction of wk(n, q, s) to an
open neighbourhood Wn ⊃ D is called a fibered wrinkle1

The regularized differential R(dwk(n, q, s)) is a fibered (over R
k) epimor-

phism

R
k × T (Rq−1−k × R

1 × R
n−q)

R(dwk(n,q,s))−−−−−−−−−−−−→ R
k × T (Rq−1−k × R

1)

A fibered map f : M → Q is called a fibered wrinkled map if there exist disjoint
open sets U1, U2, . . . , Ul ⊂ M , such that f |M\U , U =

⋃l
1 Ui, is a fibered sub-

mersion, and for each i = 1, . . . , l the restriction f |Ui is a fibered wrinkle. The
restrictions of a fibered wrinkled map to fibers may have, in addition to wrinkles,
embryo singularities.

Similarly to the non-parametric case one can define the regularized differen-
tial of a fibered over B wrinkled map f : M → Q, which is a fibered epimorphism
R(dBf) : TBM → TBQ.

1.4. Main theorems. The following Theorem 1.4.1 and its parametric
version 1.4.2 are the main results of our paper [EM1]:

1There was a misprint in the definition of fibered wrinkles in [EM1]: the important words
“the restriction of . . . to an open neighbourhood Wn ⊃ D” were omited.
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Theorem 1.4.1 (Wrinkled mappings). Let F : T (M) → T (Q) be an epi-
morphism which covers a map f : M → Q. Suppose that f is a submersion on
a neighbourhood of a closed subset K ⊂ M , and F coincides with df over that
neighbourhood. Then there exists a wrinkled map g : M → Q which coincides
with f near K, and such that R(dg) and F are homotopic rel. T (M)|K. More-
over, the map g can be chosen arbitrary C0-close to f, and his wrinkles can be
made arbitrary small.

Theorem 1.4.2 (Fibered wrinkled mappings). Let f : M → Q be a fibered
over B map covered by a fibered epimorphism F : TB(M) → TB(Q). Suppose
that F coincides with df near a closed subset K ⊂ M (in particular, f is a fibered
submersion near K), then there exists a fibered wrinkled map g : M → Q which
extends f from a neighbourhood of K, and such that the fibered epimorphisms
R(dg) and F are homotopic rel. TB(M)|K . Moreover, the map g can be chosen
arbitrary C0-close to f, and his wrinkles can be made arbitrary small.

1.5. Round wrinkles. For purposes of Section 2 it will be convenient to
have a slightly modified version of Theorems 1.4.1 and 1.4.2, when the usual
wrinkles are substituted by the round ones.

Let q ≥ 2. The standard round wrinkle is the map

w◦(n, q, s) : S1 × R
q−2 × R

1 × R
n−q → S1 × R

q−2 × R
1,

given by the formula

w◦(n, q, s) = IdS1 ×w(n − 1, q − 1, s).

The singularity Σ1(w◦(n, q, s)) is the product S1 × Σ1(w(n − 1, q − 1, s)) =
S1 × Sq−2.

Notice, that the restrictions of the standard round wrinkle w◦(n, q, s) to the
subspaces y1 = t viewed as maps S1 ×R

n−2 → S1 ×R
q−2 are non-singular maps

for |t| > 1, equivalent to the standard round wrinkles w◦(n − 1, q − 1, s) for
|t| < 1, and equivalent to the round embryo IdS1 × [w(n − 1, q − 1, s)|y1=±1] for
t = ±1.

The regularized differential

R(dw◦) : T (S1 × R
n−1) → T (S1 × R

q−1)

of the map w◦(n, q, s) is defined as

R(dw◦(n, q, s)) = d(IdS1) ×R(dw(n − 1, q − 1, s).

For an open subset U ⊂ M a map f : U → Q is called a round wrinkle of
index s + 1/2 if it can be presented as a composition

U
g−→ S1 × R

q−2 × R
n−q+1 w◦(n,q,s)−−−−−−−−→ S1 × R

q−2 × R
1 h−→ Q
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where g is a diffeomorphism and h is an immersion.
We will use the term “round wrinkle” also for the singularity Σ(f) of the

round wrinkle f .
A map f : M → Q is called round wrinkled if there exist disjoint open balls

Ũ1, . . . , Ũl ⊂ M and (unknotted) n-dimensional “donuts” U1 ⊂ Ũ1, . . . , Ul ⊂ Ũl,
diffeomorphic to S1 × IntDn−1, such that f |M\U , U =

⋃l
1 Ui, is a submersion,

and for each i = 1, . . . , l the restriction f |Ui is a round wrinkle.
The differential df : T (M) → T (Q) of a round wrinkled map f can be

regularized to obtain a surjective homomorphism R(df) : T (M) → T (Q). To get
the desired regularization R(df) we regularize df |Ui for each round wrinkle f |Ui .

We leave to the reader to develop a fibered version of the “round wrinkle
theory”. As in Section 1.3 the restrictions of a fibered round wrinkled map to
fibers may have, in addition to round wrinkles, round embryos singularities.

For q ≥ 2 the following Proposition 1.5.1 allows us to substituite in Theo-
rems 1.4.1 and 1.4.2 the usual wrinkles by the round ones.

Proposition 1.5.1 (Rounding a wrinkle). Suppose that q ≥ 2. Then there
exists a round wrinkled map ŵ◦ : R

q−1 ×R ×R
n−q → R

q−1 × R which coincides
with the standard wrinkle w(n, q, s) outside of an arbitrary small neighbourhood
W of the disk D = Dq × 0 ⊂ R

q × R
n−q, and such that the regularized differen-

tials R(dw(n, q, s)) and R(dŵ◦) are homotopic as epimorphisms fixed near the
boundary of U .

Proof. Take an embedding γ of the circle S = R/4Z = [−2, 2]/{−2, 2} into
W ∩ (Rq × 0), such that γ(t) = (t, 0, . . . , 0) for t ∈ (−1 − ε, 1 + ε) for a small
ε > 0, see Figure 1.

Figure 1. Embedding γ

Let θ = θε be a positive C∞-function S → R such that
√

1− t2 < θ(t) <√
1 − t2 +ε for t ∈ [−1, 1] and θ(t) ≤ ε for t /∈ [−1, 1]. Consider a neighbourhood

Uθ of S × 0 in S × R
q−2 × R × R

n−q :

Uθ = {(t, v, x) | ||v||< θ(t), |x| < ε, t ∈ S, v ∈ R
q−2 × R × R

n−q}.
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Notice that the map w(n, q, s) is non-singular along the curve C = γ((1, 2)) ∪
γ((−2,−1)) and, moreover, the restriction w(n, q, s)|C is an immersion. It follows
that for a sufficiently small ε > 0 there exist a neighbourhood U of D ∪ C in
W , and a diffeomorphism h : Uθ → U , such that the map w(n, q, s) ◦ h can be
presented as a composition

