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DOMAIN IDENTIFICATION PROBLEM
FOR ELLIPTIC HEMIVARIATIONAL INEQUALITIES

Anna Ochal

Abstract. The domain identification problems for the elliptic hemivaria-

tional inequalities are studied. These problems are formulated as the opti-

mal control problems with admissible domains as controls. The existence
of optimal shapes is obtained by the direct method of calculus of variations

for a l.s.c. cost functional.

1. Introduction

In this paper we study the domain identification problems for the hemivaria-
tional inequalities. These problems are usually formulated as the optimal control
ones where the role of the set of controls is played by a class of admissible shapes.
This class consists of all subsets of RN which have a suitable property that will
be made more precise later. As a state variable we consider a solution of the
hemivariational inequality which is solved in an admissible domain. The prob-
lem under consideration consists in minimization of a cost functional on a set
of admissible control-state pairs. The purpose of this paper is twofold. First,
dealing with the same class of domains as in Chenais [2] we extend the main re-
sult of [2] to a class of Neumann problems for elliptic equations with multivalued
nonlinearities. Such problems are expressed as the hemivariational inequalities
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since they involve nonconvex superpotentials which are only locally Lipschitz
functions. A second goal is to give another approach to the problems studied by
Denkowski and Migórski in [5] who applied the mapping method to the domain
identification problems with a different class of admissible shapes.

The hemivariational inequalities have been introduced and studied since 1981
by P. D. Panagiotopoulos as the mathematical models of many problems coming
from mechanics, engineering and economics. The hemivariational inequalities
represent the principle of virtual work or power. They are variational formula-
tions of problems with nonconvex energy functions and they are derived with the
help of the generalized subdifferential in the sense of Clarke [3]. In mechanics
the laws in the subdifferential form describe the relations between stresses and
strains, between boundary displacements and reactions or between forces and
fluxes.

The results on existence of solutions for the elliptic hemivariational inequal-
ities have been delivered by Rauch [16] and Panagiotopoulos [14] who used a
regularization technique, by Chang [1] who applied the deformation lemma and
by Naniewicz and Panagiotopoulos [12] where the theory of pseudomonotone op-
erators of Browder–Hess was adopted. The evolution hemivariational inequalities
have been considered only recently, see [9] and [10] and the references therein.
The literature on the mathematical theory of shape optimization problems is
very large. We mention only that such problems for partial differential equations
were studied by Pironneau [15], Murat and Simon [11], Sokolowski, Zolesio, while
the variational inequalities were treated by Liu and Rubio [8], Tiihonen [17] and
Neittaanmäki [13]. For systems governed by the hemivariational inequalities, the
existence results for domain optimization problems were obtained by Denkowski
and Migórski [4] and [5], and Gasiński [7].

In the present paper we consider the optimal shape design problem for the
elliptic hemivariational inequality. In this problem the class of admissible geo-
metric domains consists of all open subsets of a given bounded open set D in RN

satisfying the cone property. This class of controls is equipped with the L2(D)-
topology of the characteristic functions of its elements. It is known that the
considered class of admissible shapes is compact in this topology and that the
open sets satisfying the cone property are the uniform Lipschitz sets (for details
see [2]). The domain identification problem is formulated as the double minimiza-
tion one, since the elliptic hemivariational inequality usually does not possess a
unique solution. The main theorem being the generalization of Theorem IV.1 in
[2] deals with the existence of solutions to optimal shape design problem. We
apply the direct method of the calculus of variations for a lower semicontinuous
cost functional which is in a general integral form. The crucial point in obtaining
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the existence of optimal shapes is a result on the dependence of solutions of the
hemivariational inequality with respect to the admissible domains.

The plan of the paper is as follows. In Section 2 we present some relevant
definitions and results which will be needed in the sequel. In Section 3 we
consider a class of hemivariational inequalities. For this model we obtain the
existence of solutions and we show some a priori estimates. We provide also a
result on the closedness of the graph of the mapping which to every admissible
shape assigns the solution set of hemivariational inequality (see Theorem 3.1).
In Section 4 we prove the main result of this paper on the existence of optimal
domains for systems governed by hemivariational inequalities.

2. Preliminaries

In this section we fix the notation and recall some relevant definitions and
results which will be needed in next sections.

