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GLOBAL EXISTENCE AND BLOW-UP RESULTS
FOR AN EQUATION OF KIRCHHOFF TYPE ON RN

Perikles G. Papadopoulos — Nikos M. Stavrakakis

Abstract. We discuss the asymptotic behaviour of solutions for the non-
local quasilinear hyperbolic problem of Kirchhoff Type

utt − φ(x)‖∇u(t)‖2∆u + δut = |u|au, x ∈ RN , t ≥ 0,

with initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x), in the case

where N ≥ 3, δ ≥ 0 and (φ(x))−1 = g(x) is a positive function lying in

LN/2(RN ) ∩ L∞(RN ). When the initial energy E(u0, u1), which corre-

sponds to the problem, is non-negative and small, there exists a unique

global solution in time. When the initial energy E(u0, u1) is negative, the
solution blows-up in finite time. A combination of the modified potential

well method and the concavity method is widely used.

1. Introduction

In this work we study the following degenerate nonlocal quasilinear wave
equation of Kirchhoff type with a weak dissipative term

(1.1) utt − φ(x)‖∇u(t)‖2∆u + δut = |u|au, x ∈ RN , t ≥ 0,

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN ,
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with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, and δ ≥ 0.
Throughout the paper we assume that the functions φ and g : RN → R satisfy
the following condition:

(G) φ(x) > 0, for all x ∈ RN and (φ(x))−1 =: g(x) ∈ LN/2(RN ) ∩ L∞(RN ).

The original equation is

(1.3) ph
ϑ2u

ϑt2
+ δ

ϑu

ϑt
=

{
p0 +

Eh

2L

∫ L

0

(
ϑu

ϑx

)2

dx

}
ϑ2u

ϑx2
+ f,

for 0 < x < L, t ≥ 0, where u = u(x, t) is the lateral displacement at the space
coordinate x and the time t, E the Young modulus, p the mass density, h the
cross-section area, L the length, p0 the initial axial tension, δ the resistance
modulus and f the external force. When p0 = 0 the equation is considered to
be of degenerate type, otherwise it is of nondegenerate type. When δ = f = 0,
the equation was introduced by G. Kirchhoff [13] in the study of oscillations of
stretched strings and plates. That’s why equation (1.3) is called the Kirchhoff
string.

In the case of bounded domain, when δ = 0 and f 6= 0, the global existence
is rather well studied in the class of analytic function spaces (e.g. see [6], [31]).
H. Crippa [4] has proved local in time solvability in the class of usual Sobolev
spaces (see also [33]). A. Arosio and S. Garavaldi [1] have shown the existence
of a unique local solution in the case of mildly degenerate type. For δ ≥ 0
and f(u) = 0, in the degenerate case, the global existence of solutions has been
shown by K. Nishihara and Y. Yamada [25], when the initial data are small
enough. When δ > 0 and f(u) = 0, M. Nakao [18] has derived decay estimates
for the solutions (see also [17], [22], [29]). In particular, T. Kobayashi [14]
constructed a unique weak solution by a Faedo-Galerkin method for a quasilinear
wave equation with strong dissipation (see also [5], [20]). K. Nishihara [23] has
derived a decay estimate from below of the potential of solutions. In the case of
δ ≥ 0 and f 6= 0, M. Hosoya and Y. Yamada [8] have studied the non-degenerate
case with linear dissipation and proved the global existence of a unique solution
under small initial data. Concerning decay properties of solutions, K. Nishihara
and K. Ono [24] studied cases of non-degenerate and degenerate type. Also
R. Ikehata [9] has shown that for sufficiently small initial data, global existence
can be obtained, even when the influence of the source terms is stronger than
that of the damping terms. Finally, K. Ono [26]–[28], for δ ≥ 0, has proved
global existence, decay estimates and blow up results for a (mildly) degenerate
non-linear wave equation of Kirchhoff type with strong dissipation.

In the case of unbounded domain, P. D’Ancona and S. Spagnolo [7] have
shown the global existence of a unique C∞ solution for the non-degenerate type



Existence and Blow-Up Results for a Kirchhoff String 93

with small C∞0 initial data. Recently, G. Todorova [32] studied the global ex-
istence and nonexistence of solutions both in bounded and unbounded domains
with nonlinear damping and small enough C∞0 initial data. Finally, N. Kara-
halios and N. Stavrakakis [10]–[12] have studied global existence, blow-up and
asymptotic behaviour of solutions for some semilinear wave equations with weak
damping on all RN .

The presentation of this paper has as follows: In Section 2, in order to
overcome difficulties on non-compactness arising from the unboundedness of the
domain, we discuss properties of the homogeneous Sobolev space D1,2(RN ) and
some weighted Lp spaces. In Section 3, we show the existence of a unique local
weak solution of the problem (1.1)–(1.2) with (u0, u1) ∈ D(A) × D1,2(RN ) and
δ > 0, by applying the Banach contraction mapping principle. In Section 4, we
are able, (only for N = 3) to construct a unique global (weak) solution for the
problem (1.1)–(1.2) and derive decay properties of it, when δ > 0 and the initial
energy is non-negative and small. To this end we use a modified potential well
technique. In Section 5, by exploring a concavity argument, we show blowing up
of the local solution of (1.1)–(1.2) under the assumption that the initial energy
is negative.

