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1. Introduction

We consider the motion of a compressible barotropic viscous fluid in a boun-
ded domain  C R? with the boundary slip condition. Let p = p(z,t) be the
density of the fluid, v = v(x,t) the velocity, p = p(p(x,t)) the pressure, f =
f(z,t) the external force field per unit mass. Then the motion is described by
the following problem (see [3]):

p(ve +v - Vo) —divT(v,p) = pf in Q7 = Q x (0,7),
pt +div (pv) =0 in Q7

(1.1) pli=0 = po  v|t=0 = vo in €,
To - T(0,p) T4y -Ta =0, a=12, onST =8x(0,T),
v-nm=20 on ST,

where T(v, p) is the stress tensor of the form
(12)  T(v,p) ={Ti;(v,p)}i =123
= {1(0z,vj + Op,vi) + (v — p)divvd; — pdijtij=12.3,
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M, Ta, @ = 1,2, are unit orthonormal vectors such that n is the outward normal
vector and T1, To are tangent to S. Finally, 7 is a positive constant and pu, v are
constant viscosity coefficients.

By virtue of (1.1)2 and (1.1)5 the total mass is conserved, so

(1.3) /po(z) dx = / plx,t)de = M.
Q Q

Moreover, from thermodynamic considerations we have

(1.4) v > /3.

Let us introduce the quantity for vectors u, v € H(Q)
(1.5) Eq(u,v) = / (O, uj + Oz, ;) (02, vj + O, v5) da,
Q

where the summation convention over the repeated indices is used. We assume
that Eq(u) = Eq(u,u).

We recall from [7] that the vectors for which Eq(u) = 0 form a finite dimen-
sional affine space of vectors such that

u=A+BXxux,

where A and B are constant vectors.

We define H(Q2) = {u: Eq(u) < oo, u-m =0 on S}. If Q is a region obtained

by rotation about a vector B, we denote by H(Q2) the space of functions in H ()
satisfying the condition

/Q w(z)uo(z) dz = 0,

where ug = B x x; otherwise we set H(Q) = H () (see [7]).
From Lemmas 2.1, 2.2 from [4] (see also Lemma 4 in [7]) we infer

LEMMA 1.1 (Korn inequality). Let S € H3T a € (1/2,1). Then for any
u € H(Q),

(1.6) [ullfq < cEa(u),
where ¢ is a positive constant.

We introduce Lagrangian coordinates as the initial data for the Cauchy pro-
blem

(17) % = U(H]‘,t), x|t=0 = 6;
then
t
(1.8) o=+ [ vl dr = as(e.t),
0

and (&, t) = v(zz(€,t),t). We sometimes omit the index T in z7.
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To prove the existence of solutions to problem (1.1) we integrate the equation
of continuity using the Lagrangian coordinates (1.8). Therefore we have

(1.9) pla,t) =po(€)exp(—/ot(vu-v)(€,7) dT),

where Vz = (ng/axi)mgk.
Assuming that v = w in (1.9) and assuming that transformation (1.8) is
generated by vector u, we also consider instead of (1.1) the following linearized

problem
pave — diveTa(7, p(pa)) = pufa in Q7
(1 10) Taa Tﬂ(ﬁap(pﬂ)) ‘Ng + YV Tga = 07 a = 1a 27 on ST7
. v-ng=0 on ST,
Ult=0 = vo in €,

where pz(€,t) = p(zw(€,1),t), fa(&,t) = f(zz(€,t),t) and see also (6.3), which
assigns the transformation

(1.11) v=®(u).

A fixed point of (1.11) is a solution to problem (1.1).
To prove the existence of solutions to problem (1.10) we first consider the
following problem

w —divD(w) = F in Q7

To - Dw) - =Gq, «=1,2, on ST,
(1.12)

w-n=G3 on ST,

Wlt=0 = wo in Q.

To consider this problem we use the potential technique developed by V. A. So-
lonnikov. The existence will be proved in Sobolev—Slobodetskii spaces.

To prove the existence of solutions to problem (1.10) we need also examine
the following problem

nwy —divD(w) = Fy in Q7
(1.13) To -D(w) 7 =Gla, a=1,2, on ST,

w-n==G3 on ST,

Wlt=0 = wo in €2,

where n > 19 > 0, 19 is a constant and 7 is a given function.
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2. Notation and auxiliary results

We use the anisotropic Sobolev—Slobodetskii spaces VV2 4 2(QT) l e Ry,
QT = Q x (0,T), where Q is either Q (a domain in R3) or S (the boundary
of ), with the norm

T
2 _ 2 2
Il gy = [ Ml e+ / ol

= ull; + [l

WlO(QT Ol/z(QT)

where

lelifyy ) = D 1D ullZ, )

o <1

for integer [, and

. D3 u(x) — Du(a)
Il = 3o 1D%ulh,e + / @) et e,
<[] =[] @ x'

for noninteger [, where s = dim Q, Dy = 95! ...05°, a = (a1, ... , ) is a mul-
tiindex, [I] is the integer part of I. For Q = S the above norm is introduced by
using local mappings and a partition of unity.
Finally,
||“H w201y T Z ||3§U||%2(0,T)7
i<l/2

for integer /2, and

Dfult) = O u(t) .
lalfyarz oy = D2 108ulli,0m + D2 / / |t_t,|1+2w2 7z A

i<[l/2] i=[1/2] 0
Moreover,
|u|;D,Q = ||u||Lp(Q)7 pE [1,00],
u@) —u(@)P? N\
[]aQ(/ del‘d(ﬂ R
|u(t) —u() Y
[u] (M’Z(/'/ t_me i
and

|u(z u(a t)[? 1/2

[U)g.0r 2 = (/ dt// |x—a:’\3+2a dx dz’ ,
lu(z,t) — u(x, t)|? 1/2

ulg.or e = (/ dac/ / \t—t’\HZa dt dt’ :
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To consider the problems with vanishing initial conditions we need a space of
functions which admit a zero extension to t < 0. Therefore, for every v > 0, we
introduce the space HQ’Z/Q(QT) with the norm (see [1], [5], [8])

T
2 —29t 2 2
Hu||Hl7’l/2(QT) - A e =7 ||UHW21(Q) dt + ||u||H2J/2(QT)'
For 1/2 ¢ Z,
T
l —
el 12 gry =7 /0 Ml @ dt

T oo k . _ _ Ak . 2
+/ e‘27tdt/ [0 uo( -t —7) = Ouo(-, 1)1, (0 ar,
0 o F12(l/2—k)

where k = [I/2] < 1/2, and ug(x,t) = u(z,t) for t > 0, ug(z,t) = 0 for t < 0.
For /2 € Z,

T
2 _ —2~t (] 2 /2, 12
[y, = | 7 Gl + 10l )

and we assume that & u|—o =0, j = 0,...,1/2—1, so ug(x, t) has a generalized
derivative 8§/2u0 in @ x (—o0,T).