Uθ
w̃−→S × R

q−2 × R
g−→R

q−1 × R,

where g is an immersion, and w̃ has the form

(t, y′, z, x) �→
(

t, y′, z3 + 3(α(t) + |y′|2 − 1)z −
s∑
1

x2
i +

n−q∑
s+1

x2
j

)
,

where t ∈ S, y′ ∈ R
q−2, z ∈ R, x ∈ R

n−q, α(t) = t2 for t ∈ [−1, 1], and α(t) > 1
otherwise. The map w̃ has a (fibered) wrinkle over [−1, 1] ⊂ S. For a small
δ > 0 let us take a function β : S → R such that β(t)) = t2 on [−1+ δ, 1− δ] and
(1 − δ)2 ≤ β(t) < 1 for t /∈ [−1 + δ, 1 − δ]. Choose also a C∞-cut-off function
σ : R+ → [0, 1] such that σ(t) = 1 for t ≤ ε/3, σ(t) = 0 for t > 2ε/3, and
|σ′(t)| < 4/ε for all t ∈ R+. Set

ŵ(t, y′, z, x)

=
(

t, y′, z3 + 3
(
σ(|x|)β(t) + (1 − σ(|x|))α(t)+ |y′|2 − 1

)
z −

s∑
1

x2
i +

n−q∑
s+1

x2
j

)
.

The map ŵ is fibered over S, and coincides with w̃ outside a 2ε/3-neighbourhood
of S × 0 ⊂ Uθ. For a sufficiently small δ > 0 the restricions of ŵ to the fibers
{t = const} are wrinkles. Therefore the map ŵ is fiberwise equivalent to the stan-
dard round wrinkle w◦(n, q, s), and hence the map g ◦ ŵ ◦ h : U → R

q−1 ×R is a
round wrinkle as well. The map ŵ coincides with w(n, q, s) near the boundary
∂U and thus defines the desired modification of w(n, q, s) into a round wrin-
kled map, denoted by ŵ◦. It remains to check that the regularized differentials
R(dw(n, q, s)) and R(dŵ◦) are homotopic as epimorphisms fixed near the bound-
ary of U , but this is straightforward. �

Remark. Except for the case n = q = 2, the map ŵ◦ can be chosen in such
a way that its restriction to the singularity Σ(ŵ◦) is an embedding (rather than
an immersion), though the definition of a round wrinkle does not require it.

A fibered analog of Lemma 1.5.1 also holds true, see Figure 3.

2. Foliations of codimension > 1 on closed manifolds

2.1. Foliations and augmented Haefliger structures. We review and
refine in this section some notions from the theory of foliations (see [L] and [F]
for more details). In what follows we do not distinguish in notations between a
bundle and its total space when the distinction is clear from the context.
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Figure 2. Rounding a wrinkle, the cases n = q = 2 and n = q = 3

Figure 3. Rounding a fibered wrinkle, the case n = q = 3, k = 1

An integrable (n − q)-dimensional tangent plane field ξ on a n-dimension
manifold M defines a decomposition F of M by its integral leaves, which is called
a foliation of codimension q. For each point x ∈ M there exists a neighbourhood
U ⊂ M and a submersion s : U → R

q such that the foliation F|U coincides with
the foliation

⋃
y∈s(U) s−1(y) by the pre-images of points under the submersion s.

Thus, alternatively a foliation of codimension q can be defined through an atlas
of local submersions into R

q related on their common parts by partially defined
diffeomorphisms of R

q. The class of smoothness of these gluing diffeomorphisms
is very important in the theory of foliations. However, in this paper we assume
all foliations to be C∞-smooth, which is equivalent to the C∞-smoothness of the
tangent plane field ξ which integrates to this foliation. We will also require all
foliations to be transversal to ∂M if the manifold M has a non-empty boundary.

The notations τ(F) and ν(F) stands for the tangent and the normal bundles
to the foliation F . Sometimes we will be using the term “foliation” for an
integrable plane field ξ itself, thus not distinguishing between a foliation and its
tangent bundle. We identify ν(F) with the orthogonal complement to τ(F) ⊂
TM , assuming that M is endowed with a Riemannian metric. We will also
assume that in the chosen metric the foliation F is orthogonal to the boundary
∂M , i.e. ν(F)|∂M ⊂ T (∂M).
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Foliations behaves contravariantly under mappings transversal to a foliation
on the target manifold. We will denote by f∗F the foliation on M induced by
a map f : M → Q transversal to a foliation F on Q.

Let us consider the following four equivalence relations for foliations. Two
foliations F0 and F1 of the same codimension q on a manifold M are said to be

• homotopic, if they are homotopic as integrable plane fields;
• concordant, if there exists a foliationF of codimension q (a concordance)

on M × I such that F|M×0 = F0 and F|M×1 = F1;
• strongly concordant, if there exists a concordance F such that the in-

clusion i : ν(F) ↪→ T (M × I) is homotopic through a family of fixed
over M × 0∪M × 1 bundle monomorphisms it : ν(F) → T (M × I) to a
horizontal monomorphism ν(F) → TM × I ↪→ T (M × I); here TM × I

denotes the subbundle of T (M × I) tangent to the slices M × t, t ∈ I;
• integrable homotopic, if there exists a concordance F transversal to M×t

for every t ∈ I.

Of course, integrable homotopy is the strongest of four equivalences. More-
over, if the manifold M is closed then integrably homotopic foliations are isotopic
(see [M]). In remarkable article [Th3] Thurston constructed a continuous family
of foliations on S3, which are pairwise nonconcordant. Therefore, homotopy do
not imply concordance. On the contrary, strong concordance implies homotopy
of foliations of codimension > 2, see [ME] and Theorem 2.2.2 below.

A Haefliger structure of codimension q (or Γq-structure) on a manifold M is
a pair H = (ν,H), where ν is a q-dimensional vector bundle, called the normal
bundle of H, and H is a (germ of) a foliation of codimension q on (the total
space of) ν near the zero-section M ⊂ ν, which is transversal to the fibers of ν

(see Figure 4). Notice that the foliation H need not to be transversal to M .

Figure 4. Haefliger structure

A Haefliger structure H = (ν,H) on a manifold M is called regular, if H is
transversal to M . For a regular Haefliger structure H = (ν,H) the intersection
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F = H∩M is a foliation. Conversely, for any foliationF on M we can canonically
construct a regular Haefliger structure HF = (ν(F),HF = (exp ◦ i)∗F) where
i : ν(F) ↪→ TM is the inclusion and exp : TM → M is the exponential map
(see Figure 5). The foliation HF is transversal to M and HF ∩M = F . We will
identify the foliation F with the regular Haefliger structure HF .

Figure 5. Regular Haefliger structure

Similarly, a general Haefliger structure H can be viewed as a singular foli-
ation. Its singular locus Σ(H) is a subset of the points of M where H is not
transversal to M .

Another extreme class of Haefligher structures constitute flat structures.
A Haefliger structure (ν,H) is called flat if the zero-section is one of the leaves
of H, see Figure 6. In this case Σ(H) = M . Notice that the bundle ν admits a
flat Haefliger structure if and only if its structural group GL(q) can be reduced
to a discrete group in a larger group of germs at the origin of diffeomorphisms
(Rq, 0) → (Rq , 0).

