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MULTIPLE POSITIVE SOLUTIONS FOR
SOME NONLINEAR ELLIPTIC SYSTEMS

Kazunaga Tanaka

0. Introduction

In this paper we study, via variational methods, the existence and multiplicity
of positive solutions of the following systems of nonlinear elliptic equations:

k1∆u+ Vu(u, v) = 0 in Ω,(0.1)

k2∆v + Vv(u, v) = 0 in Ω,(0.2)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω,(0.3)

u(x) > 0, v(x) > 0 in Ω,(0.4)

where k1, k2 > 0 are positive constants, Ω ⊂ RN is a bounded domain with
a smooth boundary ∂Ω and V (u, v) ∈ C2(R2,R). We refer to [CdFM], [CM],
[dFF], [dFM] and [HvV] for variational study of such elliptic systems. However,
it seems that the multiplicity of positive solutions for such elliptic systems is not
well studied.

Here, we study a case related to some models (with diffusion) in mathematical
biology, ecology, etc., and we consider the case where (0.1)–(0.3) have 4 constant
non-negative solutions (0, 0), (a, 0), (0, b), (u0, v0) ∈ R2 (a, b, u0, v0 > 0), that
is, solutions of Vu(u, v) = Vv(u, v) = 0, and 2 constant solutions (a, 0), (0, b) are
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stable and other 2 solutions (0, 0), (u0, v0) are unstable as steady solutions of
the evolution problem:

ut = Vu(u, v), vt = Vv(u, v).

Moreover, we assume

(0.5) 0 = V (0, 0) < V (u0, v0) < min{V (a, 0), V (0, b)},

and we look for non-constant positive solutions of (0.1)–(0.4). More precisely,
we assume the following conditions on V (u, v):

(V0) V ∈ C2(R2,R) and V (u, v) is even in both variables u, v, that is,
V (u, v) = V (−u, v) = V (u,−v) for all u, v.

(V1) There exist a, b, u0, v0 > 0 such that Vu(u, v) = Vv(u, v) = 0 (u, v ≥ 0)
implies

(u, v) ∈ {(0, 0), (a, 0), (0, b), (u0, v0)}.
Moreover,

1◦ V (0, 0), V (a, 0), V (0, b), V (u0, v0) satisfy relation (0.5).
2◦ V (u, v) attains a non-degenerate local minimum at (0, 0).
3◦ V (u, v) attains non-degenerate local maxima at (a, 0), (0, b).
4◦ (u0, v0) is a non-degenerate saddle point of V (u, v).

(V2) There exists R0 > 0 such that
1◦ Vu(u, v) < 0 for (u, v) ∈ [R0,∞)× [0,∞).
2◦ Vv(u, v) < 0 for (u, v) ∈ [0,∞)× [R0,∞).

(V3)
1◦ ∂

∂u (Vu(u, 0)/u) < 0 for u ∈ (0, R0].
2◦ ∂

∂v (Vv(0, v)/v) < 0 for v ∈ (0, R0].

(V4) Vuv(u, v) < 0 for all (u, v) ∈ [0, R0]× [0, R0].

We denote the eigenvalues of −∆ under Neumann boundary conditions by

0 = λ1 < λ2 ≤ λ3 ≤ . . . .

Now we can state our main result.

Theorem 0.1.

(i) Assume (V0)–(V3) and

(0.6) det
(
λ2

[
k1 0
0 k2

]
−

[
Vuu(u0, v0) Vuv(u0, v0)
Vuv(u0, v0) Vvv(u0, v0)

])
< 0.

Then (0.1)–(0.4) have at least one non-constant positive solution.
(ii) In addition to the assumptions of (i), assume (V4) and

(0.7) det
(
λj

[
k1 0
0 k2

]
−

[
Vuu(u0, v0) Vuv(u0, v0)
Vuv(u0, v0) Vvv(u0, v0)

])
6= 0 for all j ∈ N.
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Then (0.1)–(0.4) have at least two non-constant positive solutions.

We have a stronger result when N = 1.

Theorem 0.2. Assume N = 1 and (V0)–(V3). Suppose that

(0.8) m ≡ max
{
` ∈ N : det

(
λ`

[
k1 0
0 k2

]
−

[
Vuu(u0, v0) Vuv(u0, v0)
Vuv(u0, v0) Vvv(u0, v0)

])
< 0

}
≥ 2.

Then (0.1)–(0.4) have at least 2(m− 1) non-constant positive solutions.

Remark 0.3. Conditions (0.6) and (0.8) are conditions on the unstability
of (u0, v0) or on the Morse index of (u0, v0) of the corresponding functional, and
they are satisfied if k1 and k2 are sufficiently small. In Section 1.3, we will see
that the integer m defined in (0.8) is equal to the Morse index of (u0, v0) and
(0.7) holds if and only if (u0, v0) is non-degenerate. See Remark 1.9.

In mathematical biology, the existence and multiplicity of positive solutions
of the following nonlinear elliptic systems is important (c.f. [CC], [CL], [D1],
[D3], [D4], [LL]):

k1∆u+ f(u, v)u = 0 in Ω,(0.9)

k2∆v + g(u, v)v = 0 in Ω,(0.10)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω,(0.11)

u(x) > 0, v(x) > 0 in Ω.(0.12)

where f(u, v), g(u, v) ∈ C1(R2,R) are functions satisfying fv(u, v) < 0 and
gu(u, v) < 0 for all u, v. Unknown functions u(x), v(x) correspond to the
population densities of 2 species and conditions fv < 0, gu < 0 describe a certain
competition environment. Solutions of (0.9)–(0.12) can be regarded as positive
steady-states for evolution problem:

(0.13) ut = k1∆u+ f(u, v)u, vt = k2∆v + g(u, v)v,

and they are considered as co-existence states for 2 species.
We consider the so-called bistable situation — we assume that (0.13) has

2 stable constant steady-states (a, 0), (0, b) and 2 unstable steady-states (0, 0),
(u0, v0) — and we try to find non-constant positive steady-states. A typical
example of such situation is

(0.14) f(u, v) = a1 − b1u− c1v, g(u, v) = a2 − b2u− c2v,

with a1/b1 > a2/b2 and a1/c1 < a2/c2. This model is called the Lotka–Volterra
competition model.
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In this paper we assume also that the system has a variational structure, and
we study (0.1)–(0.4) under conditions (V0)–(V4). We remark that (V0) should
be regarded as a condition on the behavior of V (u, v) near {u = 0} ∪ {v = 0}.
In particular, it follows that Vu(0, v) = Vv(u, 0) = 0 for all u, v. Under this
condition, W (x, y) = V (

√
x,
√
v) is a function of class C1 on [0,∞)× [0,∞), and

our system (0.1)–(0.4) can be written in the form (0.9)–(0.12) with f(u, v) =
2Wx(u2, v2), g(u, v) = 2Wy(u2, v2) (see Section 1.1). Condition (V1) says that
the system is bistable and (V4) means that the system gives a competition model.

An example of V (u, v) satisfying (V0)–(V4) is

V (u, v) =
a

2
u2 +

c

2
v2 − b

4
u4 − d

4
v4 − 1

2
u2v2,

with bc < a < c/d. The corresponding system is

k1∆u+ (a− bu2 − v2)u = 0 in Ω,(0.15)

k2∆v + (c− u2 − dv2)v = 0 in Ω,(0.16)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω,(0.17)

u(x) > 0, v(x) > 0 in Ω.(0.18)

As a special case of our Theorems 0.1 and 0.2, we have:

Theorem 0.4. Assume bc < a < c/d.

(i) If

(0.19) det
(
λ2

[
k1 0
0 k2

]
+

2
1− bd

[
b(c− ad)

√
(a− bc)(c− ad)√

(a− bc)(c− ad) d(a− bc)

])
< 0,

then (0.15)–(0.18) have at least one non-constant positive solution.
(ii) In addition to the assumptions of (i), assume

det
(
λj

[
k1 0
0 k2

]
+

2
1− bd

[
b(c− ad)

√
(a− bc)(c− ad)√

(a− bc)(c− ad) d(a− bc)

])
6= 0

for all j ∈ N. Then (0.15)–(0.18) have at least two non-constant positive
solutions.