For simplicity we write

[ullor = llullyrizgry,  llulle = llullwiq)

lulliyor = lull gz grys  llullpe = vl @)

In the above definitions we can use the notation
1/2
il = ( 3 DR+ Y DR yg)
|| <[1] lee=[1]

We set R? = {z € R" : z, > 0}, RA = R™ x (0,7), Dyt = R? x (0,7),
n = 2,3. For functions defined in R"Z" and vanishing sufficiently fast at infinity
we define the Fourier transform with respect to  and the Laplace transform
with respect to t by the formula

(2.1 fles) = [ ear [ g =<an,
0 Rn

where z- £ = Y"1 | x;&;. Hence we define the norm

Il s = [ s [ 6P Gsl +1€R) ko, 5 =7 +it0. 7 € Ry
Similarly, for functions defined in D!, we have

f(gaxnv s) = /0 . dt/]R » f($7t)67iml'gl da’,
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where 2’ = (z1,... ,2p-1), & = (&1,... ,&—1), and introduce the norm
el pos = 2 / ¢’ / 102, 8E" wn, )5z, (] + I€') deo
i<l —oo

[ g [N Sl o, 5=+t vERL
R~ —00

We introduce a partition of unity. Let us define two collections of open subsets
{w®} and {QP}, k € MUN, such that @® ¢ Q*) ¢ Q, [, w® =, QF) =
QNS =0 for ke Mand Q¥ NS £ @ for k € N. We assume that
at most Ny of the Q(®) have nonempty intersection, and sup,, diam Q*) < 2\
for some A > 0. Let ¢*)(z) be a smooth function such that 0 < ¢¥)(z) < 1,
(W (z) =1 for 2 € w®), (W) (2) =0 for x € Q\QH) and |DLCH) (2)] < ¢/AIV.
Then 1 < ", (C™(2))? < Ny. Introducing the function

n®) (z) = (M) ()

> (CW (@)
we have n*)(z) = 0 for z € Q\Q® | 3, n®)(2)¢®) (2) = 1 and | D4y (2)] <
¢/ A1, By £) we denote the center of w®*) and Q*) for k € M and the center
of wW NS and QW NS for k e N.

Considering problems invariant with respect to translations and rotations we
can introduce a local coordinates system y = (y1,y2,y3) with the center at ¢(*)
such that the part S®) = §NQ®) of the boundary is described by y3 = F(y1,y2).
Then we consider new coordinates defined by

zi=vyi, 1=12, z3=y3— F(y1,92).

We will denote this transformation by Q® 55k 5 2 = @, (y), where y € w®)
Q) we assume that the sets &), Q®) are described in local coordinates at £

by the inequalities
|yl| <)‘7 i:172a 0 <ZU3_F(?J1,?J2)</\’
|yz| <2>\, i:1,2, 0 <y37F(y1,y2) <2)\,

respectively.
Let y = Yi(z) be a transformation from coordinates z to local coordinates
y, which is a composition of a translation and a rotation. Then we set

A®)(z,8) = w(@ ! 0V (2),8), TR (z,8) = AR (2,6)C) (2, ).

From [5] we recall the necessary for us properties of spaces Hf;l/ 2 (R21) and
Hy' (D), 1 e Ry
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LEMMA 2.1. Any function u € HQ’Z/Q(R?H), T < o0, can be extended to
R™H in such a way that the extended function v’ € H5Y/?(R"+1) and

(2.2) ”u/”z;y,ﬂagjl < C”u”zm]}g;“-

Any function u € HE,’Z/Q(D%'H), T < 00, can be extended to R%‘H in such a way
that the extended function v’ € Hf,’l/Q (R and

(23) oy s < el e

LEMMA 2.2. There exist constants c¢1 and ca, which do not depend on u
and v, such that

(2.4) erlllulll s < Nl gors < colllulll,, gnr-

LEMMA 2.3. There exist constants cz and c4, which do not depend on u
and 7y, such that

(2.5) 03|||U|H1,7,Dgo+1 < lu Lyt < C4|||U|||1,7,ng1-
From [5] we recall

LEMMA 2.4. Let u € H;’T/z(QT). Then for every e € (0,1) and 0 < ¢ <
r—= |a|7

(2.6) 1D ullg0r < &1 ul,y or 4+ e le M ullg or
< (el ey e ), or
LEMMA 2.5 (see [5]). Let u € H}Y’l/z(Rg«H) and 0 < 2m + |a| < I. Then
0"DSu € H,lf’ll/z(R;ﬁH), where Iy =1 —2m — |a| and
(2.7) ||3?D§UH11,7,R;+1 < C”UHZ,%R;“-
Moreover, for p € (0,11) and € > 0,
- —h)|—
(2.8) Hatngqu,%jo_l < gt pHu”L%R;ﬂ"'l +ce7 e ’YtUHo,]R;iHa

where h = p + 2m + |a.
Let u € ny’l/z(]D)’TLH) and 0 < 2m + |a| < 1 —1/2. Then 9]*D%ul,,—o €
Hi2’l2/2(R%), where ls =1 —2m — |a| — 1/2 and

(2.9) 168" Dz |z =o0ll1z 5 < ellully  prv-

To obtain the results from Section 6 we need
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LEMMA 2.6 (see [5]). Let’s assume that a € Witt(Q), f € Wi(Q), g €
WiTHQ), 1 > 1/2, Q C R3. Then the following estimates hold
| ol flna +ea@)l fllog),
| a(ellalliyra + cae)llallo.g),

lagllivro < eslalo allgllivna + lallirnalelgliiae + cs@)llgllo.o),

laglli+1.0 < crllallivrallgllivo,

where € € (0,1).
3. Existence of solutions to problem (1.12) with
vanishing initial data and in the half space

Considering the problem (1.12) in the half-space x5 > 0 and with vanishing

initial conditions we have

—divD(w) = x3 >0,
8w1 8(4)3
=b;, 1=1,2, =0,
(3.1) a (axg oz, ) = o3
w3 = b3 r3 — O,
wli=o =0 x3 > 0.