Figure 6. Flat Haefliger structure

An augmented Haefliger structure H of codimension q on a manifold M is
given by a triple (ν,H, i) where (ν,H) is an (underlying) Haefliger structure
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and i : ν → TM is a bundle monomorphism (the augmentation) such that
i(ν|∂M) ⊂ T (∂M).

An augmented Haefliger structure H = (ν,H, i) on a manifold M is called
regular, if the underlying H = (ν,H) is regular, i.e H = HF = (ν(F),HF),
and i : ν → ν(F) ↪→ TM is an inclusion generated by the projection along H.
Given a foliationF on M we can canonically equip HF with the augmentation i :
ν(F) ↪→ TM , and, therefore, identify the foliationF with the regular augmented
Haefliger structure HF .

Let H0 and H1 be two augmented Haefliger structure of codimension q on an
n-manifold M . Let us define three equivalence relations for augmented Haefliger
structures, which are parallel to the first three equivalences for foliations.

The structures H0 and H1 are said to be

• homotopic, if they are homotopic through augmented Haefliger struc-
tures;

• concordant, if there exists a codimension q augmented Haefliger struc-
ture H (a concordance) on M ×I such that H|M×0 = H0 and H|M×1 =
H1;

• strongly concordant, if there exists a concordance H such that augmen-
tation i : ν → T (M×I) is homotopic to the composition ν → TM×I ↪→
T (M ×I) through bundle monomorphisms it : ν → T (M ×I) fixed over
M × 0 ∪ M × 1.

As it follows from definitions, strongly concordant augmented Haefliger struc-
tures are homotopic. The relations of homotopy and concordance can be similarly
defined for (non-augmented) Haefliger structures.

Unlike foliations, Haefliger structures behaves contravariantly under all map-
pings of the underlying manifold, without any transversality conditions. Indeed,
given a Haefliger structure (ν,H) on a manifold N and a map ϕ : M → N we
induce a Haefliger structure H̃ = (ν̃ , H̃) = ϕ∗H on M by taking the induced
bundle ν̃ = ϕ∗ν and the (germ of) the foliation H̃ = ϕ̃∗(H), where the bundle
isomorphism ϕ̃ : ν̃ → ν covers ϕ. Observe that ϕ̃ is transversal to H; moreover,
the restrictions of ϕ̃ to fibers of the bundle ν̃ are transversal to H, and hence
H̃ is a germ of a non-singular foliation transversal to the fibers of the bundle ν̃.
A homotopy ϕt : M → N, t ∈ [0, 1], induces a concordance between ϕ∗

0H and
ϕ∗

1H. According to the standard homotopy techniques (see [B]) there exist a
universal space BΓ and a universal Haefliger structure HU on it such that for
any manifold M all Haefliger structures on M can be induced from the structure
HU on BΓ, and concordance classes of these structures are in 1–1 correspondence
with the homotopy classes of maps M → BΓ.

If in addition to a map ϕ : M → N we are given a bundle epimorphism Φ :
TM → ν which covers ϕ, then we can induce an augmented Haefliger structure
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H̃ = Φ∗H = (ν̃ , H̃, ĩ) on M from an augmented structure H = (ν,H, i) on N .
Here we have (ν̃ , H̃) = ϕ∗H, and the augmentation ĩ is the composition of the
canonical isomorphism ν̃ → (Ker Φ)⊥, and the inclusion (Ker Φ)⊥ → TM , where
we denote by (Ker Φ)⊥ the orthogonal complement of KerΦ in TM . A homotopy
Φt : TM → ν, t ∈ [0, 1], of epimorphisms induces a strong concordance between
Φ∗

0H and Φ∗
1H.

The following simple construction is very useful for what follows. Given a
foliations F on a manifold M , and G on N , we denote by F × G the product
foliation whose leaves are products of the leaves of foliations F and G. It is in
particular useful to consider products of F with two trivial foliations on N , the
0-dimensional foliation ON by points, and codimension 0 foliation CN = N with
one leaf, equal to the whole manifold N . For example, the trivial concordance is
the product F × I, where I = [0, 1].

The product construction is defined also for (augmented) Haefliger struc-
tures. Again, the trivial strong concordance is the product H × I.

2.2. Main theorems. A strong concordance H̃ is called regularizing for an
augmented Haefliger structure H = H̃0, if its upper end H̃1 is a foliation. The
following theorem was proven by W. P. Thurston [Th1] (see also [ME]).

Theorem 2.2.1 (Regularization of augmented Haefliger structures). Any
augmented Haefliger structure H of codimension > 1 on a manifold M is strongly
concordant to a foliation. If H is already a foliation near a closed subset K ⊂ M ,
then the regularizing concordance can be chosen trivial near K. In particular, two
foliations F0 and F1 on M are concordant (resp. strongly concordant) if and only
if the associated augmented Haefliger structures HF0 and HF1 are concordant
(resp. strongly concordant).

See [Th1] for various corollaries of the theorem.

Remark. The part of Theorem 2.2.1 concerning the existence of foliations
is analogous to the corresponding statement in Gromov–Phillips–Haefliger’s h-
priniciple for foliations on open manifolds (see [H]). However, the parametric
part is weaker. Indeed, Gromov–Phillips–Haefliger’s theorem establishes a 1–
1 correspondence between strong concordance classes of augmented Haefliger
structures and integrable homotopy classes of foliations. This is not true for
foliations on closed manifolds. Indeed, two foliations on a closed manifold are
integrably homotopic if and only if they are isotopic (see [M]).

The next Theorem 2.2.2, first proven in [ME], establishes a connection be-
tween the relations of strong concordance and homotopy for foliations of codi-
mension > 1 on closed manifolds.

Theorem 2.2.2 (Strong concordance implies homotopy). Two foliations F0

and F1 of codimension > 1 are homotopic if and only if the associated augmented
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Haefliger structures HF0 and HF1 are homotopic. In particular, if F0 and F1

are strongly concordant then they are homotopic.

In fact, our methods allows us to prove the following multi-parametric version
of Theorems 2.2.1 and 2.2.2.

Theorem 2.2.3 (Regularization of fibered augmented Haefliger structures).
Let HDk be a fibered over Dk augmented Haefliger structure of codimension > 1
on Dp × M , such that HDp is regular over ∂Dk (i.e. HDk |p×M is a foliation
for all p ∈ ∂Dk). Then HDk is fiberwise strongly concordant rel∂Dk to a fibered
foliation. In other words, there exists a fibered regularizing concordance H̃Dk for
HDk , such that H̃Dk is trivial over ∂Dk.

Let us outline the proofs of Theorems 2.2.1 and 2.2.3.
First, in Sections 2.3 and 2.4 we improve an augmented Haefliger structure

H of Theorem 2.2.1 into an augmented Haefliger structure with (round) wrinkle-
type singularities. This reduces the regularization of general singular foliations
to the regularization of (round) wrinkles. Then, in Section 2.5 we construct a
special foliation which plays a key role in the regularization of round wrinkles.
Finally, in Sections 2.6 and 2.7, we regularize round wrinkles. This completes
the proof of Theorem 2.2.3. Each of three steps has its natural fibered version,
therefore the same scheme allows us to prove Theorem 2.2.3.

