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A SET-VALUED APPROACH
TO HEMIVARIATIONAL INEQUALITIES

Alexandru Kristály — Csaba Varga

Abstract. Let X be a Banach space, X∗ its dual and let T : X→Lp(Ω, Rk)

be a linear, continuous operator, where p, k ≥ 1, Ω being a bounded open
set in RN . Let K be a subset of X, A: K  X∗, G: K × X  R and

F : Ω×Rk ×Rk  R set-valued maps with nonempty values. Using mainly

set-valued analysis, under suitable conditions on the involved maps, we
shall guarantee solutions to the following inclusion problem:

Find u ∈ K such that, for every v ∈ K

σ(A(u), v − u) + G(u, v − u) +

Z
Ω

F (x, Tu(x), T v(x)− Tu(x))dx ⊆ R+.

In particular, well-known variational and hemivariational inequalities can

be derived.

1. Introduction

Let K be a nonempty subset of H1
0 (Ω), where Ω is a bounded open subset

of RN with C1 boundary, N ≥ 1. Many papers treat inclusion problems of the
form:

Find u ∈ K such that

(1.1) −4u ∈ G(x, u(x)) in Ω,
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where G: Ω×R R is a set-valued map with nonempty values, satisfying some
growth and continuity conditions, see for instance [6] and [11]. In these papers
critical point arguments were used.

Here, we suppose that G has the form

(1.2) G(x, u(x)) = H(x, u(x))− b(x)u(x), x ∈ Ω, u ∈ K,

where b ∈ L∞(Ω), and H: Ω × R  R satisfies for all x ∈ Ω the following
inclusion:

(1.3) H(x, u(x)) · v(x) = {h · v(x) : h ∈ H(x, u(x))} ⊆ [−g(x, u(x), v(x)),∞),

where g( · , u( · ), v( · )) ∈ L1(Ω) for every u ∈ K, v ∈ H1
0 (Ω).

Multiplying (1.1) by (v − u), integrating over Ω and applying the Gauss–
Green formula, from (1.2) and (1.3) we obtain:

(1.4)
∫

Ω

∇u · ∇(v − u) dx +
∫

Ω

b(x)u(x)(v(x)− u(x)) dx

+
∫

Ω

[g(x, u(x), v(x)− u(x)),∞) dx ⊆ R+

for all v ∈ K, where the last term from the left hand side is the integral of a
set-valued map in the sense of Aumann (see [2]).

If H has the form

H(x, u(x)) = −∂j(x, u(x)), x ∈ Ω,

where j: Ω × R → R is a Carathéodory function such that j(x, ·) is locally Lip-
schitz continuous and ∂ denotes the generalized gradient, then (1.3) is verified
if we take g(x, y, z) = j0

y(x, y; z), j0
y being the (partial) generalized directional

derivative, supposing that j satisfies a growth condition (see Section 4). In this
situation, (1.4) reduces to the following classical hemivariational inequality, see
for instance Motreanu and Panagiotopoulos [8], Naniewicz and Panagiotopoulos
(see [9]):

(HV≥) Find u ∈ K such that, for all v ∈ K∫
Ω

∇u · ∇(v − u) dx +
∫

Ω

b(x)u(x)(v(x)− u(x)) dx

+
∫

Ω

j0
y(x, u(x); v(x)− u(x)) dx ≥ 0.

So, it seems natural to study the following general problem.
Let X be a Banach space, X∗ its dual, and let T :X → Lp(Ω, Rk) be a linear

continuous operator, where 1 ≤ p < ∞, k ≥ 1, Ω being a bounded open set in RN .
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Let K be a subset of X, let A:K  X∗, G:K×X  R and F : Ω×Rk×Rk  R
be set-valued maps with nonempty values, such that

(H1) x ∈ Ω  F (x, Tu(x), T v(x) − Tu(x)) is a measurable set-valued map
for all u, v ∈ K.

(H2) There exist h1 ∈ Lp/(p−1)(Ω, R+) and h2 ∈ L∞(Ω, R+) such that

dist(0, F (x, y, z)) ≤ (h1(x) + h2(x)|y|p−1)|z| for a.e. x ∈ Ω,

for every y, z ∈ Rk.

The aim of this paper is to study the following hemivariational inclusion
problem:

(HV⊆) Find u ∈ K such that, for all v ∈ K

σ(A(u), v − u) + G(u, v − u) +
∫

Ω

F (x, Tu(x), T v(x)− Tu(x))dx ⊆ R+.