By applying the Fourier—Laplace transformation
(3.2) F(€ as,8) = / e~tdt | f(x,t)e ™" da,
0 R2
Res >0, s=~v+41&,

where &' = (£1,&), ' = (z1,22), ¥’ - & = 1€ + 22&2, we obtain problem (3.1)
in the form

&2, 4z N
(33) /u‘d +V7’§/€7_(S+/J£ ) k_kagjwj:O7k:1a2a I3>O7
B23 Ao
() 5 iy T2 — (s )0 =0 23>0,
d~
(34) MT + /’”576‘03 - bkn k= 1a 27 3 = 07
s = bs, r3 =0,

0 — 0 as w3 — 0o, where £ = (&1, &), €2 = £2+£5 and the summation convention
over the repeated indices is assumed.
Every solution to (3.3) vanishing at infinity has the form

(3.5) D= B(E,s)e T + (€, 5) (61, Ea, ima)e ™2,

where q)(g,S) = (¢1a¢2a (Z/Tl)§¢)’ ¢J = d)](f,s),j = 172a 1 = v/ S/:LL +§27 T2 =
s/(u+v)+ &% arg 7y € (—m/4,m/4), ] =1,2,¢ = E1d1+E202, ¢ = (@1, P2).
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Inserting (3.5) into (3.4) yields
(3.6) Tigk + o€kt = sl — bi/u, k=12,
£ ¢+ Moy = —iTibs.
From (3.6) we have
BT mé £ nY =it —bE/p, €t mmy = —inbs.

Solving (3.7), we obtain

_ 1 _ 1 227 17
(38) 66 = > (25 ity 5. 5) V= ((n &)ibs + b f),
where
(3.9) Ry

Using (3.8) and (3.9) in (3.6) implies

1~ 1~ 1/~ 1~
(3.10) O = ——b-&& — —bp, k=1,2, P =— <Zb3 + —b- f)
HT1 T2 S

ST1
Let
(3.11) e =e T, =12  ep= L2
T — T2
Then we write (3.5) in the form
&1 1+ &
(312) W= d) 52 (62 — 61) + d)g + ’(/)52 el = Veo + W€1,
1To i(b'f/Tl + it
where
1/~ ~
Vi = Tz(lb:a + Sb'§> (2 —71)§;
Co LT .
. = ————(isbs + b - £)&;, =1,2,
(3.13) e CEen CCR RGN
Vi —i(iby+ <5 € )( ) 0 (ishy +5- €)
= -_— . T —_— T —_— - .
3 3t 2 —T1 Tt 1808 ;
where we used
7?1 = s = cps,
pp+v)
and
1/1 1\~ 1~ 1~
W=+ 06= (- J“ﬁj Tt
(3.14)

:711 f—bJr 5 o7 =1,2,
7’17'2(7'1+7'2) §§J 1 3€j J

Wy = bs.
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We need the following result (see [10], [5], [8]).
LEMMA 3.1. For £ € R?, s =y +i&, v € Ry, & € R, v > 0, and for any
nonnegative integer j and x € (0,1),

102 o1 ei||(2)R+ < Cl|7—i‘2j71’ i=1,2,

(3.15) dxsdz ) — .
/ / |8x361 3 +Z) aj 61($3)|2 13—2 CQ|Ti|2(j+K) 17 L= 1a25

where c¢1, co do not depend on 7;, i = 1,2 and [¢].
Moreover,
[P o

|71]2

||ag;360||g,R+ SCS )

. dxs dz
(3.16) / / 0] e0(ws +2) — 03, eola)* g

|7_1|2(j+n)—1 + |7_2|2(j+n)—1

)

|71
where c3, ¢4 do not depend on 7;, i = 1,2 and |£].
Using Lemma 3.1, we obtain
LEMMA 3.2. We assume that
by € HY/ZFeot/ate/2(R3 ) =12,
by € H3/2Too3/4te/2RE ) 4 >0, a > 0.
Then there exists a solution to problem (3.1) in H$+a’1+a/2(]D)‘éo) and the follo-

wing estimate holds

2

3
(3.17) Z sl ll24a,v.p1, < C(’Y)(Z 116illl1/2+0,~.R2, + |||b3|||3/2+amR§c>,
=1

i=1
where ¢(y) remains bounded for v > 9 > 0.

PROOF. The existence follows from constructions (3.12)—(3.14). To obtain
(3.17) we consider

|||W|||2+Q»YD4 fZ/ df/ || (€, 23,5 )|‘(2))er(‘s‘+|£‘2)2+a7j dso

w [ e [ 00601y o
< [ e [ AVPIOLcoll ey +IWPIOL 1R )

7<2
- (Js] 4+ [€]7)2T 77 deo

o
e [ VPl my + Wl my) o = T
R2 —o0
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Using the inequalities (see [10], [5])

71 1
g <—<c, |n+nl>—7

|72 V2
es(|s| +€2) < |ml? < eal|s| + €2), i=1,2,

(I71] + [72l)s

we obtain
1
|72

(318) VP < (2Bl + [FP), |W|2§c< |?5’|2+|53|)7

where 7 replaces either 7, or 75, and V= (El,gg).

In view of (3.18) and Lemma 3.1 we obtain

e[ de [P 4 BP0 ) d
R —o00
< C(”b/”%/2+o¢;y,Rgc + ||b3|\§/2+a,~y,ﬂ@go)-
This concludes the proof. O

Now we consider the nonhomogeneous problem

wp — divD(w) = f x3 > 0,
&ui 8&13) .
+ =b;,i=1,2, z3=0,
(3.19) : <8x3 Oz ’
w3 = bg T3 = 0,
wli=0 =0 x3 > 0.

LEMMA 3.3. Let o > 0, v > 0. If we assume that [ € Hﬁ’a/Q(]D)%w), b =
(b1, by) € HOTY2O2TUN RS by ¢ got3/2e/283/8R3) T 5 0, then the pro-
blem (3.19) has a unique solution for v > pu/3 such that w € H3+°"1+a/2(]D)§1~)
and

(3.20) ||w||2+oc,'y,]D>4 < C(Hf||a,'y,ﬂ)4 + ||bl||a+1/2,'y,lRi3 + ||b3||a+3/2,w,]R3 )-
T T T T

PROOF. We extend f to a function f’ on R% in such a way that f' €
HY2(RA) (see (2.2), (2.3)) and

(3.21) 17 o ze. < el fllang.