2.3. Wrinkled mappings into foliations. We need a slightly strength-
ened version of Theorems 1.4.1 and 1.4.2 and their round analogs. Let us start
with some definitions.

Let L be a foliation on a manifold Q. A map f : M → Q is called transversal
to L, if the reduced differential

TM
df−−−−→ TQ

πL−−−−→ ν(L)

is an epimorphism. An open subset V ⊂ Q is called elementary (with respect
to L), if L|V is generated by a submersion pV : V → R

q.
An open subset U ⊂ M is called small (with respect to f and L), if f(U)

is contained in an elementary subset of Q. A map f : M → Q is called L⊥-
(round) wrinkled, if there exist disjoint small subsets U1, . . . , Ul ⊂ M such that
f |M\(U1∪...∪Ul) is transversal to L and for each i = 1, . . . , l the composition

Ui
f|Ui−−−−→ Vi

pVi−−−−→ R
q

(where Vi ⊃ f(Ui) is an elementary subset of Q), is a (round) wrinkle. In order
to get the regularized reduced differential

R(πL ◦ df) : TM → ν(L),
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we regularize the differential of each (round) wrinkle wi = pVi
◦ f |Ui as in Sec-

tions 1.2 or 1.5 and then set

R(πL ◦ df |Ui) = [dpVi|ν(L)]−1 ◦ R(dwi).

Similarly to Section 1.3 we can define a fibered L⊥-(round) wrinkled map

M
f−−−−→ Q

p↘ ↙q

B

where the foliation L on Q is fibered over the same base B. Finally we define,
as usually, the regularization

R(πL ◦ dBf) : TBM → νB(L)

of the fibered reduced differential

TBM
dBf−−−−→ TQ

πL−−−−→ νB(L).

Theorem 2.3.1 (Wrinkled mappings of manifolds into foliations). Let L be
a foliation on a manifold Q and F : TM → ν(L) be an epimorphism which covers
a map f : M → Q. Suppose that f is transversal to L in a neighbourhood of a
closed subset K of M , and F coincides with the reduced differential πL ◦ df over
that neighbourhood. Then there exists a L⊥-(round) wrinkled map g : M → Q,
such that g coincides with f near K and, moreover, R(πL ◦ dg) and F are
homotopic relTM |K.

Proof. Take a triangulation of the manifold M by small simplices. First
we use Gromov–Phillips’ theorem (see [Ph], [Gr1]) to approximate f near the
(n − 1)-skeleton of the triangulation by a map transversal to L. Then using
Theorem 1.4.1 (or its “round” version) for a neighbourhood Ui of every n-simplex
σi and an elementary set Vi ⊃ f(Ui) we can approximate the map pVi ◦ f |Ui by
a (round) wrinkled map. This approximation can be realized by a deformation
of the map f , keeping it fixed on a closed subset of Ui where the map f has
been already previously defined. This process produces the desired L⊥-(round)
wrinkled map. �

Similarly, Theorem 1.4.2 can be generalized to the following fibered version
of Theorem 2.3.1.

Theorem 2.3.2. Let f : M → Q be a fibered over B map, L a fibered over B

foliation on Q and F : TB(M) → νB(L) a fibered epimorphism which covers f.
Suppose that f is fiberwise transversal to L near a closed subset K ⊂ M , and F

coincides with the fibered reduced differential

TBM
dBf−−−−→ TQ

πL−−−−→ νB(L)
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near K. Then there exists a fibered L⊥-(round) wrinkled map g : M → Q which
extends f from a neighbourhood of K, and such that the fibered epimorphisms
R(πL ◦ dBg) and F are homotopic relTB(M)|K.

2.4. Wrinkled foliations. We reduce in this section the regularization of
augmented Haefliger structures to the regularization of (round) wrinkles. As
usual, the “round” version is valid only for q ≥ 2.

Figure 7. Foliation S(2, 1,0)

Let ORq be the trivial codimension q foliation on R
q. The standard wrinkle

w(n, q, s) defines, outside of its singularity Σ(w) ⊂ R
n (see 1.2), a foliation

S(n, q, s) = w∗ORq . See, for example, the foliations S(2, 1, 0) on Figure 7,
S(3, 1, 1) on Figure 8 and S(3, 2, 0) on Figure 9. Notice that the foliations
S(n, q, s) and S(n, q, n − q − s) coincide up to the reflection z �→ −z.

Similarly, the map w◦(n, q, s) defines, outside of its singularity, a foliation
S◦(n, q, s) = w∗

◦OS1×Rq−1 . Notice, that S◦(n, q, s) = OS1 ×S(n − 1, q − 1, s).
Let S(n, q, s) =

[
R(dw)|Wn

]∗ORq and S◦(n, q, s) = [R(dw◦(n, q, s)|Wn
◦ )]

∗OS1×Rq−1 be the augmented Haefliger structures on Wn and Wn
◦ , where the

open neighbourhoods Wn ⊃ Dq and Wn
◦ ⊃ S1 ×Dq−1 should be, as usual, cho-

sen sufficiently small (see the remark in Section 1.2). Notice, that S◦(n, q, s) =
S1 × S(n − 1, q − 1, s) and that the underlying foliations for S(n, q, s)|Wn\Σ(w)

and S◦(n, q, s)|Wn
◦ \Σ(w◦) are S(n, q, s)|Wn\Σ(w) and S◦(n, q, s)|Wn

◦ \Σ(w◦).

An augmented Haefliger structure H = (ν,H, i) on a manifold M is called
a (round) wrinkled foliation if the inclusion s : M → ν (zero-section) is a H⊥-
(round) wrinkled map and the regularization R(πH ◦ ds) is a left inverse to i.

In order to regularize any (round) wrinkled foliation it is sufficient to regu-
larize the standard (round) wrinkled foliations S(n, q, s) (resp. S◦(n, q, s) in the
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Figure 8. Foliation S(3, 1,1)

Figure 9. Foliation S(3, 2,0)

round version). In other words, it is sufficient to construct a regularizing strong
concordances for S(n, q, s) (resp. S◦(n, q, s)), which are trivial near the boundary
of the closure W

n
(resp. W

n

◦ ). The required concordance for the round wrinkles
S◦(n, q, s) (q ≥ 2) will be described in Section 2.7 below.

The following theorem reduces the regularization of any augmented Haefliger
structures to regularization of (round) wrinkled foliations.