Let D be a given bounded open set in RN . Let θ, h and r be three given
constants such that θ ∈ (0, π/2), h > 0, r > 0 and 2r ≤ h. By Π = Π(θ, h, r)
we denote the family of all open subsets of D satisfying the cone property with
constants θ, h and r. Recall (see [2]) that a subset Ω of RN is said to satisfy the
cone property with constants θ, h and r if and only if

∀z ∈ ∂Ω ∃Cz = C(ξz, θ, h) such that ∀y ∈ B(z, r) ∩ Ω y + Cz ⊂ Ω,

where C(ξz, θ, h) = {x ∈ RN : 〈x, ξz〉 > |x| cos θ, |x| < h} is the cone of angle θ,
height h and axis ξz (|ξz| = 1) (here the symbols 〈 · , · 〉, | · | denote the usual
inner product and the norm in RN , respectively) and B(z, r) denotes the open
ball of radius r and center z in RN .

For Ω ∈ Π we denote by IΩ the characteristic function of Ω in D. We
introduce on the set Π the following topology: we say that a sequence {Ωn} ⊂
Π converges to Ω in Π if and only if IΩn

→ IΩ in L2(D). It is known (see
Theorems III.1 and III.2 of [2]) that the set Π is closed and relatively compact in
such topology. We know also that the family Π satisfies the “uniform extension
property”, i.e. we have

Theorem 2.1 (Theorem II.1 of [2]). There exists a positive constant K =
K(θ, h, r) depending on Ω ∈ Π(θ, h, r) through θ, h and r only, and such that
for any Ω ∈ Π there exists a linear continuous extension operator pΩ : H1(Ω) →
H1(RN ) such that ‖pΩ‖ ≤ K.

In the sequel, for Ω in RN we consider the space V (Ω) = H1(Ω) with norm
‖ · ‖V (Ω) and we denote by ( · , · )L2(Ω) the inner product on L2(Ω).

We recall the definition of the generalized gradient of Clarke for a locally Lip-
schitz function. Let j : Ω×R → R be a function such that j( · , ξ) is measurable
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on Ω for all ξ ∈ R, j(x, · ) is locally Lipschitz on R for a.e. x ∈ Ω. Then for a.e.
x ∈ Ω the symbol ∂j : Ω × R → 2R denotes Clarke’s generalized subdifferential
of j with respect to ξ (see [3]) defined as follows

∂j(x, ξ) = {ζ ∈ R : j0(x, ξ; η) ≥ ζη, for all η ∈ R}

for all ξ ∈ R, where j0( · , · ; · ) is the generalized directional derivative of j at ξ

in the direction η given by

j0(x, ξ; η) = lim sup
h→0 λ↘0

j(x, ξ + h + λη)− j(x, ξ + h)
λ

,

for all ξ, η ∈ R, a.e. x ∈ Ω.
Finally, we shall also use another extension operator L2(Ω) 3 w 7→ w ∈

L2(D) which extends function w by zero outside Ω.

3. Formulation of hemivariational inequality

The aim of this section is to consider a class of hemivariational inequalities.
We present a result on existence of solutions, we show the a priori estimate for
solutions and we give the theorem on the dependence of the solution set on the
domain.

Let Ω be an open bounded subset of RN and let V (Ω) = H1(Ω). We consider
the following problem: find u ∈ V (Ω) such that there exists χ ∈ L2(Ω) and

(P)

{
aΩ(u, v) + (χ, v)L2(Ω) = (f, v)L2(Ω) for all v ∈ V (Ω),

χ(x) ∈ ∂j(x, u(x)) a.e. x ∈ Ω,

where aΩ, f and j are prescribed data.
Now, we present the assumptions guaranteeing the existence of at least one

solution of the problem (P). We make the following hypotheses on the data:

H(a) : aΩ : V (Ω)× V (Ω) → R is a form such that

aΩ(u, v) =
∫

Ω

( N∑
i,j=1

aij(x)DiuDjv + a0(x)uv

)
dx,

where aij , a0 ∈ L∞(Ω), a0 ≥ c1 > 0 and there exists a constant α0 > 0
such that

∑N
i,j=1 aij(x)ξiξj ≥ α0|ξ|2 for all ξ ∈ RN , a.e. x ∈ Ω.

H(j) : j : Ω× R → R is a function satisfying the following conditions:
(i) Ω 3 x 7→ j(x, ξ) is measurable on Ω for all ξ ∈ R,
(ii) R 3 ξ 7→ j(x, ξ) is locally Lipschitz on R for a.e. x ∈ Ω,
(iii) j( · , 0) ∈ L1(Ω),
(iv) (the growth condition) there exists a constant c0 > 0 such that

|ζ| ≤ c0(1 + |ξ|) for all ζ ∈ ∂j(x, ξ), ξ ∈ R and a.e. x ∈ Ω,
(v) (the generalized sign condition) there exists a nonnegative function
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α ∈ L2(Ω) such that j0(x, ξ;−ξ) ≤ α(x)|ξ| for all ξ ∈ R and a.e.
x ∈ Ω.