Notation. We denote by BR the open ball of RN with center 0 and ra-
dius R. Sometimes for simplicity we use the symbols C∞0 , D1,2, Lp, 1 ≤ p ≤ ∞,
for thespaces C∞0 (RN ), D1,2(RN ), Lp(RN ), respectively; ‖ · ‖p for the norm
‖ · ‖Lp(RN ), where in case of p = 2 we may omit the index.

2. Preliminary results

In this section, we briefly mention some facts, notation and results, which
will be used later in this paper. The space D1,2(RN ) is defined as the closure of
C∞0 (RN ) functions with respect to the energy norm ‖u‖D1,2 =:

∫
RN |∇u|2dx. It

is known that

D1,2(RN ) = {u ∈ L2N/(N−2)(RN ) : ∇u ∈ (L2(RN ))N}

and D1,2(RN ) is embedded continuously in L2N/(N−2)(RN ), that is, there exists
k > 0 such that

(2.1) ‖u‖2N/(N−2) ≤ k‖u‖D1,2 .

We shall frequently use the following version of the generalized Poincaré’s in-
equality

(2.2)
∫

RN

|∇u|2dx ≥ α

∫
RN

gu2dx,

for all u ∈ C∞0 and g ∈ LN/2, where α =: k−2‖g‖−1
N/2 (see [3, Lemma 2.1] It is

shown that D1,2(RN ) is a separable Hilbert space. The space L2
g(RN ) is defined
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to be the closure of C∞0 (RN ) functions with respect to the inner product

(2.3) (u, v)L2
g(RN ) =:

∫
RN

guv dx.

It is clear that L2
g(RN ) is a separable Hilbert space. Moreover, we have the

following compact embedding.

Lemma 2.1. Let g ∈ LN/2(RN ) ∩ L∞(RN ). Then the embedding D1,2 ⊂ L2
g

is compact.

Proof. For the proof we refer to [2] (see also [12, Lemma 2.1]). �

The following lemmas will be proved to be useful in the sequel. For the proofs
we refer to [12].

Lemma 2.2. Let g ∈ L2N/(2N−pN+2p)(RN ). Then the following continuous
embedding D1,2(RN ) ⊂ Lp

g(RN ) is valid, for all 1 ≤ p ≤ 2N/(N − 2).

Remark 2.3. The assumption of Lemma 2.2 is satisfied under the hypoth-
esis (G), if p ≥ 2.

Lemma 2.4. Let g satisfy condition (G). If 1 ≤ q < p < p∗ = 2N/(N − 2),
then the following weighted inequality

(2.4) ‖u‖Lp
g
≤ C0‖u‖1−θ

Lq
g
‖u‖θ

D1,2

is valid, for all θ ∈ (0, 1), for which 1/p = (1− θ)/q + θ/p∗, and C0 = kθ.

To study the properties of the operator −φ∆, we consider the equation

(2.5) −φ(x)∆u(x) = η(x), x ∈ RN ,

without boundary conditions. Since for every u, v ∈ C∞0 (RN ) we have

(2.6) (−φ∆u, v)L2
g

=
∫

RN

∇u∇v dx,

we may consider equation (2.5) as an operator equation of the form

(2.7) A0u = η, A0 : D(A0) ⊆ L2
g(RN ) → L2

g(RN ), η ∈ L2
g(RN ).

Relation (2.6) implies that the operator A0 = −φ∆ with domain of definition
D(A0) = C∞0 (RN ), is symmetric. From (2.2) and equation (2.6) we have that

(2.8) (A0u, u)L2
g
≥ α‖u‖2L2

g
for all u ∈ D(A0).

So the operator A0 = −φ∆ is a symmetric, strongly monotone operator on
L2

g(RN ). Hence, Friedrich’s extension theorem Theorem 19.C [34] is applicable.
The energy scalar product given by (2.6) is

(u, v)E =
∫

RN

∇u∇v dx



Existence and Blow-Up Results for a Kirchhoff String 95

and the energy space is the completion of D(A0) with respect to (u, v)E . It is
obvious that the energetic space XE is the homogeneous Sobolev space D1,2(RN ).
The energy extension AE = −φ∆ of A0,

(2.9) −φ∆ : D1,2(RN ) → D−1,2(RN ),

is defined to be the duality mapping of D1,2(RN ). We define D(A) to be the set of
all solutions of equations (2.5), for arbitrary η ∈ L2

g(RN ). Friedrich’s extension
A of A0 is the restriction of the energetic extension AE to the set D(A). The
operator A = −φ∆ is self-adjoint and therefore graph-closed. Its domain D(A),
is a Hilbert space with respect to the graph scalar product

(u, v)D(A) = (u, v)L2
g

+ (Au, Av)L2
g

for all u, v ∈ D(A).

The norm induced by the scalar product is

‖u‖D(A) =
{ ∫

RN

g|u|2 dx +
∫

RN

φ|∆u|2 dx

}1/2

,

which is equivalent to the norm

‖Au‖L2
g

=
{ ∫

RN

φ|∆u|2 dx

}1/2

.

So we have established the evolution triple

(2.10) D(A) ⊂ D1,2(RN ) ⊂ L2
g(RN ) ⊂ D−1,2(RN ),

where all the embeddings are dense and compact. Finally, for later use, it is
necessary to remind that the eigenvalue problem

(2.11) −φ(x)∆u = µu, x ∈ RN ,

has a complete system of eigensolutions {wn, µn} satisfying the following prop-
erties

(2.12)

{
−φ∆wj = µjwj , j = 1, 2, . . . , wj ∈ D1,2(RN ),

0 < µ1 ≤ µ2 ≤ . . . , µj →∞, as j →∞.