We denoted by σ(A(u), · ) the support function of A(u), that is

σ(A(u), h) = sup
x∗∈A(u)

〈x∗, h〉 for all h ∈ X.

The euclidean norm in Rk and the duality pairing between the Banach space
and its dual is denoted by | · |, respectively 〈 · , · 〉.

2. Preliminaries

We need some definitions and notions in order to state existence results
concerning the problem (HV⊆).

Let J : Ω R be a measurable set-valued map with nonempty closed values,
see [1, p. 307]. Define the set

J = {j ∈ L1(Ω, R) : j(x) ∈ J(x) a.e. in Ω}.

Definition 2.1 (see [2]). The integral of J on Ω is the set of integrals of
integrable selections of J , i.e.∫

Ω

J(x) dx =
{∫

Ω

j(x) dx : j ∈ J
}

.

From the above definition we clearly have

Lemma 2.2. Let J1, J2: Ω R be two measurable set-valued maps with closed
values. Then the following assertions hold:

(a) If J1(x) ⊆ J2(x) a.e. x ∈ Ω, then
∫
Ω

J1(x) dx ⊆
∫
Ω

J2(x)dx.
(b)

∫
Ω

J1(x) dx +
∫
Ω

J2(x) dx ⊆
∫
Ω

J1(x) + J2(x) dx.
(c) λ

∫
Ω

J1(x) dx ⊆
∫
Ω

λJ1(x) dx for all λ ∈ R.
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Definition 2.3. Let X be a Banach space, and let K be a nonempty subset
of X. A set-valued map A:K  X∗ with bounded values is said to be upper
demicontinuous at u0 ∈ K (u.d.c. at u0 ∈ K) if, for any h ∈ X, the real-valued
function

u ∈ K 7→ σ(A(u), h) = sup
x∗∈A(u)

〈x∗, h〉

is upper semicontinuous at u0. A is upper demicontinuous on K (u.d.c. on K)
if it is udc at every u ∈ K.

Remark 2.4. If A(u) = {A(u)} for all u ∈ K, that is, if A is a single-
valued map, then A is u.d.c. at u0 ∈ K if and only if the map A:K → X∗ is
w∗-demicontinuous at u0 ∈ K, i.e. for each sequence {un} in K converging to u0

(in the strong topology), the image sequence {A(un)} converges to A(u0) in the
weak∗-topology of X∗.

It is easy to verify that, for all u ∈ K, the function h ∈ X 7→ σ(A(u), h) is
lower semicontinuous, subadditive and positive homogeneous. Moreover, due to
Banach–Steinhaus theorem, we can state the following useful result.

Proposition 2.5. Let K be a nonempty subset of a Banach space X, and
let A:K  X∗ be an upper demicontinuous set-valued map with bounded values.
Then the function u ∈ K 7→ σ(A(u), v − u) is upper semicontinuous for all
v ∈ K.

Definition 2.6. Let W , Y be two metric spaces. A set-valued map (with
nonempty values) J :W  Y is called lower semicontinuous at w ∈ W (l.s.c.
at w) if and only if for any y ∈ J(w) and for any sequence {wn}, converging to
w, there exists a sequence {yn}, yn ∈ J(wn) converging to y. J is said to be
lower semicontinuous (l.s.c.) if it is lsc at every point w ∈ W .

Definition 2.7. Let {Kn} be a sequence of subsets of a metric space Y .
The set

Liminf
n→∞

Kn = {y ∈ Y : lim
n→∞

dist(y, Kn) = 0}

is the (Kuratowski) lower limit of the sequence Kn.

Remark 2.8. Liminf n→∞ is the set of limits of sequences yn ∈ Kn (see [1,
p. 18]).

Proposition 2.9 (see [1, p. 42]). Let X be a normed space. A set-valued
map F :X  R is lower semicontinuous at u ∈ X if and only if

F (u) ⊆ Liminf
n→∞

F (un)

for any sequence {un} in X converging to u.
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Lemma 2.10. Let Y be a real normed space, and let {Kn}, {Ln} be two
sequences of subsets of Y . Then the following assertions hold:

(a) Liminf n→∞Kn + Liminf n→∞ Ln ⊆ Liminf n→∞(Kn + Ln).
(b) If Kn ⊆ Ln for all n ∈ N, then Liminf n→∞Kn ⊆ Liminf n→∞ Ln.