Let w’ be a solution of the problem

(3.22) L(0y,01)w' = w) —divD(w') = f in RL..
Applying the Fourier-Laplace transformation (2.1) to (3.22) yields

(3.23) L(i€,s)a = f,
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so @' = L7L(i€,s)f’. Since det L(i€,s) = (s+pu&2)%(s+ (n+v)€2) and s = v+i&o
with v > 79 > 0, one obtains easily [|w'|l24a,y,re, < ¢l[f'|la,,re, and so
(3.24) [wll2ta,q7,ps < el fllaqps, -

Now v = w — W’ is a solution to the problem

vy — divD(v) = 0,
u(avi + 3”3) =hi, i=12,

(3.25) Ors  Ox;
v3 = ha,
Ult:O = 07
where
ow! 0w
h; =b; — : 2 ’ i =1,2,
(326) M(al'g + 8%) !

h3 = b3 — wé.
Using (3.26) we have

(3.27) 1hillij24as2yrs < cbillij24as2yrs + 10 ll24ayps)s @=1,2,

[halls/24a/2,rs < calls/24a/2,4.r8 + W [l24ay,0)s

so applying Lemma 3.2 to problem (3.25) we see that w = v+ w’ is a solution to
(3.19) and the estimate (3.20) holds. O

4. Existence of solutions to problem (1.12)

First we consider the problem (1.12) with vanishing initial data

L(0z, O )u=uy —divD(u) = f in Q x (—o00,T),
(4.1) Bli(:v,aw)u =T ]D)(u) n = bi, 1=1,2, on S x (—OO,T)7
Bo(z)u=u-m=bs on S x (—oo,T).

We write shortly B(x,0;)u = (Bi(x, 0y)u, Ba(z)u).
Let f®)(x,t) = ¢®¥)(z,t)f(x,t). We denote by R*®), k € M, the operator

(4.2) u™ (z,8) = R®) FF) (1),

where u(®) (1) is a solution of the Cauchy problem

(4.3) L(0s, 0)u™ (2, 1) = f¥) (2,1).

For k € N we define R®) to be the operator

(4.4) a8 (z,8) = RO (F8) (2,8), 6% (2, 1)),
where (¥ (z,t) is a solution to the boundary value problem

(4.5) L(0.,0,)a® (z,t) = f¥)(2,t), B(z,8.)a™ (z,t) = b® (2, 1),
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where @*)(2,t) = Z, 'u®)(z,t) and Z, describes the transformation between
a®)(z,t) and u® (z,t). Then we define an operator R (called a regularizer) by
the formula (see [2], [6])

(4.6) Rh =Y n® (@)u® (z,),
k
where
(k)
h(k)(a:,t) _ f (Am,t) R ke M,
Z W (2,6), 0% (2, 1)} keN,

and
R®) £(k) (1) ke M,

(k) _
u(xz,t) =
(z.1) { ZR R (Z, R (2,1), Z 10 (2,8)) ke N,

Lemma 3.3 implies the existence of solutions of problems (4.3), (4.5) and the

estimates

(4.7) [ 24 ay s, < cllfPllaqrs, keM,

and

(4.8) 189 o s ey s < U FD 0t + 15 ll/24aszmms
188 I3 /240 /2,082, )s K EN.

Let

h=(fV,0")e Hs»aﬂ(QT) % H$/2+a’1/4+a/2(ST) % H§//2+a,3/4+a/2(5T) — Hsz

and let V. = H3™'2(QT). Inequalities (4.7) and (4.8) imply

LEMMA 4.1 (see [10], [11]). Let S € C***, h € HY, a > 1/2 and let ~
be sufficiently large. Then there exists a bounded linear operator R : HY — V2

(defined by (4.6)) such that
(4.9) |RA[lve < cllh]lasg,
where ¢ does not depend on ~y or h.

We write problem (4.1) in the following short form
(4.10) Au=h, A=(L,B).

LEMMA 4.2. Let S € H3T, h € HS with v sufficiently large and o > 1/2.
Then

(4.11) ARh = h+ Th,
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where T 1s a bounded operator in HY with a small norm for small A\ and large ~.

PrROOF. We have

LRh =Y (L(32, )™ u® — n ¥ L(0,, 0)u™)

ke MUN
+ Y 0" Ze(L(0. — VFO.,,0;) — L(D-, 1)) Z; 'ul®) (x, 1)
keN
+ > W L0, 00)u® (@, 1) + Y 9®) 2, L(0., 04) 2 u®) (x, 1)
keM keN
= f+Tih

and

BRh =Y (B(z,0:)n™u® — ™ B(x,0,)u™)
keN

+ 3 0®(B(x,8,) - BE™,8,))u®

keN

+ > Wz (BEW, 0. — VF0.,) — B(E™,0.)) 2 ' (x, 1)
keN

+ 3 1 2B(EW,0.) 2 w®) (2,1) = b+ Tah.
keN

Now, we estimate operators T and T5. By Lemmas 2.4, 2.5 and Lemma 3.3
the first term in 71 h is estimated in the following way

Z (L") k) — (k) 9, (R <c Z ||U(k)||1+a,~,,Q(k>

REMUN a,y,QT ke MUN
<ol + a1 Y [uPllara g0
kEMUN

< (™ + co(e)y ) |hll e,

where §; > 0, i = 1,2, Q) = Q%) x (0, T) and co(e) is a decreasing function.
The second term in T1h is bounded by

¢ Z(||Vﬁv2ﬁva(k)|z:<1>k(y(:c))||amQ(’“’
keN

+ [(VEQL+ VE)V2AY)| g, (g a0
+ H(VQFVQ(M|z:<1>k(y(r))||a,'y,Q<’°))

o k
<e > (PUIVFIh a0 [u® 1000
keN

+ VPl g (14 [VE o o) I1u® |24 0,y,000) = 1,
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where p is an increasing function. Using |VFV|OO,Q<;C> < c)\a||Vﬁ||1+a79<k), a >0,
the interpolation inequalities from Lemma 2.4 and Lemma 3.3, we have

I<e(@ +coe)(X2 +77%) e, 6 >0, i=1,2,3,

and co(e) is a decreasing function.
Now, we consider the second term in Thh. Therefore, we have to estimate the
expression by

> (UIn™ (Bi(x, 02) = Bi(E™,0:)u™ |11 j24 0y 00008
keN
+ ™ (Ba(w,0,) = Ba(€™,02))u™ |5 /210,7.00ns)

- o k
< PUIVFI 4,00 IV F lla 0,000 185 1oy 0,000
keN

<c(e® 4 co(e)A?)|hllus, 6 >0, i=1,2,

where p = p(-) is a polynomial and ¢y(¢) is a decreasing function.
Similar considerations can be applied to the other terms of T} and T5. Sum-
marizing we have