In order to clarify the kind of solutions we are going to obtain for the problem
(1.1)–(1.2), we give the definition of the weak solution for this problem.

Definition 2.5. A weak solution of the problem (1.1)–(1.2) is a function u

such that

(i) u ∈ L2[0, T ;D(A)], ut ∈ L2[0, T ;D1,2(RN )], utt ∈ L2[0, T ;L2
g(RN )],
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(ii) for all v ∈ C∞0 ([0, T ]× (RN )), satisfies the generalized formula

(2.13)
∫ T

0

(utt(τ), v(τ))L2
g
dτ +

∫ T

0

(
‖∇u(t)‖2

∫
RN

∇u(τ)∇v(τ) dx dτ

)
+ δ

∫ T

0

(ut(τ), v(τ))L2
g
dτ −

∫ T

0

(f(u(τ)), v(τ))L2
g
dτ = 0,

where f(s) = |s|as, and
(iii) satisfies the initial conditions

u(x, 0) = u0(x) ∈ D(A), ut(x, 0) = u1(x) ∈ D1,2(RN ).

3. Existence results

In order to obtain a local existence result for the problem (1.1)–(1.2), we need
information concerning the solvability of the corresponding nonhomogeneous lin-
earized problem around the function v, where (v, vt) ∈ C(0, T ;D(A) × D1,2) is
given, restricted in the sphere BR.

utt − φ(x)‖∇v(t)‖2∆u + δut = |v|av, (x, t) ∈ BR × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ BR,(3.1)

u(x, t) = 0, (x, t) ∈ ∂BR × (0, T )

v ∈ C(0, T ;D(A)), vt ∈ C(0, T ;D1,2).

Proposition 3.1. Assume that u0 ∈ D(A), u1 ∈ D1,2(RN ) and 0 ≤ a ≤
4/(N − 2), then the linear wave equation (3.1) has a unique solution such that

u ∈ C(0, T ;D(A)) and ut ∈ C(0, T ;D1,2).

Proof. The proof follows the lines of [12, Proposition 3.1]. The Galerkin
method is used, based on the information taken from the eigenvalue prob-
lem (2.11). �

Next, we will prove the following theorem

Theorem 3.2. Assume that f(u) = |u|au is a nonlinear C1-function such
that |f ′(u)| ≤ k2|u|a and 0 ≤ α ≤ 4/(N − 2), N ≥ 3. If (u0, u1) ∈ D(A)×D1,2

and satisfy the nondegenerate condition

‖∇u0‖2 > 0,

then there exists T = T (‖u0‖D(A), ‖∇u1‖2) > 0 such that problem (1.1)–(1.2)
admits a unique local weak solution u satisfying

u ∈ C(0, T ;D(A)), ut ∈ C(0, T ;D1,2).
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Moreover, at least one of the following statements holds true, either

(i) T = ∞, or
(ii) lim e(u(t)) ≡ lim(‖ut(t)‖2D1,2 + ‖u(t)‖2D(A)) = ∞, as t → T−.

Proof. To apply Banach contraction mapping principle, we introduce the
two parameter space of solutions

XT,R =: {v ∈ C(0, T ;D(A)) : vt ∈ C(0, T ;D1,2), v(0) = u0,

vt(0) = u1, e(v(t)) ≤ R2, for all t ∈ [0, T ]},

for any given T > 0 and R > 0. It is easy to see that XT,R is a complete metric
space under the distance

d(u, v) =: sup
0≤t≤T

e1(u(t)− v(t)), where e1(v) =: ‖vt‖2L2
g

+ ‖v‖2D1,2 .

Next, we introduce the non-linear mapping S in the following way. Given v ∈
XT,R we define u = Sv to be the unique solution of the linear wave equation (3.1).
In the sequel we shall show that there exist T > 0, R > 0 such that the following
two conditions are valid

(i) S maps XT,R into itself,(3.2)

(ii) S is a contraction with respect to the metric d( · , · ).(3.3)

We set 2M0 =: ‖∇u0‖2 > 0 and denote by

T0 =: sup{t ∈ [0,∞) : ‖∇v(s)‖2 > M0, for 0 ≤ s ≤ t}.

Then we have

(3.4) T0 > 0 and ‖∇v(t)‖2 ≥ M0 for all t ∈ [0, T0].

(i) To check (3.2), we multiply (3.1) by −2∆ut (in the sense of the inner
product in the space L2) and integrate over RN , to get

(3.5) − 2
∫

RN

∆ututt dx + 2‖∇v‖2
∫

RN

φ(x)∆ut∆u dx

− 2δ

∫
RN

∆utut = −2
∫

RN

f(v)∆ut.

So

(3.6)
d

dt
e∗2(u) + 2δ‖∇ut‖2 =

(
d

dt
‖∇v‖2

)
‖u‖2D(A) − 2(f(v),∆ut),

where we set
e∗2(u(t)) =: ‖∇ut(t)‖2 + ‖∇v(t)‖2‖u(t)‖2D(A).