(iii) Assume N = 1. Let

m ≡ max
{
` ∈ N : det

(
λ`

[
k1 0
0 k2

]
+

2
1− bd

[
b(c− ad)

√
(a− bc)(c− ad)√

(a− bc)(c− ad) d(a− bc)

])
< 0

}
,

and assume m ≥ 2. Then (0.15)–(0.18) have at least 2(m − 1) non-
constant positive solutions.
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Remark 0.5. (i) Condition (0.19) is satisfied if k1, k2 are sufficiently small.
(ii) We remark that a more general case:

k1∆u+ (a1 − b1u
2 − c1v

2)u = 0 in Ω,

k2∆v + (a2 − b2u
2 − c2v

2)v = 0 in Ω,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω,

u(x) > 0, v(x) > 0 in Ω,

can be reduced to (0.15)–(0.18) after a suitable scaling procedure. (0.15)–(0.18)
may be regarded as a variational version of the Lotka–Volterra competition
model.

(iii) The original Lotka–Volterra competition model (0.9)–(0.12) with (0.13)
does not have a variational structure and our theorems are not applicable. It
seems that the existence of one non-constant positive solution is not known in
general bounded domain Ω ⊂ RN (N ≥ 2), even if k1 and k2 are sufficiently
small. For the case N = 1, we refer to Nakashima [N]. See Remark 5.5.

The existence and the multiplicity of a scalar elliptic problem:

−∆u = g(u) in Ω,(0.20)

u = 0 on ∂Ω,(0.21)

is rather well-studied via variational arguments. We refer to Struwe [St] and
references therein.

Especially, Hofer [H1], [H2], [H3] proved the existence of at least 4 non-zero
solutions (including positive, negative and sign-changing ones) of (0.20)–(0.21)
under conditions:

1◦ g ∈ C1(R,R).
2◦ lim sup|u|→∞ g(u)/u < λ1.
3◦ g(0) = 0.
4◦ g′(0) ∈ (µi, µi+1) for some i ≥ 2.

Here we denote by 0 < µ1 < µ2 ≤ . . . the eigenvalues of −∆ under Dirichlet
boundary conditions. To show the existence of 4 non-zero solutions, Hofer first
found positive and negative solutions via minimizing argument. Next, he used
the mountain pass theorem and a Morse theoretic argument to obtain two more
solutions.

We apply essentially the same idea to our problem (0.1)–(0.4). We remark
that we look only for positive solutions of (0.1)–(0.4) and that, if we admit sign-
changing solutions, the number of solutions (including sign-changing ones) goes
to infinity as (k1, k2) → (0, 0). See Remark 1.10 below.
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In the following sections, we give proofs of our Theorems 0.1 and 0.2. In
Section 1, we give some preliminaries and some a priori estimates for (0.1)–(0.4).
In Sections 2–4, we prove Theorem 0.1. We use the mountain pass theorem
and an idea from Hofer [H2], [H3] (c.f. [H1]). Here, Morse indices and Leray–
Schauder degree theory play an important role.

In Section 5, we give a proof of Theorem 0.2. A relation between the numbers
of zeros of (u′(x), v′(x)) and the Morse index of (u, v) is a key of the proof.

1. Preliminaries

In this section, first we give a modification of the given potential V (u, v),
so that the corresponding functional is of class C2 and coercive in a suitable
function space. Second, we obtain a priori L∞-estimates for critical points, and
we state some fundamental properties of the corresponding functional.

1.1. Modification of V (u, v). Let R0 > 0 be a positive constant defined
in (V2). We choose a smooth function ν(s) : [0,∞) → R such that

(i) ν(s) ∈ [0, 1] for all s,
(ii) ν′(s) ≥ 0 for all s,

(iii) ν(s) =

{
1 for s ≥ 9R2

0,

0 for s ≤ 4R2
0,

and set

Ṽ (u, v) = (1− ν(u2 + v2))V (u, v)− ν(u2 + v2)((u2 + v2)/2 + C0),

where C0 > 0 is a positive constant which will be determined in the following
lemma.

Lemma 1.1. Suppose that V (u, v) satisfies (V0)–(V3) (resp. (V0)–(V4)).
Then, for sufficiently large C0 > 0, the modified potential Ṽ (u, v) also satisfies
(V0)–(V3) (resp. (V0)–(V4)).

Proof. Suppose that V (u, v) satisfies (V0)–(V3), then clearly (V0), (V3)
hold for Ṽ (u, v). Moreover, if V (u, v) satisfies (V4), Ṽ (u, v) also satisfies (V4).
We remark

Ṽu(u, v) = (1− ν(u2 + v2))Vu(u, v)− ν(u2 + v2)u

− 2uν′(u2 + v2)(V (u, v) + (u2 + v2)/2 + C0),

Ṽv(u, v) = (1− ν(u2 + v2))Vv(u, v)− ν(u2 + v2)v

− 2vν′(u2 + v2)(V (u, v) + (u2 + v2)/2 + C0),

and
supp ν′(u2 + v2) ⊂ {(u, v) : 4R2

0 ≤ u2 + v2 ≤ 9R2
0}.
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We set
C0 = max

4R2
0≤u2+v2≤9R2

0

|V (u, v)|+ 1.

Thus we can see that (V2) holds for Ṽ (u, v).
To verify (V1) for Ṽ (u, v), suppose u, v ≥ 0 satisfy Ṽu(u, v) = Ṽv(u, v) = 0,

then by (V2) for Ṽ (u, v) we have (u, v) ∈ [0, R0] × [0, R0]. Thus by (V1) for
V (u, v), we see that (V1) also holds for Ṽ (u, v). �

Next we give an a priori estimate for the following problem:

k1∆u+ Ṽu(u, v) = 0 in Ω,(1.1)

k2∆v + Ṽv(u, v) = 0 in Ω,(1.2)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.(1.3)

We use the notation

‖u(x)‖L∞(Ω) = ess supx∈Ω|u(x)|.

Proposition 1.2. Suppose that (u, v) ∈ H1(Ω) × H1(Ω) is a solution of
(1.1)–(1.3). Then (u, v) satisfies

‖u(x)‖L∞(Ω), ‖u(x)‖L∞(Ω) ≤ R0,

and satisfies the original problem (0.1)–(0.3).

Proof. Suppose that (u, v) ∈ H1(Ω) × H1(Ω) satisfies (1.1)–(1.3). By a
standard regularity argument, we see (u, v) ∈ L∞(Ω) × L∞(Ω). Let D = {x ∈
Ω : u(x) ≥ R0}. By (V2) we have

k1∆u = −Ṽu(u(x), v(x)) > 0 in D.

Thus, by the maximal principle, u(x) cannot take maximum in D. Therefore,
D = ∅ and u(x) ≤ R0 in Ω. Similarly, we have −R0 ≤ u(x) in Ω. Thus
‖u(x)‖L∞(Ω) ≤ R0. In a similar way we can also show ‖v(x)‖L∞(Ω) ≤ R0. �

By the above proposition, solutions of (1.1)–(1.3) are also solutions of (0.1)–
(0.3) and there is no need to distinguish Ṽ (u, v) and V (u, v). Therefore in what
follows, we assume that V (u, v) satisfies

(V5) For some constant C0 > 0,

V (u, v) = −(u2 + v2)/2− C0 for u2 + v2 ≥ 9R2
0.

We don’t distinguish (0.1)–(0.3) and (1.1)–(1.3).
Here we give a remark on condition (V0). As in the Introduction, we define

a function W (u, v) : [0,∞)× [0,∞) → R by

(1.4) W (x, y) = V (
√
x,
√
y) for x, y ≥ 0.
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From (V0)–(V3), it follows that

(W0) W ∈ C1([0,∞)× [0,∞),R) ∩ C2((0,∞)× (0,∞),R).
(W1) Wx(0, 0) > 0, Wy(0, 0) > 0.
(W2) Wx(x, y) < 0 for (x, y) ∈ [R2

0,∞) × [0,∞), Wy(x, y) < 0 for (x, y) ∈
[0,∞)× [R2

0,∞).
(W3) Wxx(x, 0) < 0 for x ∈ (0, R2

0], Wyy(0, y) < 0 for y ∈ (0, R2
0].

(W4) Wxy(x, y) < 0 for (x, y) ∈ [0, R2
0]× [0, R2

0].
(W5) W (x, y) = −(x+ y)/2− C0 for x+ y ≥ 9R2

0.

By Definition (1.4), we have V (u, v) = W (u2, v2) and our equation can be written
as

k1∆u+ 2Wx(u2, v2)u = 0 in Ω,(1.5)

k2∆v + 2Wy(u2, v2)v = 0 in Ω,(1.6)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.(1.7)

This form of equations has a similarity with equations (0.9)–(0.10), and it is
convenient to apply the maximal principle.