Theorem 2.4.1 (Reduction to wrinkled foliations). Any augmented Hae-
fliger structure H is strongly concordant to a (round) wrinkled foliation. If H
is already a foliation in a neighbourhood of a closed subset K ⊂ M , then the
concordance can be chosen trivial near K.
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Proof. Let (ν,H, i) be an augmented Haefliger structure on a manifold M ,
and F : TM → ν be a left inverse for i. Consider the bundle epimorphism
Φ = j ◦ F : TM → ν(H) where j is the natural identification ν � ν(H)|M .
Aplying 1.4.1 to Φ we can construct a homotopy Φt between Φ and R(πH ◦ dg)
where g : M → ν is a H⊥-(round) wrinkled map. Then Φ∗

t (H) is the desired
concordance. �

In the fibered case the only difficulty is an awkward terminology: “a fibered
(round) wrinkled foliation” is not very inspiring. Let us call the corresponding
object a fibered w-foliation or a family of w-foliations, both in the round and
usual cases. Notice that as in the case of fibered wrinkled maps, the family of
augmented Haefliger structures which forms a fibered w-foliation does not consist
only of (round) wrinkled foliations, but may also include foliations with (round)
embryo singularities (see 1.3 and 1.5).

Here is the fibered version of Theorem 2.4.1.

Theorem 2.4.2 (Reduction to a fibered w-foliation). Let HDk be a fibered
augmented Haefliger structure on a Dk ×M which is regular over ∂Dk. Then it
is fiberwise strongly concordant rel ∂Dk to a fibered w-foliation. In particular, if
two foliations F0 and F1 are homotopic through a family of augmented Haefliger
structures, then they are homotopic through a w-family of foliations.

In order to regularize a fibered w-foliation it is sufficient, similarly to the
non-parametric case, to regularize some standard models. Namely, for the k-
parametric case we should regularize S◦(n + k, q + k, s) fiberwise with respect
to the projection to R

k. In fact, the regularization of S◦(n, q, s), which will
be described in Section 2.7, automatically preserves the fibered structure with
respect to the projection to R

q−2. Therefore, no additional considerations for
the fibered case are needed.

2.5. Filling of the standard hole. The goal of this section is to construct
a special 2-dimensional foliation on D3×S1, which will play an important role in
the regularization of round wrinkles S◦(n, q, s) discussed in the previous section.

Notice that a homotopy Ft, t ∈ [0, 1], of k-dimensional foliations on a mani-
fold M can be viewed as a k-dimensional foliation {Ft} on M×[0, 1] by inscribing
the foliation Ft into the slice M × t for each t ∈ [0, 1].

Any non-vanishing vector field integrates to a foliation, and homotopic vector
fields generate homotopic foliations. For instance, take a vector field

v = cos α(x)
∂

∂x
+ sinα(x)

∂

∂y

on the annulus [0, 1] × S1, where coordinates x and y correspond to the two
factors, and denote by Uα the foliation generated by the vector field v. Then we
have:
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Proposition 2.5.1. For any two functions α, β : [0, 1] → [−π/2, π/2] which
coincide on the boundary of the interval [0, 1] the corresponding foliations Uα

and Uβ are homotopic relative to the boundary.

Given a diffeomorphism ϕ : M → M we denote by Sϕ its suspension, i.e.
a one-dimensional foliation on M × S1, obtained from the foliation by intervals
x × [0, 1], x ∈ M , on M × I, by gluing the boundary components M × 0 and
M × 1 via the diffeomorphism ϕ.

Even simple geometric pictures are not so easy to visualize when they are
described algebraicly on the paper. To facilitate the understanding we try to
draw the key steps of the construction presented in Proposition 2.5.2 below.

Proposition 2.5.2 (Filling the hole). Let D be the group of diffeomorphisms
of D1 = [−1, 1] fixed near the boundary ∂D1. Then there exists a continuous
map ϕ �→ Fϕ, which associates to every diffeomorphism ϕ ∈ D a 2-dimensional
foliation Fϕ on D1 ×D2 × S1 such that:

• Fϕ coincides with the foliation OD1 × D2 near ∂D1 × D2;
• Fϕ is transverse to D1 ×∂D2 ×S1 and intersects D1 ×∂D2 ×S1 along

the foliation Sϕ × S1;
• the foliation FId is homotopic relative to the boundary to the product

foliation OD1 × D2 ×OS1.

Remark. It is interesting to point out that although near the boundary
∂(D1 ×D2 ×S1) the foliation Fϕ is the product of a 2-dimensional foliation Tϕ,
which we will call helical, and the trivial foliation OS1 , one cannot, as it follows
from the Reeb stability theorem (see [R]), extend the foliation Tϕ from D1×∂D2

to D1 × D2. It will be sometimes convenient to view the helical foliation Tϕ as
defined near the boundary of a smooth 3-ball D3 inscribed into the cylinder
D1 × D2. The 1-dimensional singular foliation defined by Tϕ on the boundary
∂D3 is shown on Figure 10.

Figure 10. Foliation Tϕ|∂D3
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Proof. It will be convenient to make some preliminary rescaling. First, we
will assume that the diffeomorphism ϕ is defined on the interval D1

2 = [−2, 2]2,
and that it equals the identity in a neighbourhood of D1

2 \ IntD1. The restriction
of ϕ to D1 will be also denoted by ϕ; the distinction should be clear from the
context. Second, we will substitute the unit disk D2 = D2

1 by the disk D2
4 of

radius 4.
Let us start with the foliation Sϕ on D1 × S1. This S1 will correspond in

our construction to the boundary ∂D2 in the product D1 ×D2 × S1, so we will
denote it by S1

h and call the horizontal circle, in order do not confuse it with
the other, vertical circle S1, which corresponds to the last factor in the product
D1 × D2 × S1.

Fix a C∞-function α : [0, 1] → [0, π/2], such that

α(r) =

{
π/2 for r close to 0,

0 for r close to 1.

Consider the foliation U = Uα on [3, 4]× S1 generated by the vector field

cosα(r − 3)
∂

∂r
+ sinα(r − 3)

∂

∂y
, r ∈ [3, 4], y ∈ S1,

see Figure 11, and denote by F[3,4] the product-foliation Sϕ × U on D1 × S1
h ×

[3, 4]× S1.

Figure 11. Foliation Uα

The group D is contractible. Thus one can canonically choose an isotopy
ϕr : D1 → D1, r ∈ [2, 3], ϕr ∈ D, such that ϕr = ϕ for r close to 3 and ϕr = Id
for r close to 2. The family of foliations Sϕr on D1 × S1

h defines a foliation
{Sϕr} on D1 ×S1

h× [2, 3]. Take the product {Sϕr}×S1 and denote the resulting
foliation on D1 × S1

h × [2, 3]× S1 by F[2,3]. Notice that the foliations F[3,4] and
F[2,3] nicely fit together into a foliation F[2,4] on D1 × S1

h × [2, 4]× S1.

2We denote by Dk
r the disk of radius r in Rk, centered at the origin and write Dk instead

of Dk
1 .
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To extend the foliation F[2,4] to D1 × S1
h × [1, 2]× S1 take a foliation Uβ on

[1, 2]× S1 (see Figure 11), generated by the vector field

cos β(r)
∂

∂r
+ sinβ(r)

∂

∂y
, r ∈ [1, 2], y ∈ S1,

where β(r) = −α(2− r), and α : [0, 1] → [0, π/2] is the function which had been
defined above.