The following existence result can be obtained as a corollary of Theorem 4.25
of Naniewicz and Panagiotopoulos [12].

Lemma 3.1. If the hypotheses H(a), H(j) hold and f ∈ L2(Ω), then the
problem (P) admits at least one solution.

In what follows, the solution set of problem (P) will be denoted by S(Ω). We
also say that a pair (u, χ) solves the problem (P), if u ∈ S(Ω) and χ ∈ L2(Ω) is
the corresponding selection of ∂j( · , u( · )) which appears in (P).

Lemma 3.2. Under the hypotheses of Lemma 3.1, if (u, χ) ∈ S(Ω) × L2(Ω)
is a solution to (P), then there exists a positive constant c such that

‖u‖V (Ω) ≤ c(1 + ‖f‖L2(Ω)),(1)

‖χ‖L2(Ω) ≤ c(1 + meas(Ω) + ‖f‖L2(Ω)).(2)

Proof. It is enough to observe that from coercivity of aΩ( · , · ) and the
generalized sign condition of j, we easily get

min(α0, c1)‖u‖2
V (Ω) ≤ aΩ(u, u) ≤

∫
Ω

j0(x, u(x);−u(x)) dx + (f, u)L2(Ω)

≤
∫

Ω

α(x)|u(x)| dx + (f, u)L2(Ω)

≤ ‖α‖L2(Ω) · ‖u‖L2(Ω) + ‖f‖L2(Ω) · ‖u‖L2(Ω)

≤ c(1 + ‖f‖L2(Ω))‖u‖V (Ω),

with some constant c > 0. Hence (1) follows. Moreover, we notice that |χ(x)| ≤
c0(1 + |u(x)|) and this implies

‖χ‖2
L2(Ω) ≤ 2c2

0

∫
Ω

(1 + |u(x)|2) dx ≤ c(1 + meas(Ω) + ‖u‖2
V (Ω)).

So, ‖χ‖L2(Ω) ≤ c (1 + meas(Ω) + ‖u‖V (Ω)). From this inequality and (1) we get
the desired estimate (2). �

Let D be an open bounded set in RN and let Ω0 ⊂ D. Given three numbers
θ ∈ (0, π/2), h > 0 and r > 0 such that 2r ≤ h, we consider a set Π0 = Π0(θ, h, r)
of all elements of Π(θ, h, r) which contain Ω0. In the sequel, we require θ, h and
r to be uniform for all the domains of Π. We consider the class Π with the
L2(D)-topology of the characteristic functions of its elements, i.e. Ωn,Ω ∈ Π,
Ωn → Ω in Π if and only if IΩn

→ IΩ in L2(D).
Now, let us consider a sequence of problems:

(Pn)

{
aΩn

(un, v) + (χn, v)L2(Ωn) = (f, v)L2(Ωn) for all v ∈ V (Ωn),

χn(x) ∈ ∂j(x, un(x)) a.e. x ∈ Ωn,
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where Ωn ∈ Π0, V (Ωn) = H1(Ωn) for all n ∈ N and f ∈ L2(D).
We assume that the prescribed data aΩn

and j are as follows:

H(a)1 : the forms aΩn
: V (Ωn) × V (Ωn) → R satisfy H(a), where aij , a0 ∈

L∞(D), Ω is replaced by Ωn, and the constants α0, c1 are independent
of n.

H(j)1 : the function j : D × R → R satisfies H(j) with Ω being replaced by D.

The following result on the dependence of solutions of hemivariational in-
equality (P) with respect to the domain is a crucial point in obtaining the exis-
tence of optimal shapes.

Theorem 3.1. Let us assume that H(a)1, H(j)1 hold and f ∈ L2(D). Then
the map Π0 3 Ω 7→ S(Ω) ⊂ V (Ω) has a closed graph in the following sense: if
Ωn,Ω ∈ Π0 and Ωn → Ω in Π as n → ∞, then for every solution (un, χn) ∈
S(Ωn)× L2(Ωn) of (Pn), there exists a subsequence {nk} ⊂ {n} such that

pnk
unk

→ ξ weakly in H1(D),

(here pn = pΩn denotes the extension operator from Theorem 2.1),

χnk
→ ζ weakly in L2(D),

and the pair (u, χ) := (ξ|Ω, ζ|Ω) is a solution to the problem (P).