Note that

(3.7) e∗2(u) ≥ ‖∇ut‖2 + M0‖u‖2D(A) ≥ c−2
1 e(u),
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with c1 =: (max{1,M−1
0 })1/2. To proceed further, we observe that(

d

dt
‖∇v‖2

)
‖u‖2D(A) = 2

∫
RN

∆vvtφ(x)g(x) dx‖u‖2D(A)(3.8)

≤ 2(‖v‖2D(A))
1/2(‖vt‖2L2

g
)1/2‖u(t)‖2D(A)

≤ c2R
2e∗2(u),

with c2 =: 2kc2
1, where k is the constant of the embedding D1,2 ⊂ L2

g. We also
have that

(3.9) −2(f(v)∆ut) = 2
∫

RN

f ′(v)∇v∇ut dx ≤ 2k2‖v‖a
LNa‖∇v‖L2N/(N−2)‖∇ut‖,

where we used Hölder inequality, with p−1 = 1/N , q−1 = (N − 2)/2N and
r−1 = 1/2. Then, from Lemma 2.2 and the embeddings (2.10) we obtain

(3.10) ‖v‖a
LNa ≤ Ra, ‖∇v‖L2N/(N−2) ≤ ‖v‖D(A) ≤ R and ‖∇ut‖ ≤ e(u)1/2.

Using estimates (3.8)–(3.10), we get from equation (3.6) that

d

dt
e∗2(u(t)) ≤ c2R

2e∗2(u(t)) + c3R
a+1e∗2(u(t))1/2,

with c3 =: 2k2c1. Hence, from Gronwall’s inequality, we get

e∗2(u(t)) ≤ {e∗2(u(0))1/2 + c3R
a+1T}2ec2R2T .

Thus from estimation (3.7) we obtain

(3.11) e(u) ≤ c2
1{e∗2(u(0))1/2 + c3R

a+1T}2ec2R2T =: C∗T,R,

for any t ∈ [0, T ], with T ≤ T0. Therefore, if we assume that

(3.12) C∗T,R < R2,

then the statement (3.2) is valid.
(ii) We take v1, v2 ∈ XT,R and denote by u1 = Sv1, u2 = Sv2. Hereafter

we suppose that (3.12) is valid, i.e., u1, u2 ∈ XT,R. We set w = u1 − u2. The
function w satisfies the following relation

wtt − φ‖∇v1‖2∆w + δwt = φ{‖∇v1‖2 − ‖∇v2‖2}∆u2 + f(v1)− f(v2)

w(0) = 0, wt(0) = 0.

Multiplying the previous equation by 2gwt and integrating over RN we have

(3.13) 2
∫

RN

gwtwtt dx− 2
∫

RN

‖∇v1‖2∆wwt dx + 2δ

∫
RN

gw2
t dx

= 2{‖∇v1‖2 − ‖∇v2‖2}
∫

RN

∆u2wt dx + 2
∫

RN

g(f(v1)− f(v2))wt dx.
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Therefore we have

(3.14)
d

dt
e∗v1

(w) + 2δ‖wt‖2L2
g

=
d

dt
‖∇v1‖2‖∇w‖2 + 2{‖∇v1‖2 − ‖∇v2‖2}

× (∆u2, wt) + 2(f(v1)− f(v2), wt)L2
g
≡ I1(t) + I2(t) + I3(t),

where we set e∗v1
(w(t)) =: ‖wt(t)‖2L2

g
+ ‖v1(t)‖2D1,2‖w(t)‖2D1,2 . Note that the fol-

lowing estimations are valid

(3.15) e∗v1
(w) ≥ ‖wt‖2L2

g
+ M0‖w‖2D1,2 ≥ c−2

1 e1(w).

As in (3.8), we observe that

I1(t) ≤ c2R
2e∗v1

(w),(3.16)

I2(t) ≤ 2(R + R)e(v1 − v2)1/2

∫
RN

|∆u2||wt| dx.(3.17)

For the last term of (3.17), from estimation (3.15), we have that

(3.18)
∫

RN

|∆u2||wt|φ1/2φ1/2g dx ≤ (‖u2(t)‖2D(A))
1/2(‖wt(t)‖2L2

g
)1/2

< Re1(w(t))1/2 < Rc1e
∗
v1

(w)1/2.

Thus, from (3.17) and (3.18), we derive that

(3.19) I2(t) ≤ c4R
2e1(v1 − v2)1/2e∗v1

(w(t))1/2,

where c4 =: 4c1. Applying the generalized Poincaré’s inequality (2.2) and the
embeddings (2.10), we obtain

I3(t) ≤ 2k0α
−1(‖∇v1‖a + |∇v2‖a)‖∇(v1 − v2)‖‖wt‖L2

g
(3.20)

≤ c6R
ae1(v1 − v2)1/2e∗v1

(w)1/2,

where c6 =: 4k0α
−1c1 and k0 is a constant derived from the formula of f . From

estimates (3.16), (3.19) and (3.20) we obtain the following estimate for the rela-
tion (3.14)

d

dt
e∗v1

(w) ≤ c2R
2e∗v1

(w) + (c4R
2 + c6R

a)e1(v1 − v2)1/2e∗v1
(w)1/2.

Gronwall’s inequality and the fact that e∗v1
(w(0)) = 0 imply

(3.21) e∗v1
(w) ≤ (c4R

2 + c6R
a)2T 2ec2R2T sup

0≤t≤T
e1(v1(t)− v2(t)).

Therefore, from (3.11) and (3.21), we get

(3.22) d(u1, u2) ≤ CT,Rd(v1, v2),

where

CT,R =: 4 max
{

1,
‖∇u0‖−2

2

}
R4T 2(1 + k0k

2‖g‖N/2R
a−2)2e2kc2

1R2T ,
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by substituting c1, c2, c4, c6. Therefore, the map S is a contraction if

(3.22) CT,R < 1.