1.2. Variational formulation. In what follows, we assume (V0)–(V3)
and (V5). We set

I(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − V (u, v)

]
dx : E → R,

where E = H1(Ω)×H1(Ω). We use the notation

‖(u, v)‖2E = ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) + ‖∇v‖2L2(Ω) + ‖v‖2L2(Ω),

‖u‖L2(Ω) =
( ∫

Ω

|u|2 dx
)1/2

.

We denote the duality product between E∗ and E by 〈 · , · 〉. By virtue of (V5),
we have

Proposition 1.3. Assume that V (u, v) satisfies (V0)–(V3) and (V5). Then

(i) I(u, v) ∈ C2(E,R).
(ii) I(u, v) is coercive in the following sense:

I(u, v) →∞ as ‖(u, v)‖E →∞.

(iii) I(u, v) satisfies the Palais–Smale condition.

Proof. By (V5), it is easy to see that I(u, v) is of class C2 on E. Since
V (u, v) satisfies

V (u, v) ≤ −(u2 + v2)/2 + C1 in R2,
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for some constant C1 > 0, we have

I(u, v) ≥k1

2
‖∇u‖2L2(Ω) +

k2

2
‖∇v‖2L2(Ω)

+
1
2
‖u‖2L2(Ω) +

1
2
‖v‖2L2(Ω) − C1|Ω| for all (u, v) ∈ E.

Thus we have (ii). We can also deduce (iii) from (ii) by a standard argument.�

We also have.

Proposition 1.4. Suppose that (u, v) ∈ E is a critical point of I(u, v).
Then it satisfies (0.1)–(0.3) and

‖u‖L∞(Ω), ‖v‖L∞(Ω) ≤ R0,

where R0 is given in (V2).

Proof. Suppose that (u, v) ∈ E is a critical point of I(u, v). Then it satisfies∫
Ω

(k1∇u∇φ+ k2∇v∇ψ − Vu(u, v)φ− Vv(u, v)ψ) dx = 0 for all (φ, ψ) ∈ E.

Thus, by a standard argument, we can see that (u, v) ∈ E is a solution of (0.1)–
(0.3). The second assertion follows from Proposition 1.2. �

In what follows, we will try to find critical points (u, v) ∈ E of I(u, v) with
positivity condition (0.4). The following lemma is important to distinguish pos-
itive solutions from non-negative solutions.

Lemma 1.5. Suppose that (u, v) ∈ E is a non-negative critical point of
I(u, v), that is, I ′(u, v) = 0 and u(x) ≥ 0, v(x) ≥ 0 in Ω. Then

(u(x), v(x)) ≡ (0, 0), (a, 0), (0, b),

or u(x) > 0, v(x) > 0 in Ω.

To prove the above lemma, we use the form (1.5)–(1.7) of our problem. We
set

(1.8) A = 2 max
x≥0, y≥0
x+y≤9R2

0

max{|Wx(x, y)|, |Wy(x, y)|}+ 1,

and we rewrite (1.5)–(1.7) as

−k1∆u+ (A− 2Wx(u2, v2))u = Au in Ω,(1.9)

−k2∆v + (A− 2Wy(u2, v2))v = Av in Ω,(1.10)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.(1.11)

We remark that by (1.8) and (W5)

(1.12) A−2Wx(x, y) ≥ 1, A−2Wy(x, y) ≥ 1 for all (x, y) ∈ [0,∞)× [0,∞).
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Proof of Lemma 1.5. Suppose that I ′(u, v) = 0 and u(x), v(x) ≥ 0. By
Proposition 1.4, (u, v) satisfies (1.9)–(1.11). By (1.12),

A− 2Wx(u(x)2, v(x)2) ≥ 1, A− 2Wy(u(x)2, v(x)2) ≥ 1, in Ω.

Applying the maximal principle to (1.9), since the right hand sides are non-
negative, we see that u(x) ≥ 0 and u(x) 6≡ 0 imply u(x) > 0 in Ω. Similarly,
v(x) ≥ 0 and v(x) 6≡ 0 imply v(x) > 0 in Ω.

Therefore, a non-negative critical point (u, v) ∈ E of I(u, v) is a positive
solution of (0.1)–(0.3) if u(x) 6≡ 0 and v(x) 6≡ 0. The conclusion of Lemma 1.5
follows from the next lemma which deals with the case u(x) ≡ 0 or v(x) ≡ 0. �

Lemma 1.6.

(i) Suppose that (u(x), 0) ∈ E is a non-negative critical point of I(u, v),
then

(u(x), 0) ≡ (0, 0) or (a, 0).

(ii) Suppose that (0, v(x)) ∈ E is a non-negative critical point of I(u, v),
then

(0, v(x)) ≡ (0, 0) or (0, b).

Proof. We prove (i). (ii) can be proved in a similar way. Since (u, 0) is a
critical point of I(u, v), we have

−k1∆u+ (A− 2Wx(u2, 0))u = Au in Ω,
∂u

∂n
= 0 on ∂Ω.

By the maximal principle, we see that u(x) ≥ 0 and u(x) 6≡ 0 imply u(x) > 0
in Ω. Thus we may assume that u(x) > 0 in Ω, which will take place if (u(x), 0) 6≡
(0, 0).

Since (a, 0) is a critical point of V (u, v), we have Wx(a2, 0) = 0. Thus
û(x) = u(x)− a satisfies

−k1∆û− 2(Wx(u2, 0)−Wx(a2, 0))u = 0.

For a suitable θ(x) ∈ (0, 1), we have

−k1∆û− 2Wxx((1− θ(x))u2 + θ(x)a2, 0)(u2 − a2)u = 0.

That is,

−k1∆û− 2u(u+ a)Wxx((1− θ)u2 + θa2, 0)û = 0 in Ω,
∂û

∂n
= 0 on ∂Ω.
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We multiply û(x) and integrate over Ω, then we get

k1‖∇û‖2L2(Ω) − 2
∫

Ω

u(u+ a)Wxx((1− θ)u2 + θa2, 0)|û|2 dx = 0.

By (V3), in other words, (W3), we can see that û(x) ≡ 0. That is, (u(x), 0) ≡
(a, 0). �

1.3. Morse indices and some properties of I(u, v). For a critical point
(u, v) ∈ E of I(u, v), we have for (φ, ψ) ∈ E

(1.13) 〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉 =
∫

Ω

[k1|∇φ|2 + k2|∇ψ|2

− (D2V (u, v)(φ, ψ), (φ, ψ))] dx.

Here we denote by D2V (u, v) the Hessian matrix of V (u, v). We define the
Morse index index I ′′(u, v) and the augmented Morse index index0 I

′′(u, v) at
(u, v) ∈ E by

index I ′′(u, v) = max{dimH : H ⊂ E is a subspace such that

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉 < 0 for all (φ, ψ) ∈ H \ {(0, 0)}},
index0 I

′′(u, v) = max{dimH : H ⊂ E is a subspace such that

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉 ≤ 0 for all (φ, ψ) ∈ H}.

We say that (u, v) is non-degenerate if and only if index I ′′(u, v) = index0 I
′′(u, v).

Roughly speaking, index I ′′(u, v) (resp. index0 I
′′(u, v)) is a number of negative

(resp. non-positive) eigenvalues of I ′′(u, v), and (u, v) is non-degenerate if and
only if 0 is not an eigenvalue of I ′′(u, v).

For a constant solution (u, v) ∈ R2 ⊂ E, the Morse index I ′′(u, v) can be
represented in the following way.

Lemma 1.7. For (u, v) ∈ R2 ⊂ E,

index I ′′(u, v) =
∞∑

j=1

# of negative eigenvalues(1.14)

of
(
λj

[
k1 0
0 k2

]
−D2V (u, v)

)
,

index0 I
′′(u, v) =

∞∑
j=1

# of non-positive eigenvalues(1.15)

of
(
λj

[
k1 0
0 k2

]
−D2V (u, v)

)
,

and (u, v) is non-degenerate if and only if

(1.16) det
(
λj

[
k1 0
0 k2

]
−D2V (u, v)

)
6= 0 for all j ∈ N.
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Here 0 = λ1 < λ2 ≤ . . . are eigenvalues (counting multiplicities) of −∆ under

Neumann boundary conditions. We remark that
(
λj

[
k1 0

0 k2

]
−D2V (u, v)

)
is

positive definite for a sufficiently large j and the sums in (1.14) and (1.15) are
finite.