(4.12) IThllre < el + co(e)(A +~7)]l|R] o

This concludes the proof. O
LEMMA 4.3. Let S € H3**, a > 1/2. Then for every v € Ve,

(4.13) RAv =v+ Who,

where W is a bounded operator in V* whose norm can be made small for small A
and large vy, because

(4.14) [Wollve < e(e™ + co(e) (A2 +77%))|0llve,
e€(0,1), §;, i =1,2,3, and co(e) has the same properties as before.
PrOOF. We have
(415)  RAv= > n®zZ,R® [z (W L(0,,0)v, Z; (W B(x,0:)v]s]
keN
+ 3 @ RO L@, )
keM
= > Wz RW(Z((H L0y, 010 — L(Da, 0)¢ W),
keN
Z M (CWB(x, 0, )v — B(w,0,)¢M)|s]
+ Z U(k)ZkR(k) [Oa Zk_l(B(xa aac) - B(&.(k)7 6x))<(k)v|5}
keN

+ > 1M ZROIZ L0, 0)¢ W, 2 BED, )¢ v]s]
keN
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+ 3 P RE(CWL(D,,0,)v — L(Dy, 0)¢ M)
keM

+ 3 pIREL,,0,)¢Pw.
keM

By uniqueness, for the Cauchy problem (4.3) we have
(4.16) RO L(0,,0)¢Wv =¢W®y, ke M,

so the last term on the r.h.s. of (4.15) is equal to v. The third term on the r.h.s.
of (4.15) has the form

(417) > 9™z, RPL(0. — VF(2)0s,, 015",
keN
B®(¢®), 0, = VF(2)0.,)7"|.,0]

= > " (ZRW[(L(0. — VF(2)0.,,0) — L(0:,0,)) 5™,
keN
(BO(EM, 0. = VF()0.,) = BR(EW, 0.5V, -o] + 2,5,

where 7(%) is a solution to problem (4.5), so
ZRM[L(9.,0,)5®, B® (W 0,50, o] = Z,7®) = () (2)v(z, 1),

for k € N and B is obtained from B by applying Z, 1 Therefore, the ope-
rator W is determined by the first, second and fourth expressions on the r.h.s.
of (4.15) and the first term on the r.h.s. of (4.17).

The fourth term on the r.h.s. of (4.15) is estimated in the following way

(4.18)  [[n™RM (P L(0,,80:)v — L(z, 3)C0) |0t a0
< c([VEFV] g m 07 + VP00 0r)
< C”U”lJra,'y,Q(k)

< (e + o) )0l amqw

where (2.6) has been used and ¢; > 0, i =1, 2.
Next, we consider the first term on the r.h.s. of (4.17). The first part of this
term is bounded by

(419) ¢ Y (IV-FVZFV.H | qw + [V FA+ V)R, qw
keN

< (| Fllaganr) (€ +cole) A2 +77%) 0]l v
Continuing we obtain (4.14). This concludes the proof. O

Summarizing we have
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THEOREM 4.4. Let’s assume that S € H3**, f € HY**(Q x (o0, T)),
W e Hy2Tel/Ael2 (g (oo, T)), b € HY2T3/400/2(g 5 (00, T)), a > 1/2
and v is sufficiently large. Then there exists a unique solution to problem (4.1)
such that u € H3+a’1+°‘/2(§2 X (—00,T)) and

(4.20) lull24a,y,0r < c([[fllaqy,0r + ||bl||1/2+a,w,ST + Hb//|\3/2+a,w,ST)a
where ¢ does not depend on u and .

Now, we consider problem (4.1) with nonvanishing initial data. Therefore,
we formulate it in the form

ug —divD(u) = f; in QF,
(4.21) 7 -D(u) -m="b) on ST,
. u-nm=>b{ on ST,
ult=0 = ug in Q.
We have

LEMMA 4.5. We assume that f1 € W;’Q/Q(QT), b € W21/2+a/2’1/4+a/4(ST),
by € W§/2+a/2’3/4+a/4(ST), ug € Wyt(Q), S € Wit a € (1/2,1), and use
the following compatibility conditions

(4.22) blllt:Q —?'D(UQ) -n =0, b/ll|t:0 —ug-n=20.

Then there exists a solution to problem (4.21) such that u € W22+a’1+a/2(QT)
and the estimate holds

(4.23) |ulla4a,0or < C(”fl”oz,QT+||b/1||1/2+04/2,ST+||b/1/||3/2+a/2,ST+HU’0H1+O¢,Q)'

PROOF. Since ug € W, T*(2) there exists a function g € W§+a’1+a/2(QT)
such that tg|i—o = uo and [|Uo||24a.0r < ¢l|tuol14a,0. Introducing the function
v = u — U we see that it is a solution to the problem

vy —divD(v) = fo in QT

7-D(w)-n="b, onST,

(4.24) R— on ST,
V]t=o =0 in Q,
where
f2 = fi = (o — divD(iip)) € W5 /*(07),
(4.25) b, = b, — 7 D(to) -7 € Wy/2Te/21/4ta/d(gTy
U= b — g T e WE/HHe/ 23 e/t (g
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and we have the following estimates
1f2llo,0r < el filla,or + [luollita0),
(4.26) 105111 /24 /2,57 < c(|Ib1]l1/24a/2,57 + [woll14a.0),
165 113/2+a/2,57 < c([10] l3/2+a/2,57 + lluoll1+a.0)-

Since the compatibility conditions (4.22) are satisfied the functions fa, b5, by can
be extended by zero for ¢ < 0, and the extended functions fo, b}, by are such
that

fa € Hy P (Ql),

(4.27) ’5/2 c Hé/2+a/2,1/4+a/4(ST)7
’5/2/ c H§/2+a/2,3/4+a/4(ST)
and

”JgHa,O,QT < cl|lf2lla,07,
(4.28) ||g/2||1/2+o¢/2,0,ST < cllbsllj24a/2,57;
|\gg||3/2+a/2,o,sT < c||by]l3/24a /2,57
Since T < oo the norms HS*/?(Q7T) and H*/*(QT) are equivalent (and simi-
larly for boundary norms) we have that
fa € HY2(QT),
(4.29) by € Hi/2o/21/Are/d(gT),
W e H3/2+a/23/ 4t a/4(gT)
and
1Follasr < e Fsllapr,
(4.30) Hg/z\|1/2+a/2,%sT < 0(7)H3/2H1/2+a/2,0,sn
||Eg\|3/2+a/2,y,sT < 0(7)H3/2/||3/2+a/2,0,s%