Let us note that the two inequalities (3.12) and (3.22) are justified at the same
time, if the parameter R is sufficiently large and T is sufficiently small. Finally,
applying the Banach’s fixed point theorem, we obtain the local existence result.

The second statement of Theorem 3.2 is proved by a standard continuation
argument. Indeed, let [0, T ) be the maximal existence interval on which the solu-
tion of the problem (1.1)–(1.2) exists. Suppose that T < ∞ and limt→T− e(u(t))
< ∞. Then there exists a sequence {tn, n = 1, 2, . . . } and a constant K > 0,
such that tn → T−, as n → +∞ and e(u(tn)) ≤ K, n = 1, 2, . . . As we have
already shown above, for each n ∈ N there exists a unique solution of the prob-

lem (1.1), (1.2) with initial data
{

u(tn), ut(tn)
}

on [tn, tn + T ∗], where T ∗ > 0

depending on K and independent of n ∈ N . Thus, we canget T < tn + T ∗,
for n ∈ N large enough. This contradicts the maximality of T and the proof of
Theorem 3.2 is completed. �

4. Global existence and energy decay

In this section we consider the global existence and energy decay questions of
the solution for the initial value problem (1.1), (1.2). First, we multiply equation
(1.1) by 2gut and integrate over RN to get

(4.1)
d

dt

{
‖ut(t)‖2L2

g
+

1
2
‖u(t)‖4D1,2 −

2
a + 2

‖u(t)‖a+2

La+2
g

}
+ 2δ‖ut(t)‖2L2

g
= 0.

We define as the energy of the problem (1.1), (1.2) the quantity

(4.2) E(t) =: E(u(t), ut(t)) =: ‖ut(t)‖2L2
g

+
1
2
‖u(t)‖4D1,2 −

2
a + 2

‖u(t)‖a+2

La+2
g

.

So equation (4.1) becomes

(4.3)
d

dt
E(t) + 2δ‖ut(t)‖2L2

g
= 0.

Also we introduce the potential of the problem (1.1), (1.2), as

(4.4) J (u) =:
1
2
‖u(t)‖4D1,2 −

2
a + 2

‖u(t)‖a+2

La+2
g

.

Hence from equation (4.1) and the definitions (4.2) and (4.4) we have the relation

(4.5) E(t) = ‖ut(t)‖2L2
g

+ J (u).

Finally, we introduce a modified version of the modified potential well used in [12]
(see also [21] and [30]), by

(4.6) W =: {u ∈ D(A) : K(u) = ‖u(t)‖4D1,2 − ‖u(t)‖a+2

La+2
g

> 0} ∪ {0}.
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Now we give two auxiliary lemmas

Lemma 4.1. If 2 < a < 4/(N − 2), then W is an open neighborhood of 0 in
the space D1,2(RN ).

Proof. Indeed, since 2 < a < 4/(N−2), by Lemma 2.4 and inequality (2.2)
we have that

‖u‖a+2

La+2
g

≤ C0‖u‖(1−θ)(a+2)
L2

g
‖u‖θ(a+2)

D1,2(4.7)

≤ C0‖u‖(1−θ)(a+2)
L2

g
‖u‖θ(a+2)−4

D1,2
‖u‖4D1,2 ≤

C0

α
‖u‖a−2

D1,2‖u‖4D1,2 .

Hence, by (4.7), we get

(4.8) K = ‖u‖4D1,2 − ‖u‖a+2

La+2
g

≥
(

1− C0

α
‖u‖a−2

D1,2

)
‖u‖4D1,2 .

Therefore, if
‖u‖D1,2 ≤ (k−θ−2‖g‖−1

N/2)
1/(a−2),

then K(u) ≥ 0 and 0 is in W. �

Let us note that condition 2 < a < 4/(N − 2) implies that N may be equal
to 3 only.

Lemma 4.2. If u ∈ W, N = 3 and a > 2, then we have

(4.9) 0 ≤ a− 2
2(a + 2)

‖u‖4D1,2 ≤ J (u) ≤ E(u, ut).

Proof. Since α > 2, from the definitions (4.4) and (4.6), for any u ∈ W ,
we have that

J (u) =
1
2
‖u‖4D1,2 −

2
a + 2

‖u‖a+2

La+2
g

≥ 1
2
‖u‖4D1,2 −

2
a + 2

‖u‖4D1,2 =
a− 2

2(a + 2)
‖u‖4D1,2 . �

Concerning the time behaviour of the energy we have the following remarks.
Integrate equation (4.3) over [0, t], to get

(4.10) E(t) + 2δ

∫ t

0

‖ut(t)‖2L2
g
dx = E(0).

Let us note that, if u ∈ W, then E(u, ut) ≥ 0. Whereas, if E(u, ut) < 0, then
u /∈ W. From equation (4.3) and definition (4.2) we obtain that

(4.11) (d/dt)E(u, ut) = −2δ‖ut(t)‖2L2
g
≤ 0.

Therefore the energy E(t) is a nonincreasing function of t. Hence we have that

(4.12) E(t) ≤ E(0) for every t ∈ [0, T ).
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The next theorem deals with the global existence and the energy decay properties
of the problem (1.1), (1.2).