Proof. First applying Lemma 3.1 and Lemma 3.2 we have that S(Ωn) 6= ∅
for all n ∈ N and the following estimate holds

(3) ‖un‖V (Ωn) + ‖χn‖L2(Ωn) ≤ c(1 + meas(Ωn) + ‖f‖L2(Ωn))

with a constant c > 0 independent of n. From Theorem 2.1 and (3) it follows
that

‖pnun‖H1(D) ≤ ‖pnun‖H1(RN ) ≤ K‖un‖V (Ωn) ≤ Kc(1 + meas(D) + ‖f‖L2(D)).

Hence {pnun}n∈N is bounded in H1(D) and there exists a subsequence {nk} ⊂
{n} such that

(4) pnk
unk

→ ξ weakly in H1(D) with ξ ∈ H1(D).

Consequently, pnk
unk

→ ξ in L2(D), and also for the next subsequence (still
denoted as before), we have

(pnk
unk

)(x) → ξ(x) as n →∞ for a.e. x ∈ D,(5)

|(pnk
unk

)(x)| ≤ h(x) for all n ∈ N, a.e. x ∈ D with h ∈ L2(D).(6)

On the other hand the estimate (3) implies that {χn}n∈N is bounded in L2(D).
So, we may assume, by passing to a subsequence if necessary, that

(7) χnk
→ ζ weakly in L2(D) with some ζ ∈ L2(D).
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We put u := ξ|Ω and χ := ζ|Ω. So, we have u ∈ V (Ω) and χ ∈ L2(Ω). We show
that (u, χ) is a solution of the corresponding limit hemivariational inequality.
For simplicity, we continue to write {un} for a subsequence {unk

}.
Let v ∈ H1(D). Since un ∈ S(Ωn), we have

(8)
∫

Ωn

( N∑
i,j=1

aij(x)DiunDjv + a0(x)unv

)
dx +

∫
Ωn

χnv dx =
∫

Ωn

fv dx.

Let us notice that

(f, v)L2(Ωn) = (f, v · IΩn
)L2(D) → (f, v · IΩ)L2(D) = (f, v)L2(Ω),

and similarily (χn, v)L2(Ωn) → (χ, v)L2(Ω), as n →∞. Thanks to (4), we obtain

lim
n→∞

∫
Ωn

( N∑
i,j=1

aij(x)DiunDjv + a0(x)unv

)
dx

=
∫

Ω

( N∑
i,j=1

aij(x)DiuDjv + a0(x)uv

)
dx.

Hence, using the last three convergences and passing to the limit in (8), we get∫
Ω

( N∑
i,j=1

aij(x)DiuDjv + a0(x)uv

)
dx + (χ, v)L2(Ω) = (f, v)L2(Ω)

for all v ∈ H1(D), and consequently, u ∈ S(Ω).
In order to complete the proof we need to show that χ(x) ∈ ∂j(x, u(x)) for

a.e. x ∈ Ω. To this end, let w ∈ L2(Ω). Since χn(x) ∈ ∂j(x, un(x)) a.e. x ∈ Ωn,
we conclude that∫

Ωn

χn(x)w(x) dx ≤
∫

Ωn

j0(x, un(x);w(x)) dx.

Since ∫
Ωn

j0(x, un(x);w(x)) dx =
∫

D

j0(x, (pnun)(x);w(x))IΩn(x) dx,

from (7) we immediately have

(χ,w)L2(Ω) = lim
n→∞

∫
Ωn

χ(x)w(x) dx(9)

≤ lim sup
n→∞

∫
D

j0(x, (pnun)(x);w(x))IΩn
(x) dx.

From H(j)(iv), it follows that

j0(x, (pnun)(x);w(x)) = max{ζ · w(x) : ζ ∈ ∂j(x, (pnun)(x))}
≤ c0 (1 + |(pnun)(x)|)|w(x)| a.e. x ∈ D.
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Thus, applying the Fatou lemma to a sequence of measurable functions

gn(x) = j0(x, (pnun)(x);w(x))− c0 (1 + |(pnun)(x)|)|w(x)|,

we have

(10) lim sup
n→∞

∫
D

gn(x)IΩn(x) dx ≤
∫

D

lim sup
n→∞

gn(x)IΩn(x) dx.