By virtue of (4.23)—(4.30) and Theorem 4.4 we obtain the existence of solutions
to problem (4.24) such that v € H2T*'"*/2(QT) and the following estimate
holds

1'31 2+a,'y,Q7 — Jl 04797 l 1||1/2+0¢/2,SI
||l,1 “3/2"{'(1/2,8’1 Hu0||1+0¢7£2)

Now, in view of the definition of v, we obtain the existence of solutions to (4.21)
such that u € W2T**/2(QT) and by (4.31) we have

(4.32)  [lullza.0r < cllvll24a0m + [uolitan < c(lvl2taq0r + [luollita.0),

hence, (4.23) holds. This concludes the proof. O
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5. Existence of solutions to (1.13)
Using a partition of unity in Q7 we have (see [12]):

LEMMA 5.1. If we assume that

neC?@QT), B>0, 1/n€Lo(QF), n>0, F eWa/*QT),
Glj c W21/2+(!,1/4+(!/2(5T)’ J — 1,27 G13 c W3/2+(173/4+(1/2(ST)7
wo € WyT(Q), S e H 3,

Then there exists a solution to problem (1.13) such that w € W22+a’1+a/2(QT)
and the estimate holds

(5.1)  wllzga,0r < cllnlles@ry, 11/10,0r)

2
: <|F1||a,QT +) NGl j24a,57 + [Gislls 240,57 + ||w0||1+a,g>.
j=1

6. Existence of solutions to problem (1.1)

To prove the existence of solutions to problem (1.1) we formulate it in La-
grangian coordinates. To simplify the considerations we introduce them once
again using another notation. By Lagrangian coordinates we mean the initial
data for the following Cauchy problem

dx

(61) E :U(I7t)a x't:O :§€Q, 5: (51752753)'

Integrating (6.1) we obtain the following transformation between the Eulerian x
and the Lagrangian £ coordinates of the same fluid particle. Hence

(6.2) xzé—i—/o u(§, s)ds = z(€,t),

where u(€,t) = v(x(&,t),t).
The condition (1.1)5 implies that

Qsz=x(t) foreq, Ss>xz=uw(&t) forfes.

Using the Lagrangian coordinates, we can formulate the problem (1.1) in the

form
nu — div, Dy (u) + Vg = ng in QT
N +nVy-u=0 in Q7
(6.3) Tua - Do) Ty + YU - Tua =0, a=1,2, on ST,
Ty u=0 on ST,

uli=0 = vo, 7N]i=0 = po in Q,
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where 7(&,t) = p(z(£,1),1), q(&,t) = p(x(&:1),1), 9(&,t) = f(x(§,1),1), Vi =
026 Ve,, 0e; = Ve, Dy(u) = {i(Vuiu; + Vyjui) + (v — p)0;; Ve - u}, Vi - u =
02,8V e ui, Vi = 01,610¢, and the summation convention over the repeated
indices is assumed. Moreover, 7, (£, t) = T(x(£,1),t), To (&, t) = T(x(&, 1), t).

Let A e+ be the Jacobi matrix of the transformation z = x(£,t) with ele-
ments a;;(§,t) = 0;; + fot uie; dr and let Jy¢ ) = det{a;;}i =123 be the Jaco-
bian. Then

6Jx(5,t) 8a¢j 8’LL

ot = ot Aij = Aijaif;v Jx(g,o) =1,
where A;; are the algebraic complements of a;; and A = {4;;}; j=1,2.3.
Hence
ﬁul ¢
(6.4) 2(et) = 1+ A” dr=1+ [ A-V - udr.
€; 0

Moreover, since A;j0u; /05 = Aijar;j0v; [0z = V-v(2,1)| 3=t Ju(e,p) it follows

that
t t
Jx(f,t) = €Xp (/ V- U|m(g,t) dT) = exp (/ Vau -udr),
0 0

where V,, = Jx_(g t)A -V.

Therefore from (6.3)2,5 we have

65 €0 =m©ew ([ Vuoudr) = m@I (60,

From (6.4) and (6.5) we obtain also

(6.6) n(f,t):po(f)(1+/0tA-V~udT>_1.

LEMMA 6.1. We assume that py € Wy T(Q), a € (1/2,1), po(&) > px > 0,
and

(6.7) T1/2||U||2+a,szT <4,
where ¢ is sufficiently small. Then solutions of problem (6.3)25 satisfy

In(-,D)lhtan < d@)lpolliva;

[W&]a/2 ot < HP0||1+a,Q¢(a’T)a7

(6.8) Sup// Ins t/|1+a)|2dgdt'

T T
< pol2 e 0d(@) T / JulZy g dt - <1+ / T dt),
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where a = T%|ul|a1q.07, @ > 0 and ¢ is an increasing positive function.

PRrROOF. (6.8); follows easily from (6.5). To show (6.8) we get from (6.5)

bet) eI

[ [ O
\ft ug dr|?
<llpolBs 0l // I (|t_t,|1+a

|J) e drl?| Jy uee drl? n L e drP de dt dt!
|t—t/|1+a |t_t/|1+a §

T T T
§||p0||%+a’g¢(a>T2_a/ﬂ dg(/ (u§+u§5)dr+/ ung/ uzng)
0 0 0

T T
< Il 07> [ |u||§+a,gd7(1+ | 1ol dT).

Therefore, (6.8)2 has been proved.
A proof of (6.8)3 is similar to the proof of (6.8)s. O

To prove the existence of solutions to problem (1.1) we use the following
method of successive approximations

NmUm+1t — dive,, Dy, (Umi1) + Vi, ¢(m) = 1mg  in QT7

— — — T
(6.9) Tupo D, (Umt1) * T, = —YUm * Tu,,as @ = 1,2, on S+,

Ty, ~ Umt+1 =0 on ST,

Um+1t=0 = Vo in Q,

where 7,,,, u,, are given, and

it + Mndivy, Uy =0 in QT
(6.10) mt 1 .
nm‘t:O = Po m Qv
where u,, is given.