Definition 2.11. Let W , Y be real normed spaces, K ⊂ W be a convex
subset. The set-valued map J :K  Y with nonempty values is convex if and
only if

∀ w1, w2 ∈ K, ∀ λ ∈ [0, 1] : λJ(w1) + (1− λ)J(w2) ⊆ J(λw1 + (1− λ)w2).

Remark 2.12. J :K  Y is convex if and only if for all wi ∈ K, for all
λi ≥ 0 such that

∑n
i=1 λi = 1, n ∈ N, we have

n∑
i=1

λiJ(wi) ⊆ J

( n∑
i=1

λiwi

)
.

Finally, we recall the well-known result of Ky Fan.

Lemma 2.13 (see [5]). Let X be a Hausdorff topological vector space, K

a subset of X and for each x ∈ K, let S(x) be a closed subset of X, such that

(a) there exists x0 ∈ K such that the set S(x0) is compact,
(b) S is a KKM-map, i.e. for each x1, . . . , xn ∈ K, co{x1, . . . , xn} ⊆⋃n

i=1 S(xi), where co stands for the convex hull operator.

Then
⋂

x∈K S(x) 6= ∅.

3. Main results

We need some additional hypotheses to obtain a solution for (HV⊆).

(H3) w ∈ X  G(u, w) and z ∈ Rk  F (x, y, z) are convex for all u ∈ K,
x ∈ Ω, y ∈ Rk.

(H4) G(u, 0) ⊆ R+ and F (x, y, 0) ⊆ R+ for all u ∈ K, x ∈ Ω, y ∈ Rk.
(H5) (u, w) ∈ K ×X  G(u, w) is lower semicontinuous.
(H6) (y, z) ∈ Rk × Rk  F (x, y, z) is lower semicontinuous for all x ∈ Ω.

Remark 3.1. If F : Ω× Rk × Rk  R is a closed-valued Carathéodory map
(i.e. for any (y, z) ∈ Rk × Rk, x ∈ Ω  F (x, y, z) is measurable and for any
x ∈ Ω, (y, z) ∈ Rk × Rk  F (x, y, z) is continuous), then the hypotheses (H6)
and (H1) hold automatically (see [1, p. 314]).

Now, we establish the main result of this paper.

Theorem 3.2. Let K be a nonempty compact convex subset of a Banach
space X. Let F : Ω × Rk × Rk  R and G:K × X  R be two set-valued
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maps satisfying (H1)–(H6), of which F is closed-valued. If A:K  X∗ is upper
demicontinuous on K with bounded values, then (HV⊆) has at least a solution.

Proof. For any v ∈ K we set

Sv =
{

u ∈ K : σ(A(u), v − u) + G(u, v − u)

+
∫

Ω

F (x, Tu(x), T v(x)− Tu(x)) dx ⊆ R+

}
.

First, we prove that Sv is closed set for all v ∈ K. Fix a v ∈ K. Of
course, Sv 6= ∅, since v ∈ Sv, due to (H4). Now, let {un} be a sequence in Sv

which converges to u ∈ X. We prove that u ∈ Sv. Since T :X → Lp(Ω, Rk) is
continuous, it follows that

Tun → Tu in Lp(Ω, Rk) as n →∞.

Clearly, there exists a subsequence {um} of {un}, see Proposition 2.5, such that

(3.1) lim sup
n→∞

σ(A(un), v − un) = lim
m→∞

σ(A(um), v − um).

Moreover, by [12, Lemma A.1, p̃.133] there exists a subsequence {Tul} of {Tum}
and g ∈ Lp(Ω, R+) such that

(3.2) |Tul(x)| ≤ g(x), Tul(x) → Tu(x) for a.e. x ∈ Ω.

In the relation

σ(A(ul), v − ul) + G(ul, v − ul) +
∫

Ω

F (x, Tul(x), T v(x)− Tul(x)) dx ⊆ R+,

letting the lower limit and using Lemma 2.10 (with Y = R) we obtain

(3.3) Liminf
l→∞

σ(A(ul), v − ul) + Liminf
l→∞

G(ul, v − ul)

+ Liminf
l→∞

∫
Ω

F (x, Tul(x), T v(x)− Tul(x)) dx ⊆ Liminf
l→∞

R+ = R+.

Using Remark 2.8, relation (3.1) and Proposition 2.5, we obtain

(3.4) Liminf
l→∞

σ(A(ul), v − ul) = lim
l→∞

σ(A(ul), v − ul)

= lim sup
n→∞

σ(A(un), v − un) ≤ σ(A(u), v − u).