Proof. Using eigenfunction expansion, we write

φ(x) =
∞∑

j=1

φjej(x), ψ(x) =
∞∑

j=1

ψjej(x),

where ej(x) are eigenfunctions of −∆ corresponding to the eigenvalues λj , and
we assume

∫
Ω
ei(x)ej(x) dx = δij . From (1.13) it follows that

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉

=
∞∑

j=1

(
k1λj |φj |2 + k2λj |ψj |2 −

(
D2V (u, v)

[
φj

ψj

]
,

[
φj

ψj

]))

=
∞∑

j=1

(
M(λj ;u, v)

[
φj

ψj

]
,

[
φj

ψj

])
.

Here we use the notation: M(λ;u, v) = λ

[
k1 0

0 k2

]
−D2V (u, v). We also denote

by indexM(λ;u, v) (resp. index0M(λ;u, v)) the number of negative (resp. non-
positive) eigenvalues of M(λ;u, v). We see

index I ′′(u, v) =
∞∑

j=1

indexM(λj ;u, v),

index0 I
′′(u, v) =

∞∑
j=1

index0M(λj ;u, v).

Thus we obtain (1.14) and (1.15). Since indexM(λj ;u, v) ≤ index0M(λj ;u, v),
(u, v) is non-degenerate if and only if

indexM(λj ;u, v) = index0M(λj ;u, v) for all j ∈ N.

That is, 0 is not an eigenvalue of M(λj ;u, v) for all j ∈ N. This is nothing but
(1.16). Finally, we remark that

indexM(λ;u, v) and index0M(λ;u, v)(1.17)

are non-increasing functions of λ.
(1.18) indexM(λ;u, v) = index0M(λ;u, v) = 0 for sufficiently large λ > 1.

Thus the sums in (1.14) and (1.15) are finite. �

As a corollary, we have.
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Corollary 1.8.

(i) index I ′′(a, 0) = index0 I
′′(a, 0) = 0, index I ′′(0, b) = index0 I

′′(0, b) = 0
and (a, 0), (0, b) are strict local minimums of I(u, v) in E.

(ii)

(1.19) index I ′′(u0, v0)

= max
{
` ∈ N : det

(
λ`

[
k1 0
0 k2

]
−D2V (u0, v0)

)
< 0

}
,

and if we regard (k1, k2) as a parameter

index I ′′(u0, v0) ≥ 1 for all (k1, k2) ∈ (0,∞)× (0,∞),(1.20)

index I ′′(u0, v0) →∞ as (k1, k2) → (0, 0).(1.21)

Moreover, (u0, v0) is non-degenerate if and only if

(1.22) det
(
λj

[
k1 0
0 k2

]
−D2V (u0, v0)

)
6= 0 for all j ∈ N.

Proof. By assumption (V1), −D2V (a, 0) and −D2V (0, b) are positive def-
inite. Thus we can obtain (i) from Lemma 1.7. For (ii), by assumption (V1), we
have

indexM(0;u0, v0) = index −D2V (u0, v0) = 1.

Thus, by (1.17) we have for λ ≥ 0

indexM(λ;u0, v0) =

{
1 if detM(λ;u0, v0) < 0,

0 if detM(λ;u0, v0) ≥ 0.

Therefore we get (1.19). (1.20)–(1.21) can be deduced from (1.19) easily. (1.22)
follows from (1.16). �

Remark 1.9. Using Corollary 1.8, we can represent conditions (0.6)–(0.8)
in Theorems 0.1 and 0.2 in terms of I ′′(u0, v0); condition (0.6) is equivalent to
index I ′′(u0, v0) ≥ 2, (0.7) holds if and only if (u0, v0) is non-degenerate, and
(0.8) is nothing but m = index I ′′(u0, v0) ≥ 2.

Remark 1.10. We can see as in Corollary 1.8 that

index I ′′(0, 0) ≥ 2 for all (k1, k2) ∈ (0,∞)× (0,∞),

index I ′′(0, 0) →∞ as (k1, k2) → (0, 0).

Since I(u, v) is even and coercive (Proposition 1.3), we can apply Clark’s the-
orem ([C], see also Theorem 9.1 of Rabinowitz [R2]) to see that the number
of solutions (including positive, negative and sign-changing ones) of (0.1)–(0.3)
goes to infinity as (k1, k2) → (0, 0).
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2. Proof of of Theorem 0.1(i)

In this section, we give a proof to (i) of Theorem 0.1. In what follows, we
identify the set of constant functions in E and R2. We use the notation:

P = {(u, v) ∈ E : u(x) ≥ 0 and v(x) ≥ 0 in x ∈ Ω}.

Since I(u, v) = −|Ω|V (u, v) for (u, v) ∈ R2, critical values corresponding to
constant solutions satisfy the following relation:

max{I(a, 0), I(0, b)} < I(u0, v0) < I(0, 0) = 0.

This follows from (V1). By Corollary 1.8(i), (a, 0), (0, b) are strict local minima
of I(u, v) in E. Therefore, we will find a non-constant positive solution through
a version of the mountain pass theorem. We consider the following set of paths:

Γ = {γ(s) ∈ C([0, 1], E) : γ(0)(x) = (a, 0),(2.1)

γ(1)(x) = (0, b) for all x ∈ Ω },
Γ+ = {γ(s) ∈ Γ : γ(s) ∈ P for all s ∈ [0, 1]},(2.2)

Γc+ = {γ(s) ∈ Γ+ : γ(s) ∈ R2 for all s ∈ [0, 1]}.(2.3)

We define

β = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)),(2.4)

β+ = inf
γ∈Γ+

max
s∈[0,1]

I(γ(s)),(2.5)

βc+ = inf
γ∈Γc+

max
s∈[0,1]

I(γ(s)).(2.6)

We have

Proposition 2.1.

(i) max{I(a, 0), I(0, b)} < β = β+ ≤ βc+ = I(u0, v0) < 0.
(ii) There exists a (u∗, v∗) ∈ E such that

(u∗, v∗) ∈ P,(2.7)

I(u∗, v∗) = β,(2.8)

I ′(u∗, v∗) = 0,(2.9)

index I ′′(u∗, v∗) ≤ 1.(2.10)

Proof. First we show β = β+. Since Γ+ ⊂ Γ, β ≤ β+ is clear. For
γ(s) = (u(s)(x), v(s)(x)) ∈ Γ, setting

γ̃(s) = (|u(s)(x)|, |v(s)(x)|) ∈ Γ+,
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we have I(γ̃(s)) ≤ I(γ(s)) for all s ∈ [0, 1]. Therefore

β+ ≤ inf
γ∈Γ

max
s∈[0,1]

I(γ̃(s)) ≤ inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) = β.

That is, β = β+. Since (a, 0), (0, b) are strict local minima of I(u, v), we can
also see

max{I(a, 0), I(0, b)} < β = β+.

Since I(u, v) satisfies the Palais–Smale condition (Proposition 1.3), we can see
that β = β+ is a critical value of I(u, v), that is, there exists (u∗, v∗) ∈ E

satisfying (2.8) and (2.9).
To see (2.7), we use the Ekeland’s principle. Since β = β+, we can find a

path γn ∈ Γ+ such that

max
s∈[0,1]

I(γn(s)) → β.

By the Ekeland’s principle, we can find (un, vn) ∈ E such that

dist ((un, vn), γn([0, 1])) → 0,(2.11)

I(un, vn) → β,(2.12)

I ′(un, vn) → 0.(2.13)

Since I(u, v) satisfies the Palais–Smale condition, we can choose a convergent
subsequence, denoted by (un, vn), such that (un, vn) → (u∗, v∗) in E. By (2.12),
(2.13), we have (2.8), (2.9). Since γn([0, 1]) ⊂ P , (2.7) follows from (2.11).

Property (2.10) can be deduced just as in Tanaka [T]. See also Fang and
Ghoussoub [FG]. Therefore we get (ii). We set

Γc = {γ(s) ∈ Γ : γ(s) ∈ R2 for all s ∈ [0, 1]}, βc = inf
γ∈Γc

max
s∈[0,1]

I(γ(s)).

We remark

(2.14) I(u, v) = −|Ω|V (u, v) on R2.

Arguing as above in R2 instead of E, we can see βc = βc+ > max{I(a, 0), I(0, b)}
and there exists a (u, v) ∈ [0,∞)× [0,∞) such that

I(u, v) = βc, I ′(u, v) = 0, index −D2V (u, v) ≤ 1.