To apply Lemma 5.1 we write (6.9) in the form

Dmtmi1t — AVD(Up1) = — (divD(wp41)
— divy,, Dy, (Umt1)) = Vi, () +0mg =11 + 1o + 13 in Q7
(6.11) To D(Uumy1) 7= (Ta  D(umsr) -7
— T aDu,, (Umi1) - Tu,, ) — Yl - Tuyo =l + 15, a=1,2, on ST,
T Upyr = (W= Ty,,) * Umg1 = g on ST,
Um+1 =0 = Vo in €,

where T =7(&,t), To = Ta(&, t), a = 1,2. First we show
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LEMMA 6.2. We assume that S € Wi, py € Wi T*(Q), vo € Wy T*(Q),

a € (1/2,1), po(&) > ps > 0, where py is a constant, and Uy, € W22+a’1+a/2(QT)

and (6.7) holds with § sufficiently small. Then for solutions of the problem (6.11)
such that umy1 € W22+a’1+a/2(QT) the following inequality holds

(6.12) [umt1ll2+a,0r < GOV, t[umll2a,0r,t), t<T, a>0,
where G is an increasing positive function of its arguments and

v = llpollita. + ll9llaor + lvoll11a,0,
and G(,0,0) = Go(v) > 0.

PROOF. Applying Lemma (5.1) to (6.11) we have
(6.13) ||Um+1||2+a,m < ¢1(||77m||cB(QT), \1/77m|oo,QT)

3 5
: (Z illasor + Y Wl j2ta,s7 + lsllz /240,57 + ”'U0||1+04,52>7

i=1 i=4

where ¢; is an increasing positive function and § < o — 1/2.
Now we have to estimate the norms from the r.h.s. of (6.13). To estimate I
we write it in the qualitative form

L~ Y1(b)umtige + Y2(b)betimte,

where b = {b;;} = {fot uig, (§,7)dr}, and vy, ¥y are matrix functions such that
V1 = &€, Y2 = &0 b, Where the products are the matrix products.
We shall restrict our considerations to estimate the highest derivatives in the

considered norms only.

T t e — Ume’ d 2
12 or o < a(am) / /Q /Q ('fo(]‘gi fﬁééﬁ i 1cel?

t
[umt1ee — umrrere || fy wme dr|?

|§ _ £I|3+2a
t t
+ | fo (umf - um.f’) dT|2| fO umE£ d7—|2|um+1§|2
‘é‘ — §/|3+2a
t
+ | fo (Umgg - Umg/g/) dT‘2|Um+1f|2
|£ _ €/|3+2(x

2 2 5
Uy, — Up !
| ‘?E_ 5,‘3;;15 | ) dede' dt = ¢,y I,
i=1

t
+‘/ Umneg dr
0
where

1/2

T
am:Ta(/o ||um||§+a9d7'> , a>0.
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Now, we estimate the expression I;, ¢ =1,...,5.

T 2 1/p1
a [Ume — Umer |7 ,
st [ [ e )

2p 1/p2
/ (/ / |ug+1§§3w|p2 d5d5/> dt =1,

where a > 0, 1/p1 + 1/pa = 1, p1 + po = 1 and pops < 1. Using the imbeddings
WET(Q) € Wy, ferim /23 2, () and WZt(Q) C Ly, (), which holds simul-
taneously because 3/2 — 3/2p1 +3u1/2 —3/2p1 +a <1+ a, 3/2—-3/2ps <

are valid for a > 1/2, we obtain I{ < T%||um|l21a,07 | Um+1ll24+a,0r- Moreover,

we have

T T
I, < T[Um-&-léé]i,sﬂ,z/o |Umf|go,fz dr < T/O ”Um”§+aﬂ dT[um-HEf]i,QT,z'

Continuing we see that I3, I5 can be estimated in the similar way as I; and I,

as I. Summarizing we have [ll]i,QT,m < d3(am)T [ umll2+0.07 |tmtill24+a.07,
where a > 0. Next, we estimate

|f Ume dT|?

[ ]a/Q QT .t §¢4 am / / / ( |; — t/|1+°‘ |um+1ff|2
2 ’
/ Umg dr

0

t’ t t’
N | f; wme d7?| fy umee AT [umi1el® | [, wmee dTP|umpie]?
‘t—tl|1+a ‘t—tl|1+a
‘ / umgf dT

T
s¢4<am>(:r1a [ a / el [ fuacel?dr
Q 0 0
T
Tl s | fmeleodr
T T T
+T2*a/ d,g/ |um§|2d7/ ufmgng/ uz, g dr
Q 0 0 0
T T
+T1_°‘/ d§/ ufn&dr/ ufnJrlng
T AYP
|um+1§ - um+1£(t )| /

[Um 1ee(t) — Umy1ee(t')
‘t _ t/‘l—‘—a

+

um — Uy, |2
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where Is + Is + Iy < ¢5(am), am||Um+1ll24a.0r , and

1/2

T
IlO S ¢6 (am)Tl/Q (/0 |um£5|§p1,ﬂ dt)

T T 16 (t) = tmy1e(t')3,,.0 1/2
. 0 0 ‘t _ t/‘l+o¢

< G6(am) T2 [ umll2 0,07 [tum1 240,07,
where we used imbeddings D?W3T*(Q) C Lap, (), D*W3t*(Q) C Loy, (Q),
which hold because 3/2 —3/2p1 < o, 3/2 —3/2ps < 1, 1/p1 + 1/ps = 1 are
satisfied together for o > 1/2.

Summarizing, we have shown

[l1]aj2.0r 0 < 7(am) T [umll2t .07 [Um+1ll24a.07-

Now, we consider lp = 93(b)¢(1m)Mme, where the dot denotes the derivative
with respect to the argument,

T t 2 2
mg& — Umg’ d m
[ZZ}Q,QT,I < ¢8(am; sup ||77m||1+04752) </ / / |:| fo (u : fme ) T| |77 §|
t 0 QJQ

g
. ]2 2
mm@m - ?%ﬁ!ﬂmd ) di de e’ + [nmdiw>

< ¢g(am, sup 17mll1+0.0)T" sup [7m]1+a.0,

+

where to estimate the first two integrals on the r.h.s of the first inequality we
used the same method as in the case of I;. Next,

T T (1S, e dr P e 2
+ mé 77m§
[ZQ}Q/ZQT,t Sﬁblo(amasgp||77m||1+0479)/9/0 /O < [t —t/|1+e

|7 (1) = nn (8) 2 2
el

= d10d11-

[11me (£) = nme (¢)
it d¢ dt dt’

Continuing,

T
10 ST [ a0 drsup [ o

0
T _ "2
N (1) = N ()15, 0
Jr/o /0 It — [+ P g [y 0 At dt' + [mel s or ¢ = T2,

where 1/p;+1/ps = 1. To estimate the middle term in I;5 we use the imbeddings
W3(Q) C Loy, (Q), DW,T*(Q) C Ly, (Q), which hold together because the
relations 3/2 — 3/2p; < 1, 3/2 — 3/2p2 < 1+ « are satisfied for a > 1/2. Using
(6.8) we obtain

[l2]aj2.0m ¢ < d11(aAm, sup [7mll1+a,0)@m.
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In view of Lemma 2.6 we have

lEsllaor < sup l[nm1ra.cllglaor:

Next we have
llall1 /240,57 < clllallita,0r,

which can be estimated in the same way as l;. Next

1sll1/2+a,57 < clllslliva,or < cllumllitaor < ellumllara,or + c(e)llumllo.or
< ellumllzraar + @) ([umll24anr + [v0]l14a.0)-
Finally,
[lell3/2+a,57 < clllsll2a,0r < T[tmll21a,07 [umi1ll24+a,07-

Summarizing the above considerations we obtain (6.12). This concludes the
proof. a

Let
(6.14) o () = [[tm 240,07

Let A > 0 be sufficiently large such that Go(y) < A, am,(t) < A. Then there
exists a time T, such that for t < T, we have

(6.15) 1 (t) < G(y,t%A,t) < A.
Hence we obtain
(6.16) an(t) <A, form=0,1,..., and t <T,.