Let F[1,2] denote the product-foliation OD1 ×S1
h×Uβ on D1×S1

h× [1, 2]×S1.
The foliationsF[1,2] and F[2,4] agree along the common boundary, and thus define
a foliation F[1,4] on D1 × S1

h × [1, 4]× S1.

Figure 12. Foliation Uβ

Notice that the foliation F[1,4] coincides near D1 ×S1
h ×{1, 4}×S1 with the

foliation A by annuli z×S1
h × [1, 4]×y, z ∈ D1, y ∈ S1. Our next step will be to

extend the foliationF[1,4] to [−2, 2]×S1
h×[1, 4]×S1 so that it would coincide with

the foliation A near the whole boundary of the manifold [−2, 2]×S1
h× [1, 4]×S1.

Let us observe that the foliation F[1,4] is tangent to ±1 × S1
h × [1, 4]× S1, and

that its restriction to the torical annuli A±1 = ±1×S1
h× [1, 4]×S1 is the product

of the trivial (codimension 0) foliation S1
h with the foliation Uγ on [1, 4] × S1,

defined by the vector field

cos γ(r)
∂

∂r
+ sin γ(r)

∂

∂y
, r ∈ [1, 4], y ∈ S1,

where

γ(r) =


−α(2 − r) r ∈ [1, 2],

π/2 r ∈ [2, 3],

α(3 + r) r ∈ [3, 4],
see Figure 13.

According to Lemma 2.5.1 the foliation Uγ is homotopic, relative to the
boundary, to the foliation U0 defined by the vector field ∂/∂r, which is the
foliation by intervals [1, 4] × y, y ∈ S1. This homotopy Ũz, z ∈ [1, 2], can be
chosen in the form Ũz = Uγz where γz = γθz , where θ : [0, 2] → [0, 1] is a cut-off
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Figure 13. Foliation Uγ

function, equal 1 on [0, 1], and 0 near 2. Thus it defines a 1-dimensional foliation
{Ũz} on [1, 2]× [1, 4]× S1, and a foliation {Ũ−z} on [−2,−1]× [1, 4]× S1. The
product-foliations F± = S1

h × {Ũ±z} on [1, 2]× S1
h × [1, 4]× S1 and [−2,−1]×

S1
h× [1, 4]×S1 agree with F[1,4] along their common boundary, and thus together

they define a foliation F on [−2, 2]× S1
h × [1, 4]× S1.

Let us identify the product S1
h × [1, 4] with the annulus {1 ≤ r ≤ 4} =

D2
4 \ IntD2. We constructed, so far, a foliation F on [−2, 2]× (D2

4 \ IntD2
1)×S1,

which coincides with the product-foliation O[−2,2]×D2
4×OS1 on [−2, 2]×D2

1×S1

near their common boundary [−2, 2] × ∂D2
1 × S1. Gluing these two foliations

into one foliation on [−2, 2]× D2
1 × S1 we get a foliation Fϕ, which is the goal

of our construction.

Let us describe the foliation Fϕ on [−2, 2] × D2
4 × S1 in a more informal

way. Near the solid tori ±2×D2
4 ×S1 the leaves of Fϕ are just the “horizontal”

discs z × D2
4 × y. As the point z ∈ [−2, 2] moves inside the interval [−2, 2], an

interior part of the solid torus z × D2
4 × S1 begin spinning along S1 with an

accelerating speed, pulling the discs inside, until at a certain moment they buble
off to cylinders, and a Reeb component inside is born (see Figure 14).

By the time z reaches ±1 the foliation Fϕ is still inscribed into the foliation
by solid tori z×D2

4×S1, and for each fixed z it has a Reeb component z×D2
2×S1

inside, a layer of closed torical leaves z×∂D2
r×S1, r ∈ [2, 3], and cylindrical leaves

diffeomorphic to S1 × [0,∞) which begin at the boundary and asymptotically
converge to the exterior closed torical leaf z × ∂D2

3 × S1 at their noncompact
ends. As z moves further in, the Reeb component z × D2

2 × S1 persists, while
the leaves outside are no more horizontal. Instead, they are of two kinds. The
leaves of the first kind are obtained by an accelerating rotation of the leaves of
the foliation Sϕ, similar to the cylindrical leaves described above. The leaves
of the second kind foliate the middle part D1 × (D2

3 \ IntD2
2) × S1. They are

inscribed into the 3-dimensional torical annuli Vr = D1 × ∂D2
r × S1, r ∈ [2, 3].
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Figure 14. Towards the birth of a Reeb component

For each r ∈ [2, 3] the foliation Fϕ|Vr is the product-foliation Sϕr × S1, where
ϕr : D1 × D1 is the chosen isotopy between ϕ3 = ϕ with ϕ2 = Id.

To finish the proof it remains to show that the foliation FId is homotopic,
relative to the boundary, to the product-foliation O[−2,2]×D2

4×OS1 . On [−2, 2]×
D2

1 × S1 the foliations FId and O[−2,2] × D2
4 × OS1 already coincide. Thus it

is sufficient to construct the homotopy on [−2, 2] × (D2
4 \ D2

1) × S1 = [−2, 2]×
S1

h × [1, 4]× S1, fixed near the boundary of this manifold. Let us observe that
the foliation FId is inscribed into the codimension 1 foliation by the “horizontal”
torical annuli Az = z×S1

h×[1, 4], z ∈ [−2, 2]. In other words, FId = {Fz}z∈[−2,2],
where Fz = FId|Az . For each z ∈ [−2, 2] the foliation Fz is itself the product
S1×Uγ|z| . The homotopy {F t

z} = S1×{U(1−t)γ|z|}, t ∈ [0, 1], on Az connects the
foliation {Fz} = S1×{Uγ|z|} with S1 ×{U0} = S1 × [1, 4]×OS1 = D2

4 \ IntD2
1 ×

OS1 , and hence {F t
z}z∈[−2,2] is the required homotopy between the foliationsFId

and O[−2,2] ×D2
4 ×OS1 . �

2.6. Reduction to the standard holes. Let us forget till Section 2.7
about augmented Haefliger structures, strong concordances and others decora-
tions, and just try to extend the foliation S(n, q, s) from the neighbourhood of
∂W

n
to the whole W

n
. Notice that S(n, q, s) (likewise w(n, q, s)) is a fibered

object: it can be thought of as a family of codimension one foliations on R
n−q+1

which are parametrized by points p ∈ R
q−1. These foliations are equivalent to

S(n− q + 1, 1, s) when p varies in a neighbourhood of the origin. However, their
singularities fade out when p approaches to the boundary, so that the foliation
becomes smooth and trivial when p crosses the boundary ∂Dq−1 (look again at
Figure 9).
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Proposition 2.6.1 (Regularization of S(n, q, 0)). There exists a foliation
Ŝ(n, q, 0) on Wn which is orthogonal to the z-axis and coincides with S(n, q, 0)
near ∂W

n
.