Theorem 4.3. Assume that N = 3, 8/3 < a < 4, u0 ∈ W(⊂ D(A)) and
u1 ∈ D1,2. Also suppose that the following inequality holds true

(4.13) E(0) ≤
(

1
C0µ

p1
0

)1/p2

if
8
3

< a < 4 and p2 > 0.

Then

(a) for p1 =: (2(a + 2)− 3a)/2 and p2 =: (3a− 8)/8 there exists a unique
global solution u ∈ W of the problem (1.1), (1.2) satisfying

(4.14) u ∈ C([0,∞);D(A)) and ut ∈ C([0,∞);D1,2(RN )).

(b) Moreover, this solution obeys the following estimate

(4.15) ‖ut‖2L2
g

+ d−1
∗ ‖∇u‖4 ≤ E(u, ut) ≤ {E(u0, u1)−1/2 + d−1

0 [t− 1]+}−2,

where d∗ =: 2(a + 2)/(a− 2) and d0 ≥ 1, that is,

(4.16) ‖∇u‖4 ≤ C∗(1 + t)−1,

where C∗ is some constant depending on ‖u0‖4D1,2 and ‖u1‖L2
g
.

Proof. (a) To show that the local solution given by Theorem 3.2, remains
in the modified potential well W, as long as it exists, we shall argue by con-
tradiction. Assume that there exists time T ∗ > 0, such that u(t) ∈ W, where
0 ≤ t < T ∗ and u(T ∗) ∈ ∂W. Then K(u(T ∗)) = 0 and u(T ∗) 6= 0. We multiply
equation (1.1) by gu and integrate over RN to get the equation

(4.17)
d

dt
(u(t), ut(t))L2

g
− ‖ut(t)‖2L2

g
+

δ

2
d

dt
‖u(t)‖2L2

g
+ ‖u(t)‖4D1,2

−
∫

RN

g(x)|u(t)|a+2 dx = 0.

We integrate (4.17) over [0, t], for some t ∈ [0, T ) and get the inequality

(4.18) δ‖u(t)‖2L2
g
≤ δ‖u(0)‖2L2

g

+ 2
(

δ

4
‖u(t)‖2L2

g
+

1
δ
‖ut(t)‖2L2

g

)
+ 2(u0, u1)L2

g
+ 2

∫ t

0

‖ut(s)‖2L2
g
ds,

where we used Young’s inequality for ε = δ/2 in the first term of (4.17). Since
u(t) is in W, we integrate equation (4.1) over [0, t] to get

‖ut(s)‖2L2
g
− ‖u1‖2L2

g
+

1
2
‖u(t)‖4D1,2 −

1
2
‖u0‖4D1,2

+ 2δ

∫ t

0

‖ut(s)‖2L2
g
ds− 2

a + 2
‖u(t)‖a+2

La+2
g

+
2

a + 2
‖u0‖a+2

La+2
g

= 0.
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Therefore, we have the following estimate

(4.19)
1
2
‖ut(s)‖2L2

g
+ δ

∫ t

0

‖ut(s)‖2L2
g
ds ≤ E(0).

From relations (4.18), (4.19) we get that

(4.20) ‖u(t)‖2L2
g
≤ 2

δ

{
δ‖u(0)‖2L2

g
+ 2(u0, u1)L2

g
+

4
δ
E(0)

}
=: µ2

0.

Using Lemma 2.4 and relation (4.20) we obtain the inequality

‖u(t)‖a+2

La+2
g

≤ C0µ
(a+2)(1−θ)
0 ‖u(t)‖(a+2)θ

D1,2(4.21)

≤ C0µ
(a+2)(1−θ)
0 J (u)(a+2)θ/4−1‖u(t)‖4D1,2

≤ C0µ
(a+2)(1−θ)
0 E(0)(a+2)θ/4−1‖u(t)‖4D1,2 ,

where, according to Lemma 2.4, the constants are

θ =:
3a

2(a + 2)
,

p1 =: (a + 2)(1− θ) =
2(a + 2)− 3a

2
,

p2 =:
(a + 2)θ

4
− 1 =

3a− 8
8

.

Thus we have that,

(4.22) ‖u(t)‖a+2

La+2
g

≤ C0 µp1
0 E(0)p2 ‖u(t)‖4D1,2 .

Let the hypothesis (4.13) is satisfied. Then we get that E(0)p2 C0 µp1
0 ≤ 1.

Setting δ1 =: E(0)p2 C0 µp1
0 , for t = T ∗, the inequality (4.21) implies

(4.23) K(u(T ∗)) = ‖u(T ∗)‖4D1,2 − ‖u(T ∗)‖a+2

La+2
g

≥ ‖u(T ∗)‖4D1,2 − δ1 ‖u(T ∗)‖4D1,2 = (1− δ1) ‖u(T ∗)‖4D1,2 > 0,

and the contradiction is achieved.
(b) To show the decay property of the energy E(t) associated with equation

(1.1), for simplicity we assume that δ = 1. Integrating equation (4.3) over
[t, t + 1], we have

(4.24) 2
∫ t+1

t

‖ut(s)‖2L2
g
ds = E(t)− E(t + 1) (=: 2D2(t)).

Then there exist t1 ∈ [t, t + 1/4], t2 ∈ [t + 3/4, t + 1] such that

(4.25) ‖ut(ti)‖L2
g
≤ 2D(t) for i = 1, 2
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(see also Proposition 2.3 in [27]). Multiplying equation (1.1) by ut and integrat-
ing over R, we have that

(4.26) K = ‖ut(t)‖2L2
g
− d

dt
(u(t), ut(t))L2

g
− (u(t), ut(t))L2

g
.