By (2.14), (u, v) is a critical point of −|Ω|V (u, v) in R2. Thus by (V1) we see
(u, v) = (u0, v0) and β+ = I(u0, v0). Thus we obtain (i). �

Using Lemma 1.5 and assumption (0.6), we give a proof of Theorem 0.1(i).
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Proof of Theorem 0.1(i). Let (u∗, v∗) be a critical point of I(u, v) ob-
tained in Proposition 2.1. It satisfies

u∗(x) ≥ 0, v∗(x) ≥ 0 in Ω,

(u∗, v∗) 6∈ {(0, 0), (a, 0), (0, b)},
index I ′′(u∗, v∗) ≤ 1.

By assumption (0.6), that is, index I ′′(u0, v0) ≥ 2,

(2.15) (u∗, v∗) 6≡ (u0, v0).

Thus by Lemma 1.5, (u∗, v∗) is a positive solution of (0.1)–(0.4). Moreover, by
(V1) and (2.15), (u∗, v∗) is non-constant. �

Remark 2.2. We can find a path γ(s) ∈ Γc+ such that

max
s∈[0,1]

I(γ(s)) = βc+ = I(u0, v0).

If (0.6) holds, i.e., index I ′′(u0, v0) ≥ 2, we modify γ(s) near (u0, v0) “in E” to
obtain a path γ ∈ Γ such that

max
s∈[0,1]

I(γ(s)) < βc+ = I(u0, v0).

Thus, under the assumption of Theorem 0.1(i), we have

(2.16) max{I(a, 0), I(0, b)} < β = I(u∗, v∗) < βc+ = I(u0, v0) < 0.

3. Proof of Theorem 0.1(ii)

In this section, we will prove the existence of at least 2 non-constant pos-
itive solutions under additional assumptions (V4) and (0.7). We remark that
(0.7) ensures the non-degeneracy of (u0, v0). We use (V4) together with Krein–
Rutman theory to compute the local degree at the mountain pass critical point
(u∗, v∗) ∈ E obtained in the previous section (see Section 4.5).

For technical reasons, we modify I(u, v) and consider the following functional
J(u, v) : E → R defined as

(3.1) J(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − V (u, v) +

A

2
(u2 − u2

+ + v2 − v2
+)

]
dx,

where A > 0 is a constant defined in (1.8) and u+ = max{u, 0}. First of all, we
have
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Lemma 3.1.

(i) J(u, v) ≥ I(u, v) for all (u, v) ∈ E.
(ii) J(u, v) = I(u, v) for all (u, v) ∈ P .
(iii) J(u, v) ∈ C1(E,R).
(iv) J(u, v) is coercive and satisfies the Palais–Smale condition.
(v) (u, v) ∈ E is a critical point of J(u, v) if and only if (u, v) is a non-

negative solution of (0.1)–(0.3).
(vi) Moreover, if (u, v) 6= (0, 0), (a, 0), (0, b), then (u, v) is a positive solution

of (0.1)–(0.4).

Proof. (i)–(iii) are clear, and we can prove (iv) as in the proof of Propo-
sition 1.3. Suppose that (u, v) ∈ E is a critical point of J(u, v). That is, (u, v)
satisfies

−k1∆u+ (A− 2Wx(u2, v2))u = Au+ in Ω,

−k2∆v + (A− 2Wy(u2, v2))v = Av+ in Ω,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

Here we use the notation W (u2, v2) = V (u, v) as in Section 1.2. Since the right
hand sides are non-negative and A− 2Wx(u2, v2) ≥ 1 and A− 2Wy(u2, v2) ≥ 1
in Ω, we can see that u(x), v(x) ≥ 0 in Ω. Thus we get (v).

By (v), critical points of J(u, v) are also critical points of I(u, v). Thus (vi)
follows from Lemma 1.5. �

The advantage of the functional J(u, v) is that there are no negative or sign-
changing critical points, and that all critical points of J(u, v) are non-negative
solutions of (0.1)–(0.3). The short point of J(u, v) is its regularity; J(u, v) be-
longs only to C1(E,R) not in C2(E,R), and this property is not convenient to
apply Morse theoretic arguments.

To give a proof to (ii) of Theorem 0.1, we argue indirectly and assume

(A) The set of non-negative solutions of (0.1)–(0.3) is

{(0, 0), (a, 0), (0, b), (u0, v0), (u∗(x), v∗(x))},

where (u∗(x), v∗(x)) ∈ E is a positive non-constant solution obtained
in (i) of Theorem 0.1.

Being inspired by the work of Dancer [D2], we apply Leray–Schauder degree
theory to our problem. We regard E∗ ' E by the Hilbert structure and denote
by deg(J ′, 0, BR(u, v)) the Leray–Schauder degree of

J ′ : E → E∗ ' E,
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with respect to 0 and the ball

BR(u, v) = {(φ, ψ) ∈ E : ‖(φ, ψ)− (u, v)‖E < R}.

For an isolated critical point (u, v) ∈ E of J(u, v), we define local degree by

degloc(J ′, (u, v)) = lim
ε→0

deg(J ′, 0, Bε(u, v)).

We remark that deg(J ′, 0, Bε(u, v)) does not depend on ε if (u, v) is the unique
critical point of J(u, v) in Bε(u, v). In Section 4 we prove

Proposition 3.2. Assume (A). Then

(D.1) degloc(J ′, (0, 0)) = 0.
(D.2) degloc(J ′, (a, 0)) = degloc(J ′, (0, b)) = 1.
(D.3) degloc(J ′, (u0, v0)) = (−1)index I′′(u0,v0).
(D.4) degloc(J ′, (u∗, v∗)) = −1.

We also prove the following proposition in Section 4.

Proposition 3.3. For a sufficiently large R ≥ 1,

(D.5) deg(J ′, 0, BR(0, 0)) = 1.

Using Propositions 3.2 and 3.3, we can give a proof of Theorem 0.1(ii).

Proof of Theorem 0.1(ii). Assume (A). Then we have

deg(J ′, 0, BR(0, 0)) = degloc(J ′, (0, 0)) + degloc(J ′, (a, 0))(3.2)

+ degloc(J ′, (0, b)) + degloc(J ′, (u0, v0))

+ degloc(J ′, (u∗, v∗)).

However, (D.1)–(D.4) and (D.5) are incompatible with (3.2). Thus J(u, v) pos-
sesses another critical point, that is, (0.1)–(0.4) have at least 2 non-constant
positive solutions. �

4. Proofs of Propositions 3.2 and 3.3

In this section, we give proofs of Propositions 3.2 and 3.3 under assump-
tion (A).

4.1. Some regularity property on homotopy. We will use homotopy
invariance property of the Leray–Schauder degree repeatedly. First, we state
some regularity property.

Let fθ(u, v) : R2 → R, θ ∈ [0, 1] be a homotopy such that

(i) fθ(u, v) ∈ C1([0, 1]× R2,R).
(ii) f0(u, v) = V (u, v) for all (u, v) ∈ R2.
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(iii) There exists a constant C > 0 independent of u, v, θ such that

|fθ(u, v)| ≤ C(|u|2 + |v|2 + 1),(4.1)

|∂ufθ(u, v)|, |∂vfθ(u, v)| ≤ C(|u|+ |v|+ 1).(4.2)

We set

Kθ(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − fθ(u, v)

]
dx : E → R.

Lemma 4.1. Suppose that (u
¯
, v
¯
) ∈ E is a critical point of Kθ(u, v) for all

θ ∈ [0, 1]. Then for any ε > 0 there exists a δ = δ(ε) > 0 independent of θ ∈ [0, 1]
such that if (u, v) ∈ E satisfies

(u, v) ∈ Bδ(u¯
, v
¯
) and K ′

θ(u, v) = 0 for some θ ∈ [0, 1],

then

‖u(x)− u
¯

(x)‖L∞(Ω) < ε and ‖v(x)− v
¯
(x)‖L∞(Ω) < ε.

Proof. We consider an operator Tθ : E → E defined by

Tθ

[
u

v

]
=

[
(−k1∆ + 1)−1(∂ufθ(u, v) + u)
(−k2∆ + 1)−1(∂vfθ(u, v) + v)

]
.

Under the assumptions (4.1)–(4.2), we can see that Tθ is continuous uniformly
in θ as an operator:

Tθ : Lp(Ω)× Lp(Ω) →W 2,p(Ω)×W 2,p(Ω) for all p ∈ (1,∞).