Finally, we define the zero approximation function wug as a solution to the
following problem

ugr — divD(ug) =0 in Q7
To-D(ug) T +yug-Ta =0, a=1,2, on ST,
ug-n=>0 on ST,
Ugli=0 = Vo in Q.

Therefore, we have proved

LEMMA 6.3. If we assume that data are such that v < oo, and that o > 1/2,
then the sequence constructed by (6.9) and (6.10) is bounded for T < T,.

Now we show that the sequence {7, un, } converges. To this end we consider
the differences

(6'17) Hp, = N — M1, Un = tUm — Um—1,
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which are solutions of the following problems
NmUm+t1t — AivD(Up41)
= — (divD(Upmy1) — divy, Dy, (Umt1))
+ (divy,, Dy, (um) — dive,, Dy, (um))
= 4m) YV, Hin + §(01m) (Vi = Vg, 1) (hm—1)

7
- (Q(nm) - q'(nm—l))vumflnm—l + Hpg — Hpme = ZLi7
=1

To  D(Um+t1) -1

(6.18)
= (?a : D(Um-i-l) M= Tupna - Dum(Um-&-l) 'ﬁum)
= (Tuma " Du,, (Um) - u,, = Tugy 0 Dy (Um) - Ty, )
10
_V(Um “Tupma — Um—1 '7um,1a) = ZLi7 a=1,2,
1=8
12
U1 = (0 —7u,,)  Uns1 — (B, — Ty y) - Um = Z L,
i=11
Um+1li=0 = 0,
and
(6 19) Hmt + Hmdivumum = nm_l(divum Um — diVum_lum),
. Hm|t:0 =0.

To show the convergence of the sequence {um,, Nm } we need
LEMMA 6.4. Let the assumptions of Lemma 6.3 be satisfied. Then
(6.20) 1Um+1l2+a0r < (AT Unll24a,07
where a > 0 and A is the bound from (6.16).

PROOF. From Lemma 5.1 we have

(6.21)  [[Un+1ll24a.0r < d1(Inmllcs@ry, 11/mmll L. @r))

7 10 12
- (Z TR S TH P o ||Li|3/2+a,5T>.
=1 1=8

=11
Since L1 = Y1 (b )bmUm+iee + ¥2(bm)bimeUmy1e we have
HLl ||oc,QT < ¢2 (Aa T)Ta ||Um+1 H2+a,QT .
Since Ly = %3 (b, bin—1) fy Ume dTtmee +4(bny bm—1) [3 Unee dTttme we obtain

HL2||0¢,QT < ¢3(Aa T)TaHUmHQ-i-a,QT .
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Next, we have that Lg = (1, )¥5 (b ) Hpme. Therefore

m —Ilm ! 2Hm 2
[L3]aQTac<¢4 A T / // (|n 5175/(53‘2|2a| €|

| Jo (e = tmer) 7P| Hne|? | |Hume — Hine' |
‘5—5/‘3+2a |£_€/|3+2a
§¢5(AaT)TS‘~ip ||Hm||1+a,97

T T (8) — o (82 H, e |2
[Lf’)]i,QT,t S¢6(A’T)/Q/O /O <77 ( ) |tit/(|1-)|-|a| §|

t/
[y tme AP Hine* | Hoe(t) = Hme ()2 o
jt—t/[+e |t —t[tte ‘

< ¢7(Aa T)Ta SUP ||Hm||1+oc7ﬂ

Hm . t, 2
+¢6AT/// | 5 t/|1+§( I ge ar v

To estimate the last expression we integrate (6.19) to get

+

) dt de dg¢’'

and

(6.22) H,p,(&,t) = —exp ( — /Ot divy,, Um dT)

t t
. / exp (/ divy,, Um d7> -1 (dive, Uy — dive,,  Up—1) dt'.
0 0

Using the fact that H,, has the following qualitative form

=1/J6(bm(t))/ (7 (b (7)) Unme (7) + 18 (b (T ))/0 Unnr (7") ATt 1 (7)) dT

we obtain that

|Hm — Hue(t)]? e

Similarly, we have

T
(6:29) sup | a0 < (AT [ VBt
Using (6.23) and (6.24) in the estimation of L3 we obtain

[ Ls]la,0r < ¢9(A, T)T|Un 240,07
Similarly L3 we estimate L. Moreover,

[ Lalla,or < ¢10(A,T)T|Unll24a,07 -
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Let us consider Lg. We have

and

T T
Lol o, < / L1200 dt < / VH o4 ollgl. 0 dt

< bUP ||Hm||1+a Q”g”a QT

Lol s < /Q/OT/ (|H |t_t/|(1+)a| lg(t)!?

o Ha()Plg(t) - (t'>|2) s s

|_t/|l+a
- Tt (N Hn(®) = Ha()Ta, o
0 0 t/|1+a ||g||1+oc,Q
| >||1+Q,Q|g< ) =90
|t—t/|1+a

|Hnlt) = Ho)l2
§<S‘ip/o e s 0 o

Using (6.23) and (6.24) we have the estimate

”LGHa,QT < ¢11(A7 T)TaHUm||2+a,QT ”g”a,QT‘

Similarly, we have

HL7”a,QT < ¢12(A7 T)Ta||Um||2+a,QT ”utha,QT~

Continuing the considerations we prove the lemma. O

Summarizing we have

THEOREM 6.5. Let the assumptions of Lemma 6.3 be satisfied. Then there

exists a time Ty, < Ty such that for t < T, there exists a solution to problem
(1.1) such that v e WZToITe/2qt) e witet/2re/2(qt),

(1]
2]
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