Integrating (4.26) over [t1, t2], it follows from (4.23), (4.24) and (4.25) that

1
2

∫ t2

t1

‖u(s)‖4D1,2 ds ≤
∫ t2

t1

K(u(s)) ds ≤
∫ t+1

t

‖ut(s)‖2L2
g
ds(4.27)

+
{(∫ t+1

t

‖ut(s)‖2L2
g
ds

)1/2

+
2∑

i=1

‖ut(ti)‖L2
g

}
sup

t≤s≤t+1
‖u(s)‖L2

g

≤ D2(t) + 5D(t)α−1(d∗E(t))1/4,

where d∗ =: 2(a + 2)/(a − 2) and the Lemma 4.2 is used in the last inequality.
Then we have from (4.5), (4.24) and (4.27) that∫ t2

t1

E(s) ds ≤
∫ t2

t1

{‖ut(s)‖2L2
g
ds + ‖u(s)‖4D1,2 ds}(4.28)

≤ D2(t) + 2(D2(t) + 5D(t)α−1(d∗E(t))1/4)

= 3D2(t) + 10α−1(d∗)1/4D(t)E(t)1/4.

On the other hand, integrating (4.3) over [t, t2], from (4.24) and (4.28) we obtain
that

E(t) = E(t2) + 2
∫ t2

t

‖ut(s)‖2L2
g
ds

≤ 2
∫ t2

t1

E(s) ds + 2
∫ t+1

t

‖ut(s)‖2L2
g
ds

≤ 2(3D2(t) + 10α−1(d∗)1/4D(t)E(t)1/4) + 2D2(t)

≤ 8D2(t) +
ε1

2
d2
∗(20α−1D(t))4/3 + (2ε1)−1E(t),

where Young’s inequality is used for p−1 = 3/4 and q−1 = 1/4. Hence

(4.29) E(t) ≤ 2(8D2/3(t) + d2
∗(20α−1)4/3)D4/3(t).

Since 2D2(t) = E(t)− E(t + 1) ≤ E(t) ≤ E(0)(≤ 1), it follows from (4.29) that

(4.30) E(t) ≤ 2{8(E(0)/2)1/3 + d2
∗(20α−1)4/3}D4/3(t) = C5D

4/3(t),

where C5 =: 2{8(E(0)/2)1/3 + d2
∗(20α−1)4/3}. Also from relation (4.24) we have

that

(4.31) D4/3(t) = 2−2/3(E(t)− E(t + 1))2/3.

Thus from (4.31), relation (4.30) becomes

(4.32) E3/2(t) ≤ 2−1C
3/2
5 {E(t)− E(t + 1)}.
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Next we will use the following Lemma (for the proof see Lemma 2.2 in [27])
and [19].

Lemma 4.3. Let ϕ be a non-increasing and non-negative function on [0,∞)
satisfying

sup
t≤s≤t+1

ϕ(s)1+r ≤ k{ϕ(t)− ϕ(t + 1)},

for r > 0 and k > 0. Then

ϕ(t) ≤ {ϕ(0)−r + rk−1[t− 1]+}−1/r, for r ≥ 0.

Thus, applying Lemma 4.3 we can get the decay estimate of the energy E(t),
such that

(4.33) E(t) ≤ {E(0)−1/2 + d−1
0 [t− 1]+}−2,

with some positive constant d0 given by

(4.34) d0 =: 23/2[8(E(0)/2)1/3 + d2
∗(20α−1)4/3]3/2(≥ 1).

Hence,

(4.35) ‖∇u‖4 ≤ C∗(1 + t)−1,

with some constant C∗ ≥ 1 depending on ‖u0‖4D1,2 and ‖u1‖L2
g
. The proof of

Theorem 4.3 is now completed. �

Blow-up results

In this section we consider the blowing-up property of the solution of the
initial value problem (1.1)–(1.2). To show blow-up of the solution, we adapt
to our case the concavity method, introduced by Levine in [15] and [16]. The
concavity method is based on the constructionand the properties of the two
functionals P (t) and R(t).

(5.1) P (t) =: ‖u(t)‖2L2
g

+ δ

{∫ t

0

‖u(s)‖2L2
g
ds + (T0 − t)‖u0‖2L2

g

}
+ r(t + τ)2,

(5.2) R(t) =:
{
‖u(t)‖2L2

g
+ δ

∫ t

0

‖u(s)‖2L2
g
ds + r(t + τ)2

}
×

{
‖ut(t)‖2L2

g
+ δ

∫ t

0

‖ut(s)‖2L2
g
ds + r

}
−

{
(u(t), ut(t))L2

g
+ δ

∫ t

0

(u(s), ut(s))L2
g
ds + r(t + τ)

}2

,

where t ∈ [0, T0] and T0, r, τ are positive constants, to be specified latter. Then
we have that P (t) > 0 and
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P ′(t) = 2
{

(u(t), ut(t))L2
g

+ δ

∫ t

0

(u(s), ut(s))L2
g
ds + r(t + τ)

}
,(5.3)

P ′′(t) = 2{(u(t), utt(t))L2
g

+ ‖ut(t)‖2L2
g

+ δ(u(t), ut(t))L2
g

+ r}.(5.4)

If u is a solution of equation (1.1), then multiplying (1.1) by gu and integrating
over RN we have

(5.5) (u(t), utt(t))L2
g

= −‖∇u(t)‖4 − δ
1
2

d

dt
‖u(t)‖2L2

g
+ ‖u(t)‖a+2

La+2
g

.