We set Sθ = Tθ ◦ Tθ ◦ . . . ◦ Tθ ([N/2] + 1 times). Then

Sθ : L2(Ω)× L2(Ω) → L∞(Ω)× L∞(Ω),

is continuous uniformly in θ. Thus for any (u
¯
, v
¯
) ∈ E and ε > 0, we can choose

a δ = δ(ε) > 0 such that

‖(u, v)− (u
¯
, v
¯
)‖L2(Ω)×L2(Ω) ≤ δ ⇒ ‖Sθ(u, v)− Sθ(u¯

, v
¯
)‖L∞(Ω)×L∞(Ω) < ε.

Now suppose that (u
¯
, v
¯
) is a critical point of Kθ(u, v). Then (u

¯
, v
¯
) is a fixed

point of Tθ and Sθ. Suppose that (u, v) ∈ Bδ(u¯
, v
¯
) satisfies K ′

θ(u¯
, v
¯
) = 0. Then

(u, v) is also a fixed point of Sθ, and we get

‖(u, v)− (u
¯
, v
¯
)‖L∞(Ω)×L∞(Ω) = ‖Sθ(u, v)− Sθ(u¯

, v
¯
)‖L∞(Ω)×L∞(Ω) < ε.

Thus the proof is completed. �
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4.2. Proof of (D.1). In this subsection, we prove (D.1), i.e., we consider a
homotopy defined by

fθ(u, v) = (1− θ)W (u2, v2) + θ(Wx(0, 0)u2

+Wy(0, 0)v2)− A

2
(u2 − u2

+ + v2 − v2
+),

Kθ(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − fθ(u, v)

]
dx.

We remark Wx(0, 0) > 0, Wy(0, 0) > 0 by (W1), and we choose ε > 0 such that

|Wx(0, 0)−Wx(u2, v2)| ≤Wx(0, 0)/2,(4.3)

|Wy(0, 0)−Wy(u2, v2)| ≤Wy(0, 0)/2,(4.4)

for all |u|, |v| ≤ ε.
We apply Lemma 4.1 and set δ = δ(ε) > 0. Then we have

Lemma 4.2. For δ = δ(ε) > 0 defined as above,

K ′
θ(u, v) 6= 0 for all θ ∈ [0, 1] and (u, v) ∈ ∂Bδ(0, 0).

Proof. Suppose that (u, v) ∈ E satisfies ‖(u, v)‖E ≤ δ and K ′
θ(u, v) = 0.

By Lemma 4.1,

(4.5) ‖u‖L∞(Ω), ‖v‖L∞(Ω) < ε,

and

−k1∆u+(A− 2Wx(0, 0) + 2(1− θ)(Wx(0, 0)(4.6)

−Wx(u2, v2)))u = Au+ in Ω,

−k2∆v+(A− 2Wy(0, 0) + 2(1− θ)(Wy(0, 0)(4.7)

−Wy(u2, v2)))u = Av+ in Ω,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.(4.8)

Applying the maximal principle as in the proofs of Lemmas 1.5 and 3.1, we find
(u, v) ∈ P . Next we integrate (4.6) over Ω.∫

Ω

[−2Wx(0, 0) + 2(1− θ)(Wx(0, 0)−Wx(u2, v2))]u dx = 0.

By (4.3) and (4.5), we find
∫
Ω
u dx = 0. That is, u = 0. Similarly, we can see

v = 0. Therefore K ′
θ(u, v) 6= 0 for (u, v) ∈ ∂Bδ(0, 0). �

As a corollary, we have
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Corollary 4.3.

degloc(J ′, (0, 0)) = deg(J ′, 0, Bδ(0, 0)) = deg(K ′
1, 0, Bδ(0, 0)).

Next we see

Lemma 4.4. deg(K ′
1, 0, Bδ(0, 0)) = 0.

Proof. We introduce another homotopy:

gθ(u, v) = Wx(0, 0)u2 +Wy(0, 0)v2 − A

2
(u2 − u2

+ + v2 − v2
+) + θ(u+ v),

Lθ(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − gθ(u, v)

]
dx.

We remark that L0(u, v) = K1(u, v). We claim that

(4.9) L′θ(u, v) = 0 if and only if (u, v) = (0, 0) and θ = 0.

In fact, suppose that (u, v) and θ satisfy L′θ(u, v) = 0, that is,

−k1∆u+ (A− 2Wx(0, 0))u = Au+ + θ in Ω,(4.10)

−k2∆v + (A− 2Wy(0, 0))v = Av+ + θ in Ω,(4.11)
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.(4.12)

Integrating (4.10) over Ω, we get

(A− 2Wx(0, 0))
∫

Ω

u dx = A

∫
Ω

u+ dx+ θ|Ω|.

Thus,

(A− 2Wx(0, 0))
∫

Ω

u+ dx ≥ A

∫
Ω

u+ dx+ θ|Ω|.

Therefore, we have θ = 0 and u+ ≡ 0. Using (4.10) again, we get u ≡ 0 by the
maximal principle. Similarly we have v ≡ 0. Thus we get (4.9).

By (4.9), we see that

L′θ(u, v) 6= 0 for all θ ∈ [0, 1] and (u, v) ∈ ∂Bδ(0, 0),

L′1(u, v) 6= 0 for all (u, v) ∈ Bδ(0, 0).

Thus we get

deg(K ′
1, 0, Bδ(0, 0)) = deg(L′0, 0, Bδ(0, 0)) = deg(L′1, 0, Bδ(0, 0)) = 0. �

Proof of (D.1). Combining Corollary 4.3 and Lemma 4.4, we obtain (D.1)
from Proposition 3.2. �
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4.3. Proof of (D.2). By Corollary 1.8, (a, 0) and (0, b) are strict local
minimums of I(u, v) in E. By definition (3.1) of J(u, v), we see that (a, 0)
and (0, b) are also strict local minimums of J(u, v) in E. Thus by the result of
Amann [A] and Rabinowitz [R1], we get (D.2).

4.4. Proof of (D.3). Since I(u, v) ∈ C2(E,R) and I ′′(u0, v0) is non-dege-
nerate by assumption (0.7), we have

(4.13) degloc(I ′′, (u0, v0)) = (−1)index I′′(u0,v0).

To prove (D.3), we need

Lemma 4.5. Suppose that (u, v) is an isolated critical point of J(u, v) cor-
responding to a positive solution of (0.1)–(0.4). Then

degloc(J ′, (u, v)) = degloc(I ′, (u, v)).

Proof. We set

hθ(u, v) = V (u, v)− θ
A

2
(u2 − u2

+ + v2 − v2
+),

Mθ(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2 − hθ(u, v)

]
dx.

Let ε = min{infΩ u(x), infΩ v(x)}/2 > 0, and, by Lemma 4.1, we find a δ > 0
such that

(u, v) ∈ Bδ(u, v) and M ′
θ(u, v) = 0 ⇒ ‖u− u‖L∞(Ω), ‖v − v‖L∞(Ω) < ε.

In particular, u(x) > 0, v(x) > 0 in Ω. Thus, all critical points in Bδ(u, v)
of M ′

θ(u, v) are positive solutions of (0.1)–(0.4), and they are critical points of
J(u, v). Since (u, v) is an isolated critical point of J(u, v), we may assume that
the unique critical point of J(u, v) in Bδ(u, v) is (u, v). Thus for (u, v) ∈ Bδ(u, v)

M ′
θ(u, v) = 0 if and only if (u, v) = (u, v).

Thus we get

M ′
θ(u, v) 6= 0 for all θ ∈ [0, 1] and (u, v) ∈ ∂Bδ(u, v).

Therefore,

degloc(J ′, (u, v)) = degloc(M ′
1, (u, v)) = degloc(M ′

0, (u, v)) = degloc(I ′, (u, v)). �

Proof of (D.3). Applying Lemma 4.5 with (u, v) = (u0, v0), we see

degloc(J ′, (u0, v0)) = degloc(I ′, (u0, v0)).

Thus (D.3) follows from (4.13). �
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4.5. Proof of (D.4). To prove (D.4), we use an idea from Hofer [H2], [H3].
Condition (V4) and Krein–Rutman theory will also play an important role. We
need the following

Definition 4.6. Let X be a Banach space and Φ ∈ C1(X,R). Suppose that
x0 ∈ X is a critical point and set d = Φ(x0). We say that x0 is of mountain
pass type with respect to Φ if for all neighbourhoods O ⊂ X of x0 the topological
space O ∩

◦
Φd is non-empty and not path-connected.