On the other hand, since IΩn
→ IΩ in L2(D), we may also suppose that

(11) IΩn(x) → IΩ(x) a.e. x ∈ D for a subsequence.

So, combining this with (10), we get

lim sup
n→∞

∫
D

j0(x, (pnun)(x);w(x))IΩn
(x) dx(12)

− c0 lim
n→∞

∫
D

(1 + |(pnun)(x)|)|w(x)|IΩn
(x) dx

≤
∫

D

lim sup
n→∞

j0(x, (pnun)(x);w(x))IΩn
(x) dx

− c0

∫
D

lim
n→∞

(1 + |(pnun)(x)|)|w(x)|IΩn
(x) dx.

Now, from the convergences (11), (5) and the estimate (6), we have

(13) lim
n→∞

∫
D

(1 + |(pnun)(x)|)|w(x)|IΩn
(x) dx =

∫
D

(1 + |ξ(x)|)|w(x)|IΩ(x) dx.

By the upper semicontinuity of generalized directional derivative with respect to
the second variable (see Proposition 2.1.1 in [3]), we have

lim sup
n→∞

j0(x, (pnun)(x);w(x)) ≤ j0(x, ξ(x);w(x)) a.e. x ∈ D.

Multiplying this inequality by the characteristic function IΩ and integrating over
D, we obtain∫

D

lim sup
n→∞

j0(x, (pnun)(x);w(x))IΩ(x) dx ≤
∫

D

j0(x, ξ(x);w(x))IΩ(x) dx.

Hence, substituting (13) into (12), we deduce

lim sup
n→∞

∫
D

j0(x, (pnun)(x);w(x))IΩn
(x) dx

≤
∫

D

j0(x, ξ(x);w(x))IΩ(x) dx =
∫

Ω

j0(x, u(x);w(x)) dx.

So, from (9) we get (χ,w)L2(Ω) ≤
∫
Ω

j0(x, u(x);w(x)) dx and this by the arbi-
trariety of w implies that χ(x) ∈ ∂j(x, u(x)) a.e. x ∈ Ω. This completes the
proof. �
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4. Shape optimization problem

In this section we state the main result of this paper on the existence of op-
timal shapes for systems governed by hemivariational inequalities. The optimal
shape design problem consists in solving the following control one:

(OSD)


find (Ω∗, u∗) ∈

⋃
Ω∈Π0

(Ω× S(Ω)) such that

J(Ω∗, u∗) = min
Ω∈Π0

min
u∈S(Ω)

J(Ω, u),

in which the control is the set Ω changing in the family Π0 ⊂ Π of admissible
shapes. The cost functional J has the following form:

H(J): J(Ω, u) =
∫

Ω

g(x, u(x)) dx,

where g: RN ×R → R is a nonnegative normal integrand (cf. [6]) which
satisfies the following growth condition:

g(x, v) ≤ k(x)(1 + |v|r) for all v ∈ R and a.e. x ∈ RN

with k ∈ L1(RN ) and r ≥ 1.

Lemma 4.1. The cost functional J which satisfies the hypothesis H(J) is
lower semicontinuous in the Π0 × (weak-H1(D))-topology.

Proof. Let {Ωn}n∈N ⊂ Π0 be a sequence of admissible domains such that
Ωn → Ω in Π, i.e. IΩn

→ IΩ in L2(D). From Theorem 3.1 it follows that
the corresponding sequence of solutions un ∈ S(Ωn) converges in terms of their
extensions to H1(D), that is

pnun → ξ weakly in H1(D) and ξ|Ω =: u ∈ S(Ω).

Next, we have

(14) g(x, ξ(x))IΩ(x) ≤ lim inf
n→∞

g(x, (pnun)(x))IΩn
(x) a.e. x ∈ D.

Indeed, by the lower semicontinuity of g(x, · ) and the convergence (pnun)(x) →
ξ(x) for a.e. x ∈ D (which holds at least for a subsequence still denoted as
before), it follows that

g(x, ξ(x)) ≤ lim inf
n→∞

g(x, (pnun)(x)) a.e. x ∈ D.