Proof. To understand better the formal description below we recommend
the reader to study first the foliation Ŝ(2, 1, 0) shown at the right part of Fig-
ure 15. By rotating the picture around the z-axis we obtain Ŝ(n, 1, 0). The
regularization procedure shown at the picture remains valid even when the wrin-
kle degenerates to an embryo. Hence Ŝ(n, q, 0) can be constructed fiberwise.

Here is a formal description. Let us notice that the foliation S(n, q, 0) can
be considered as a family of foliations on y × R

n−q × R
1, y ∈ R

q−1, defined
by the family of differential 1-forms 3(z2 + |y|2 − 1)dz + d(|x|2), which depend
on the parameter y ∈ R

q−1. The required foliation Ŝ(n, q, 0) can be defined by
the family of forms γ(y, x, z)dz + d(|x|2), where the function γ coincides with
3(z2 + |y|2 − 1) outside a small neighbourhood Wn

1 of the disc D = {z2 + |y|2 ≤
1, x = 0}, W

n
1 ⊂ Wn, and does not vanish along Wn

1 ∩{x = 0}. In other words,
γ is the function from the definition of R(dw), and our construction is just an
observation that for s = 0 the regularized differential R(dw) defines a family of
integrable plane fields on fibers y × R

n−q × R
1. �

Figure 15. Regularization of S(2,1, 0)

Remark. The same construction works for s = n − q.
The following 3-dimensional model, along with the 4-dimensional model de-

scribed in Proposition 2.5.2, is the base of the whole regularization project.

Proposition 2.6.2 (Regularization of S(3, 1, 1) up to four holes). There
exist an embedding h : K = S0 × S0 × D3 → W 3 and a foliation Ŝ = Ŝ(3, 1, 1)
on W 3 \ h(K), such that Ŝ coincides with S(3, 1, 1) near ∂W

3
and coincides

with a helical foliation Tϕ (see Figure 10) near the boundary of each of the four
balls which form h(K). In addition, the foliation Ŝ is orthogonal to (x1, z)- and
(x2, z)-planes in R

3.
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Proof. We may assume, that W 3 = Int(D1
1+δ ×D2

δ ) for a small δ > 0. The
foliation S = S(3, 1, 1) is defined by the function

(x1, x2, z) �→ (z3 − 3z − x2
1 + x2

2)

(see Figure 8). Let P1 = {x1 = 0} and P2 = {x2 = 0}. Notice that S|P1∪P2 =
S(2, 1, 0) ∪ S(2, 1, 1); see Figure 16, where the picture is drawn for x1 ≥ 0 and
x2 ≥ 0.

Figure 16. Foliation S(3, 1, 1)|P1∪P2

Figure 17. Foliations Ŝ(2,1, 0) ∪ Ŝ(2,1,1) on P1 ∪ P2

Consider the foliation F+ = Ŝ(2, 1, 0) ∪ Ŝ(2, 1, 1) on P1 ∪ P2, see Figure 17.
We may assume, that the foliations F+ and S|P1∪P2 coincide on (P1 ∪ P2) ∩
(W 3 \ Wn

1 ) where W 3
1 = Int(D1

1+δ1
×D2

δ1
), δ1 < δ. There exists an extension F̂

of the foliation F+ into a neighbourhood U of P1 ∪ P2, such that F̂ coincides
with S on U ∪ (W 3 \W 3

1 ) and orthogonal to P1∪P2. Set Uε = {|x1x2| ≤ ε}. If ε

is sufficiently small, then Uε ⊂ U and the foliation F̂ is transversal to ∂Uε. The
foliation S is transversal to ∂Uε. However, the foliations S|W3\IntUε

and F̂ |Uε do
not define a continuous foliation on W because they are mismatched along a part
of their common boundary. Let us denote by Fext and Fint the one-dimensional
foliations S|∂Uε and F̂ |∂Uε, see Figures 18 and 19.
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Figure 18. Foliation Fext

Figure 19. Foliation Fint

There exists an embedding h′ : K′ → ∂Uε ∩ W 3, K′ = S0 × S0 × I1 × D1,
such that the foliations Fext and Fint coincide outside of the image h′(K′).
Moreover, near the boundary of each of the 4 squares pi × I1 × D1, pi ∈ S0 ×
S0, i = 1, 2, 3, 4, the foliations (h′)∗Fint and (h′)∗Fext coincide with the standard
horizontal foliation I1 ×OD1 on I1 ×D1 (see Figure 20).

Figure 20. Embedding h′

Let us cut W 3 open along h′(K′) and denote by S̃ the foliation defined by
S|W3\IntUε

and F̂ |Uε on W 3 \ h′(K′).
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Taking a thin tubular neighbourhood of h′(K′) we obtain an embedding

h : K = K′ × [−1, 1] = S0 × S0 × I1 × D1 × [−1, 1] → W 3,

such that the induced foliation h∗(S̃) intersects S0 ×S0 × I1 ×D1 ×{−1} along
the foliation (h′)∗Fint, intersects S0 × S0 × I1 × D1 × {1} along (h′)∗Fext, and
coincides with the horizontal foliation OD1 × (S0 × S0 × I × [−1, 1]) near the
remaining part of the boundary of K. Thus near the boundary of each of the 4
balls Bi = pi × I × D1 × [−1, 1], pi ∈ S0, i = 1, 2, 3, 4, we get (up to smoothing
the corners) a helical foliation Tϕ for a diffeomorphism ϕ : D1 → D1, fixed near
the boundary. �

Here is a fibered version of Proposition 2.6.2.

Proposition 2.6.3 (Regularization of S(q +2, q, 1) up to four holes). There
exist a fibered over Dq−1

1+ε ⊂ R
q−1 embedding

h : K = Dq−1
1+ε × S0 × S0 × D3 → W q+2 ⊂ R

q−1 × R
3,

and a fibered over R
q−1 foliation Ŝ = Ŝ(q + 2, q, 1) on W q+2 \ h(K), such that

Ŝ coincides with S(q + 2, q, 1) near ∂W
q+2

and coincide with a fibered foliation
F near the boundary of each component of h(K), where

• Fp is a helical foliation Tϕp for p ∈ IntDq−1
1+ε ,

• ϕp = Id for p in a neighbourhood of ∂Dq−1
1+ε ,

• Fp is the trivial horizontal foliation defined on the whole h(p×D3) when
p ∈ ∂Dq−1

1+ε .

Moreover, the two-dimensional fibered foliation Ŝ(q +2, q, 1) is orthogonal to the
(x1, z)- and (x2, z)-planes in p × R

3 for every p ∈ Dq−1
1+ε .