Here we use the notation
◦
Φd = {x ∈ X; Φ(x) < d}, Φd = {x ∈ X; Φ(x) ≤ d}.

We have the following characterization of (u∗, v∗).

Proposition 4.7. Assume (A). Then (u∗, v∗) is of mountain pass type with
respect to I(u, v).

Proof. We prove this assertion essentially as in Hofer [H2], [H3]. First, we
remark that

(4.14) inf
γ∈Γ

max
s∈[0,1]

J(γ(s)) = β,

where Γ and β are given in (2.1) and (2.4). This comes from Lemma 3.1(ii) and
β = β+.

We argue indirectly and assume that for some open neighbourhood O of
(u∗, v∗) the set O∩

◦
Iβ is path-connected. We can choose a neighbourhood U ⊂ O

of (u∗, v∗) such that dist (∂O,U) > 0. We also choose ε > 0 so small that the
only critical value of “J” in (β − ε, β + ε) is β (see (2.16)).

By a standard construction of a deformation flow (c.f. Lemma 1 of [H2]), we
can find an ε ∈ (0, ε) and a deformation σ ∈ C([0, 1]× E,E) such that

(4.15) σ({1} × (Jβ+ε \ U)) ⊂ Jβ−ε,

(4.16) σ([0, 1]× U) ⊂ O,

(4.17) σ(s, (u, v)) = (u, v) for all s ∈ [0, 1] and (u, v) ∈ (E \ Jβ+ε) ∪ Jβ−ε.

We choose γ ∈ Γ such that maxs∈[0,1] J(γ(s)) ≤ β + ε and set

γ̂(s) = σ(1, γ(s)).

We can easily see from (4.15)–(4.17) that γ̂ ∈ Γ and γ̂([0, 1]) ⊂ Jβ−ε ∪ O. We
set

s+ = sup{s ∈ [0, 1] : γ̂(s) 6∈ Jβ−ε}, s− = inf{s ∈ [0, 1] : γ̂(s) 6∈ Jβ−ε}.

We have
γ̂(s±) ∈ O ∩ Jβ−ε, γ̂([0, 1] \ [s−, s+]) ⊂ Jβ−ε.
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Since J(u, v) ≥ I(u, v) on E, we have

γ̂(s±) ∈ O ∩ Iβ−ε ⊂ O ∩
◦
I

β .

Since O ∩
◦
Iβ is path-connected, there exists a path ν : [s−, s+] → E such that

ν(s±) = γ̂(s±), ν([s−, s+]) ⊂ O ∩
◦
I

β .

We define a path γ̃(s) by

γ̃(s) =

{
ν(s) if s ∈ [s−, s+],

γ̂(s) otherwise.

Then γ̃ ∈ Γ and
max

s∈[0,1]
I(γ̃(s)) < β.

But this contradicts definition (2.4) of β. Therefore, (u∗, v∗) is of mountain pass
type with respect to I(u, v). �

Hofer [H2], [H3] proved the following.

Proposition 4.8 (Hofer [H2], [H3]). Let X be a Hilbert space and Φ ∈
C2(X,R). Assume that the gradient Φ′ has the form identity–compact. Further
assume that

(Φ) for a critical point x0 ∈ X the first (smallest) eigenvalue λ1 of lineariza-
tion Φ′′(x0) at x0 is simple provided λ1 = 0.

Then for an isolated critical point x0 ∈ X of mountain pass type with respect
to Φ

degloc(Φ′, x0) = −1.

To verify condition (Φ) for I(u, v), we use assumption (V4). To derive (Φ)
from (V4), we need the following

Proposition 4.9. Let a(x), b(x), c(x) ∈ C(Ω,R) and b(x) > 0 in Ω. Then
the first eigenvalue of the following eigenvalue problem is simple.

A

[
u

v

]
= λ

[
u

v

]
in Ω,

∂

∂n

[
u

v

]
=

[
0
0

]
on ∂Ω,

where

A =
[
−k1∆ 0

0 −k2∆

]
+

[
a(x) b(x)
b(x) c(x)

]
.

Proof. It suffices to show that the first eigenvalue of A+ `
[

1 0

0 1

]
is simple

for sufficiently large ` > 1. We define a cone C ⊂ E by

C = {(u, v) ∈ E : u(x) ≥ 0 and v(x) ≤ 0 in Ω}.
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The desired result follows from Krein–Rutman theory (c.f. Schaefer [Sc]) if we
verify for large ` > 1

(4.18)
(
A+ `

[
1 0
0 1

])−1

is well-defined and it is a compact operator.

(4.19)
(
A+ `

[
1 0
0 1

])−1

C ⊂ C.

(4.18) is clear. We will check (4.19). Let (f, g) ∈ C and define (u, v) ∈ E by[
u

v

]
=

(
A+ `

[
1 0
0 1

])−1 [
f

g

]
.

We write the above equation as[
u

v

]
=

[
−k1∆ + a(x) + ` 0

0 −k2∆ + c(x) + `

]−1

·
( [

0 −b(x)
−b(x) 0

] [
u

v

]
+

[
f

g

])
.

We denote the right hand side by B
([ u

v

])
. For a sufficiently large ` > 1 it is

easily seen that B : E → E defines a contraction mapping on E, and (u, v) can
be obtained as a limit [

u

v

]
= lim

n→∞
Bn

( [
0
0

])
.

We can also see that B(C) ⊂ C under the condition b(x) > 0 in Ω. Thus
(u, v) ∈ C. Therefore (4.19) is verified. �

Now we can prove (D.4).

Proof of (D.4). We can see

〈 I ′′(u∗, v∗)(φ, ψ) , (φ, ψ) 〉

=
∫

Ω

(( [
−k1∆ 0

0 −k2∆

]
−

[
Vuu(u∗, v∗) Vuv(u∗, v∗)
Vuv(u∗, v∗) Vvv(u∗, v∗)

]) [
φ

ψ

]
,

[
φ

ψ

])
dx.

By (V4), we see
−Vuv(u∗(x), v∗(x)) > 0 in Ω.

Thus we can apply Proposition 4.9 and the first eigenvalue of I ′′(u∗, v∗) is simple.
Thus by Proposition 4.7 and Theorem 4.8, we get

degloc(I ′, (u∗, v∗)) = −1.

Applying Lemma 4.5 with (u, v) = (u∗, v∗), we see

degloc(J ′, (u∗, v∗)) = degloc(I ′, (u∗, v∗)) = −1. �

In the above subsections, we proved (D.1)–(D.4) and completed the proof of
Proposition 3.2.
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4.6. Proof of Proposition 3.3. In this section, we prove (D.5), that is,
degloc(J ′, 0, BR(0, 0)) = 1 for sufficiently large R > 1. We consider the following
homotopy:

Gθ(u, v) =
∫

Ω

[
k1

2
|∇u|2 +

k2

2
|∇v|2

+ (1− θ)
(
− V (u, v) +

A

2
(u2 − u2

+ + v2 − v2
+)

)
+ θ

A

2
(u2 + v2)

]
dx.

First, we have

Lemma 4.10. For sufficiently large R > 0,

(4.20) G′θ(u, v) 6= 0 for all θ ∈ [0, 1] and (u, v) ∈ ∂BR(0, 0).

Proof. Suppose that G′θ(u, v) = 0 for some θ ∈ [0, 1]. We have

(4.21)
∫

Ω

[k1|∇u|2 + k2|∇v|2 + (1− θ)(−Vu(u, v)u− Vv(u, v)v

+A(u2 − u2
+ + v2 − v2

+)) + θA(u2 + v2)] dx = 0,

since 〈G′θ(u, v) , (u, v) 〉 = 0. By (V5), we have for some constant C1 > 0

(4.22) (1− θ)(−Vu(u, v)u− Vv(u, v)v +A(u2 − u2
+ + v2 − v2

+)) + θA(u2 + v2)

≥ min{1, A}(u2 + v2)− C1 for all (u, v) ∈ R2 and θ ∈ [0, 1].

Thus by (4.21)–(4.22)∫
Ω

[k1|∇u|2 + k2|∇v|2 + min{1, A}(u2 + v2)] dx ≤ C1|Ω|.

Therefore, we can find a constant R1 > 0 independent of θ ∈ [0, 1] such that

‖(u, v)‖E ≤ R1.