From this we deduce that

IΩ(x)g(x, ξ(x)) ≤ IΩ(x) lim inf
n→∞

g(x, (pnun)(x))

= IΩ(x) lim inf
n→∞

g(x, (pnun)(x))

+ lim inf
n→∞

[g(x, (pnun)(x))(IΩn
(x)− IΩ(x))]

= lim inf
n→∞

g(x, (pnun)(x))IΩn
(x),
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because of the growth condition in the hypothesis H(J). Finally, integrating (14)
over D and applying Fatou’s formula, we obtain that

J(Ω, u) =
∫

D

g(x, ξ(x))IΩ(x) dx ≤
∫

D

lim inf
n→∞

g(x, (pnun)(x))IΩn
(x) dx

≤ lim inf
n→∞

∫
D

g(x, (pnun)(x))IΩn
(x) dx = lim inf

n→∞
J(Ωn, un)

which finishes the proof. �

We can now formulate the main result of this paper.

Theorem 4.1. Under the hypotheses of Theorem 3.1 and H(J) the problem
(OSD) admits at least one solution.

Proof. We apply the direct method of the calculus of variations. Let
{(Ωn, un)}n∈N such that Ωn ∈ Π0 and un ∈ S(Ωn) for all n ∈ N be a mini-
mizing sequence for (OSD). The compactness of the sequence {(Ωn, un)} in the
Π0 × (weak-H1(D))-topology follows from the fact that Π0 is a compact set, as
a closed subset of compact set Π (see Theorem III.1 and Theorem III.2 of [2]).
This implies that there exists a subsequence of {Ωn} (still denoted as before)
and a set Ω∗ ∈ Π0 such that Ωn → Ω∗ in Π.

Now, applying Theorem 3.1 we obtain that a limit u∗ of a subsequence of un ∈
S(Ωn) is a solution of the corresponding hemivariational inequality considered
in Ω∗, i.e. u∗ ∈ S(Ω∗). Hence the pair (Ω∗, u∗) is admissible for (OSD). We
conclude from the lower semicontinuity of J (compare Lemma 4.1) that (Ω∗, u∗)
is also an optimal pair for (OSD). This completes the proof. �

Remark 4.1. The above theorem still holds if the class Π0 is replaced by
another family of admissible shapes:

ΠC =
{

Ω ∈ Π :
∫

Ω

h(x) dx = C

}
,

where h ∈ L1(D) is a given function and C is a prescribed constant. In this
case using the dominated convergence theorem it is clear that the set ΠC is also
compact as a closed subset of Π. We proceed analogously as in the proof of
Theorem 4.1.

Example 4.1. Let D, Ω0 be two given bounded open sets in RN such that
Ω0 ⊂ D, and let f ∈ L2(D), ud ∈ L2(Ω0) be given functions. We consider the
following problem:

(P∗) find Ω∗ ∈ Π0 such that u∗|Ω0 = ud and u∗ ∈ S(Ω∗),

i.e. we are looking for a domain Ω∗ in a convenient class of open sets for which
the restriction to Ω0 of a solution u∗ ∈ S(Ω∗) is equal to the desired function ud.



Domain Identification Problem 277

In order to obtain an existence result for this problem, we consider the cost
functional J of the form

J(Ω, u) = ‖u|Ω0 − ud‖2
L2(Ω0)

=
∫

D

|(pΩu)(x)− (pΩ0ud)(x)|2IΩ0(x) dx.

This functional correponds to minimization of deviation from the desired state
ud. It is easy to check that the function g(x, v) := |v− (pΩ0ud)(x)|2 satisfies the
hypothesis H(J) and so the functional J is lower semicontinuous in the Π0 ×
(weak-H1(D))-topology. From Theorem 4.1 we get the existence of a minimum
for J . Moreover, if the computed minimum is zero, then the corresponding
domain is a solution. Otherwise, the original problem (P∗) has no solution
in Π0.
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[10] S. Migórski, On the existence of solutions for parabolic hemivariational inequalities,

J. Comput. Appl. Math. (2000), in press.

[11] F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint

no. 76015, University of Paris 6, 1976.

[12] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational

Inequalities and Applications, Marcel Dekker, Inc., New York–Basel–Hong Kong, 1995.

[13] P. Neittaanmäki, On the control of the domain in variational inequalities, Differential

equations and control theory (V. Barbu, ed.), vol. 250, Pitman Research Notes in Math.,

1991, pp. 228–247.

[14] P. D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and
Engineering, Springer–Verlag, Berlin, 1993.



278 A. Ochal

[15] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer–Verlag, New York,

1984.

[16] J. Rauch, Discontinuous semilinear differential equations and multiple valued maps,

Proc. Amer. Math. Soc. 64 (1977), 277–282.

[17] T. Tiihonen, Abstract approach to a shape design problem for variational inequalities,

Preprint 62, University of Jyväskylä, Finland, 1987.
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