Proof. We can apply the previous construction fiberwise to the foliations
S(q + 2, q, 1)|p×R3, p ∈ R

q−1, and observe that the corresponding foliations Fp
ext

and Fp
int, defined on the fiber p × R

3, coincide when p is close to the bound-
ary ∂Dq−1

1+ε , and thus the diffeomorphism ϕp which defines Tϕp is equal to the
identity. �

Proposition 2.6.4 (Reduction of S(n, 1, s) to S(3, 1, 1)). Let 1 ≤ s ≤ n −
q − 1. There exist an embedding h : K = Ss−1 × Sn−s−2 × D3 → Wn and a
foliation Ŝ = Ŝ(n, 1, s) on Wn \ h(K) such that Ŝ coincides with S(n, 1, s) near
∂W

n
and coincides with a (codimension-one) foliation Ss−1 × Sn−s−2 ×Tϕ near

the boundary of h(K). Here Tϕ is a helical foliation near the boundary of D3.

Proof. Set x1 = (x1, . . . , xs), x2 = (xs+1, . . . , xn−1),

|x1| =
( s∑

1

x2
i

)1/2

, |x2| =
( n−1∑

s+1

x2
j

)1/2

,
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and denote by rs : R
n → R

3 the map

(x1, x2, z) �→ (|x1|, |x2|, z).

Set P 1 = {x1 = 0} and P 2 = {x2 = 0}. The restriction rs|Rn\(P 1∪P 2)
is a

smooth trivial fibration with fibers diffeomorphic to Ss−1 × Sn−s−2. Notice
that w(n, 1, s) = rs ◦ w(3, 1, 1), and hence S(n, 1, s) = r∗s(S(3, 1, 1)). Hence the
required foliation can be defined as

Ŝ(n, 1, s) = r∗s(Ŝ(3, 1, 1)).

In other word, Ŝ(n, 1, s) is obtained from Ŝ(3, 1, 1) by rotating around P1 and P2.
Notice that Ŝ(n, 1, s) is smooth near the P 1 ∪ P 2 ⊂ R

n, because Ŝ(3, 1, 1) is
orthogonal to P1 and P2 (and moreover, can be chosen flat near P1 ∪ P2). �

Applying the same rotation construction to the foliation Ŝ(q + 2, q, 1) from
Proposition 2.6.3 we get

Proposition 2.6.5 (The general case: regularization of S(n, q, s) up to one
hole). Let 1 ≤ s ≤ n− q − 1. There exist a fibered over Dq−1

1+ε ⊂ R
q−1 embedding

h : K = Dq−1
1+ε × Ss−1 × Sn−q−s−1 ×D3 → Wn ⊂ R

q−1 × R
n−q+1,

and a fibered over R
q−1 foliation Ŝ = Ŝ(n, q, s) on Wn \h(K), such that Ŝ coin-

cides with S(n, q, s) near ∂W
n

and coincides with the product-foliation Ss−1 ×
Sn−q−s−1 × F near the boundary of each component of h(K), where F is the
fibered foliation described in 2.6.3.

2.7. Regularization of round wrinkles. Let us remind that S◦(n, q, s)
is the underlying foliation of the round wrinkle S◦(n, q, s).

Proposition 2.7.1 (Regularization of S◦(n, q, s)). There exists a foliation
Ŝ◦(n, q, s) on Wn

◦ such that Ŝ◦(n, q, s) = S◦(n, q, s) near the boundary of W
n

◦ .

Proof. The key of the whole construction is the case S◦(4, 2, 1) when we
get the desired foliation Ŝ◦(4, 2, 1) directly from 2.6.2 and 2.5.2. The general
case with 1 ≤ s ≤ n − q − 1 follows from 2.6.5 and 2.5.2. The case s = 0 (and
s = n − q) follows from 2.6.1. �

Remark. The foliation Ŝ◦(n, q, s) is fibered over R
q−2 (hence over R

l for all
l ≤ q− 2). Therefore, the foliation Ŝ◦(n + k, q + k, s) regularizes the fibered over
R

k foliation S◦(n + k, q + k, s) in the k-parametric case, see Section 2.4.
Proposition 2.7.1 and the round version of Theorem 2.4.1 prove the existence

part of Thurston’s theorem 2.2.1. Similarly, 2.7.1 and the round version of 2.4.2
prove Theorem 2.2.2 and the existence part of Theorem 2.2.3. In order to com-
plete the proofs of Propositions 2.2.1 and 2.2.3 we should construct a regularizing
strong concordance between S◦(n, q, s) and Ŝ◦(n, q, s).
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Proposition 2.7.2 (Regularization of S◦(n, q, s) by a strong concordance).
The augmented Haefliger structure S◦(n, q, s) is strongly concordant rel ∂W

n

◦ to
the foliation Ŝ◦(n, q, s).

Proof. We will use the foliation Ŝ◦(n + 1, q, s) for the construction of
the required strong concordance. Let us first show that the underlying (non-
augmented) Haefliger structure S◦(n, q, s) of S◦(n, q, s) is concordant to the fo-
liation Ŝ◦(n, q, s). Let h0 : Wn

◦ → Wn+1
◦ be the standard embedding

(y1, . . . , yq−1, x1, . . . , xn−q, z) �→ (y1, . . . , yq−1, x1, . . . , xn−q, 0, z).

Let us denote by U an open domain in Wn+1
◦ , such that S◦(n + 1, q, s) =

Ŝ◦(n + 1, q, s) on Wn+1
◦ \ U . Let ht : Wn

◦ → Wn+1
◦ be a family of embeddings,

fixed near ∂W
n

◦ , and such that h1(Wn
◦ ) ⊂ Wn+1

◦ \ U . We have

h∗
0S◦(n + 1, q, s) = S◦(n, q, s)

and

h∗
0Ŝ◦(n + 1, q, s) = Ŝ◦(n, q, s).

On the other hand,

h∗
1S◦(n + 1, q, s) = h∗

1Ŝ◦(n + 1, q, s) .

Thus, the required concordance can be obtained by gluing two concordances
h∗

t S◦(n + 1, q, s), t ∈ [0, 1], and h∗
2−tŜ◦(n + 1, q, s), t ∈ [1, 2], together.

In order to augment the constructed concordance to a strong concordance, we
should compare the canonical augmentation of the foliation Ŝ◦(n, q, s) with the
augmentation of S◦(n, q, s) provided by the regularized differential R(dw◦). It
is sufficient to consider the background cases S◦(4, 2, 1) and S◦(2, 1, 0). The def-
inition of R(dw◦) and the construction of the foliation Ŝ◦(4, 2, 1) guarantee that
the two-dimensional plane fields τ(Ŝ◦(4, 2, 1)) and KerR(dw◦(4, 2, 1) (which are
orthogonal to the underlying plane fields of our augmentations) are homotopic
through a S1-invariant family of plane fields, fixed near ∂W 4

◦ . Therefore, the two
augmentations may differ only by a S1-invariant and fixed near ∂W 4

◦ automor-
phism of the trivial two-dimensional vector bundle over W 4

◦ � S1×D3. But such
an automorphism is homotopic to the identity since π3(SO(2)) = 0. Similarly,
in the case S◦(2, 1, 0) the augmentations may differ only by an S1-invariant and
fixed near ∂W 3

◦ automorphism of the trivial two-dimensional vector bundle over
W 3

◦ � S1 × D2. Again, the automorphism is homotopic to the identity since
π2(SO(2)) = 0. �
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