Thus, for R > R1 we get (4.20). �

Proof of Proposition 3.3. Let R > 0 be a sufficiently large constant so
that (4.20) holds. By the homotopy invariance of Leray–Schauder degree, we
have

deg(J ′, 0, BR(0, 0)) = deg(G′0, 0, BR(0, 0)) = deg(G′1, 0, BR(0, 0)).

Since the unique critical point of G1(u, v) is (0, 0) and indexG′1(0, 0) = 0,

deg(G′1, 0, BR(0, 0)) = 1.

Thus we get (D.5). �
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5. The case N = 1

In this section we deal with the case N = 1 and prove Theorem 0.2. In
what follows, we assume (V0)–(V3) and Ω = (0, 1). We consider the following
problem:

k1u
′′ + Vu(u, v) = 0 in (0, 1),(5.1)

k2v
′′ + Vv(u, v) = 0 in (0, 1),(5.2)

u′(0) = u′(1) = v′(0) = v′(1) = 0(5.3)

u(x) > 0, v(x) > 0, in (0, 1),(5.4)

A key of the proof of Theorem 0.2 is the following lemma.

Lemma 5.1. Suppose that (u, v) ∈ E is a non-constant positive solution of
(5.1)–(5.4) satisfying

u′(x0) = v ′(x0) = 0 for some x0 ∈ (0, 1).

Then index I ′′(u, v) ≥ 2.

To prove the above lemma, we need the following notation:

µj(u, v) = inf
S⊂E is a subspace

dimS=j

max
(φ,ψ)∈S

‖(φ,ψ)‖E≤1

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉,

µD
j (u, v) = inf

S⊂H1
0(0,1)×H1

0(0,1) is a subspace
dimS=j

max
(φ,ψ)∈S

‖(φ,ψ)‖E≤1

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉.

Clearly, we have

µj(u, v) < µD
j (u, v),(5.5)

µj(u, v) < 0 if and only if index I ′′(u, v) ≥ j.(5.6)

Proof of Lemma 5.1. Suppose that (u, v) is a non-constant positive solu-
tion of (5.1)–(5.4) satisfying u′(x0) = v ′(x0) = 0 for some x0 ∈ (0, 1).

Differentiating (5.1)–(5.2) we get

k1u
′′′ + Vuu(u, v)u′ + Vuv(u, v)v ′ = 0,

k2v
′′′ + Vuv(u, v)u′ + Vvv(u, v)v ′ = 0.

Setting

φ0(x) = χ[0,x0](x)u
′(x), ψ0(x) = χ[0,x0](x)v

′(x),

φ1(x) = χ[x0,1](x)u′(x), ψ1(x) = χ[x0,1](x)v ′(x),

where

χ[a,b](x) =

{
1 if x ∈ [a, b],

0 otherwise,
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we find (φ0, ψ0), (φ1, ψ1) ∈ H1
0 (0, 1)×H1

0 (0, 1) and

〈 I ′′(u, v)(φ, ψ) , (φ, ψ) 〉 = 0 for all (φ, ψ) ∈ span{(φ0, ψ0), (φ1, ψ1)}.

Therefore µD
2 (u, v) ≤ 0. Thus by (5.5), µ2(u, v) < 0. That is, index I ′′(u, v) ≥ 2

by (5.6). �

Combining with the result of Section 2, we get.

Proposition 5.2. Assume (0.6), i.e., index I ′′(u0, v0) ≥ 2. Let (u∗, v∗) be
the non-constant positive solution obtained in Section 2. Then we have

(i) (u′∗(x), v
′
∗(x)) 6= (0, 0) for all x ∈ (0, 1),

(ii) (u∗(1− x), v∗(1− x)) 6≡ (u∗(x), v∗(x)).

Proof. (i) By Proposition 2.1, index I ′′(u∗, v∗) ≤ 1. Thus the desired result
follows from Lemma 5.1.

(ii) Suppose that (u∗(1 − x), v∗(1 − x)) ≡ (u∗(x), v∗(x)). Then we have
(u′∗(1/2), v′∗(1/2)) = (0, 0). However, this contradicts (i). �

We remark that if (u∗(x), v∗(x)) is a solution of (5.1)–(5.4) then (u∗(1− x),
v∗(1− x)) is also a solution. Thus we have

Corollary 5.3. Suppose (0.6). Then (5.1)–(5.4) have at least 2 non-con-
stant positive solutions.

To find more non-constant positive solutions under the assumption (0.8), we
consider (5.1)–(5.2) in subinterval (0, 1/`). That is, for ` ∈ N we consider

k1u
′′ + Vu(u, v) = 0 in (0, 1/`),(5.7)

k2v
′′ + Vv(u, v) = 0 in (0, 1/`),(5.8)

u′(0) = u′(1/`) = v′(0) = v′(1/`) = 0(5.9)

u(x) > 0, v(x) > 0 in (0, 1/`),(5.10)

We remark that if (u, v) satisfies (5.7)–(5.10), we can extend it to (0, 1) by
reflection. More precisely, we set

(û(x), v̂(x)) =


(u(x), v(x)) for x ∈ [0, 1/`],

(u(1/`− x), v(1/`− x)) for x ∈ (1/`, 2/`],

(u(x− 2/`), v(x− 2/`)) for x ∈ (2/`, 3/`],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then we can see (û, v̂) is a solution of (5.1)–(5.4).
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We denote by index(0,1/`)I
′′(u0, v0) the Morse index at (u0, v0) for the prob-

lem (5.7)–(5.10):

index
(0,1/`)

I ′′(u0, v0) = max
{

dimV : V ⊂ H1(0, 1/`)×H1(0, 1/`) is a subspace

such that
∫ 1/`

0

[k1|φ′|2 + k2|ψ′|2 − (D2V (u0, v0)(φ, ψ), (φ, ψ))] dx < 0

for all (φ, ψ) ∈ V \ {(0, 0)}
}
.

We remark that the original index I ′′(u0, v0) is equal to index(0,1)I
′′(u0, v0).

Lemma 5.3. Let m = index I ′′(u0, v0). Then

index
(0,1/`)

I ′′(u0, v0) ≥ 2 for ` ≤ m− 1,

index
(0,1/`)

I ′′(u0, v0) = 1 for ` ≥ m.

Proof. By (ii) of Corollary 1.8, index
(0,1/`)

I ′′(u0, v0) can be represented as

(5.11) index
(0,1/`)

I ′′(u0, v0) = max
{
j ∈ N :

det
(
λ

(`)
j

[
k1 0
0 k2

]
−D2V (u0, v0)

)
< 0

}
,

where λ(`)
j is the jth eigenvalue of −d2/dx2 in (0, 1/`) under Neumann boundary

conditions. Since λ(`)
j = (π2/`2)(j − 1)2, we can get the desired result easily

from (5.11). �

Using this property, we can give a proof of Theorem 0.2.

Proof of Theorem 0.2. Suppose that m = index I ′′(u0, v0) ≥ 2. By
Lemma 5.3, we have

index
(0,1/`)

I ′′(u0, v0) ≥ 2 for ` = 1, . . . ,m− 1.

Using Corollary 5.2 in (0, 1/`), we get the existence of 2 non-constant positive
solutions (u`,1, v`,1) and (u`,2, v`,2) of (5.7)–(5.10). We extend them to (0, 1)
by reflection — we denote the extended solutions also by (u`,1, v`,1), (u`,2, v`,2).
These solutions have the following properties:

(u′`,i(1/`), v
′
`,i(1/`)) = (0, 0) for i = 1, 2,(5.12)

(u′`,i(x), v
′
`,i(x)) 6= (0, 0) in (0, 1/`) for i = 1, 2.(5.13)

By (5.12) and (5.13), it is easy to see that u`,i(x) (` = 1, . . . ,m−1, i = 1, 2) give
different solutions and (5.1)–(5.4) have at least 2(m − 1) non-constant positive
solutions. �
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Remark 5.4. For a nonlinear Strum–Liouville problem, a similar relation
between the Morse indices and the number of zeros of solutions is studied in
Berestycki [B] and Tanaka [T].

Remark 5.5. Nakashima [N] has obtained a similar existence result to our
Theorem 0.2 recently. She considered the system (0.9)–(0.12) in case N = 1 and
studied under the competition condition:

fv(u, v) < 0 and gu(u, v) < 0,

instead of variational structure, and her result can be applied to competition
Lotka–Volterra models. She used a version of Leray–Schauder degree theory in
the cone, which was developed by Dancer [D2].
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