Thus combining relations (5.4) and (5.5) we have that

(5.6) P ′′(t) = 2{−‖∇u(t)‖4 + ‖u(t)‖a+2

La+2
g

+ ‖ut(t)‖2L2
g

+ r}.

On the other hand we observe that R(t) ≥ 0 and from relations (5.2), (5.3) we
get

R(t) = {P (t)− δ(T0 − T )‖u0‖2L2
g
}

×
{
‖ut(t)‖2L2

g
+ δ

∫ t

0

‖ut(s)‖2L2
g
ds + r

}
− 1

4
P ′(t)2,

or

(5.7) P ′(t)2 = 4
[
{P (t)− δ(T0 − t)‖u0‖2L2

g
}

×
{
‖ut(t)‖2L2

g
+ δ

∫ t

0

‖ut(s)‖2L2
g
ds + r

}
−R(t)

]
.

Hence from relation (5.7) we get

(5.8) P (t)P ′′(t)−
(

a

4
+ 1

)
P ′(t)2 ≥

P (t)
[
P ′′(t)− (a + 4)×

{
‖ut‖2L2

g
+ δ

∫ t

0

‖ut‖2L2
g
ds + r

}]
.

From relations (4.10) and (5.6) we observe that

P ′′(t)− (a + 4)
{
‖ut‖2L2

g
+ δ

∫ t

0

‖ut‖2L2
g
ds + r

}
(5.9)

≥ −(a + 2)
{
‖ut‖2L2

g
+ E(0)− E(t)− 2

a + 2
‖u‖a+2

La+2
g

+ r

}
− 2‖∇u‖4

= −(a + 2){E(0) + r}+
a− 2

2
‖∇u(t)‖4.

Fixing r = −E(0) > 0 relation (5.9) becomes

(5.10) P ′′(t)− (a + 4)
{
‖ut(t)‖2L2

g
+ δ

∫ t

0

‖ut(s)‖2L2
g
ds + (−E(0))

}
≥ a− 2

2
‖∇u(t)‖4 =: Q(t).
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Then, from relations (5.8) and (5.10), we obtain

(5.11) P (t)P ′′(t)−
(

a

4
+ 1

)
P ′(t)2 ≥ P (t)Q(t) ≥ 0,

which implies the concavity character of the functional P (t), i.e.,

(5.12) (P (t)−a/4)′′ = −a

4
P (t)−a/4−2

{
P (t)P ′′(t)−

(
a

4
+ 1

)
P ′(t)2

}
≤ 0.

After all these calculations we are ready to state and prove the blow-up result.

Theorem 5.1. Suppose that a ≥ 2, N ≥ 3 and the initial energy E(u0, u1)
is negative. Then there exists a time T , where

(5.13) 0 < T ≤ a−2(−E(u0, u1))−1[{(2δ‖u0‖2L2
g
− a(u0, u1)L2

g
)2

+ a2(−E(u0, u1))‖u0‖2L2
g
}1/2 + 2δ‖u0‖2L2

g
− a(u0, u1)L2

g
],

such that the (unique) solution of the problems (1.1) and (1.2) blows-up at time T ,
i.e.,

(5.14) lim
t→T−

‖u(t)‖2L2
g

= ∞.

Proof. We choose T0 such that

(5.15)
4P (0)
aP ′(0)

≤ T0.

Let us note that P (0) > 0 and from (5.1), (5.3) choosing τ sufficiently large, we
have P ′(0) > 0. Since the graph of a concave function always lies below any
tangent line of it, we obtain that

(5.16) P (t) ≥
{

4P (0)a/4+1

4P (0)− aP ′(0)t

}4/a

.

Therefore, there exists some T ∈ (0, T0], such that

lim
t→T−

{
‖u‖2L2

g
+ δ

∫ t

0

‖u‖2L2
g
ds

}
= ∞, i.e. lim

t→T−
‖u‖2L2

g
= ∞,

which proves relation (5.14). Finally, we find an upper bound for the blow-up
time. To this end, using relations (5.1), (5.3), (taken at t = 0) and inequality
(5.15) we get,

(5.17) T (τ) ≡
2{‖u0‖2L2

g
+ (−E(0))τ2}

a{(u0, u1)L2
g

+ (−E(0))τ} − 2δ‖u0‖2L2
g

≤ T0.

The suitable value τ0 of τ for the blow-up, corresponds to the minimum value of
T (τ). Since

T ′(τ) =
2aE2(0)τ2 + 4E(0)τ [2δ‖u0‖2L2

g
− a(u0, u1)L2

g
] + 2aE(0)‖u0‖2L2

g

[a{(u0, u1)L2
g

+ (−E(0))τ} − 2δ‖u0‖2L2
g
]2

,
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we get that T (τ) takes the minimum value on the interval (0,∞) at the value
τ = τ0, where

τ0 ≡ a−2(−E(0))−1[{(2δ‖u0‖2L2
g
− a(u0, u1)L2

g
)2+

a2(−E(0))‖u0‖2L2
g
}1/2 + 2δ‖u0‖2L2

g
− a(u0, u1)L2

g
],

and the proof of Theorem 5.1 is completed. �
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