From (H5) and Proposition 2.9 we obtain

(3.5) G(u, v − u) ⊆ Liminf
l→∞

G(ul, v − ul).

Let Fl = F ( · , Tul( · ), T v( · )− Tul( · )). From (H1), Fl is measurable, for any l.
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The function x ∈ Ω 7→ supl dist(0, Fl(x)) is integrable. Indeed, from (H2)
and relation (3.2) we have

dist(0, Fl(x)) ≤ (h1(x) + h2(x)|Tul(x)|p−1)|Tv(x)− Tul(x)|
≤ (h1(x) + h2(x) · [g(x)]p−1)(|Tv(x)|+ g(x)) a.e. x ∈ Ω.

Let h(x) = (h1(x) + h2(x) · [g(x)]p−1)(|Tv(x)|+ g(x)). From Hölder’s inequality
and from the conditions for h1 and h2 it follows that h ∈ L1(Ω, R). Therefore,
the function x ∈ Ω 7→ supl dist(0, Fl(x)) is integrable. Applying the Lebesque
dominated convergence theorem for set-valued maps (see [1, p. 331]), one has

(3.6)
∫

Ω

Liminf
l→∞

F (x, Tul(x), T v(x)− Tul(x)) dx

⊆ Liminf
l→∞

∫
Ω

F (x, Tul(x), T v(x)− Tul(x)) dx.

Of course, the first integrand is measurable (see [1, p. 312]). Using the hypothesis
(H6) (therefore Proposition 2.9) and (3.2), one has

F (x, Tu(x), T v(x)− Tu(x)) ⊆ Liminf
l→∞

F (x, Tul(x), T v(x)− Tul(x))

a.e. x ∈ Ω. From Lemma 2.2(a) and (3.6), we obtain

(3.7)
∫

Ω

F (x, Tu(x), T v(x)− Tu(x)) dx

⊆ Liminf
l→∞

∫
Ω

F (x, Tul(x), T v(x)− Tul(x)) dx.

Therefore, from (3.4), (3.5), (3.7) and (3.3) we obtain

σ(A(u), v − u) + G(u, v − u) +
∫

Ω

F (x, Tu(x), T v(x)− Tu(x)) dx ⊆ R+,

i.e. u ∈ Sv.
Finally, we prove that S:K  K is a KKM-map. To this end, let {v1, . . . , vn}

be an arbitrary finite subset of K. We prove that co{v1, . . . , vn} ⊆
⋃n

i=1 Svi
.

Supposing the contrary, there exist λi ≥ 0 (i ∈ {1, . . . , n}) such that
∑n

i=1 λi = 1
and v =

∑n
i=1 λivi 6∈ Svi

for all i ∈ {1, . . . , n}. The above relations mean that
for all i ∈ {1, . . . , n}[
σ(A(v), vi − v) + G(v, vi − v) +

∫
Ω

F (x, Tv(x), T vi(x)− Tv(x)) dx

]
∩ R∗− 6= ∅.

(Here, R∗− = ]−∞, 0[.) Let I = {i ∈ {1, . . . , n} : λi > 0}. From the above we
obtain

∅ 6=
{∑

i∈I

λi

[
σ(A(v), vi − v) + G(v, vi − v)

+
∫

Ω

F (x, Tv(x), T vi(x)− Tv(x)) dx

]}
∩ R∗−.



304 A. Kristály — Cs. Varga

Using the sublinearity of the function h ∈ X 7→ σ(A(v), h), (H3), Lemma 2.2,
the linearity of T and (H4), we obtain

∅ 6=
{

σ

(
A(v),

∑
i∈I

λivi −
∑
i∈I

λiv

)
+
∑
i∈I

λiG(v, vi − v)

+
∑
i∈I

λi

∫
Ω

F (x, Tv(x), T vi(x)− Tv(x)) dx

}
∩ R∗−

⊆
{

σ(A(v), 0) + G

(
v,
∑
i∈I

λivi −
∑
i∈I

λiv

)
+
∫

Ω

∑
i∈I

λiF (x, Tv(x), T vi(x)− Tv(x)) dx

}
∩ R∗−

⊆
{

G(v, 0) +
∫

Ω

F

(
x, Tv(x),

∑
i∈I

λiTvi(x)−
∑
i∈I

λiTv(x)
)

dx

}
∩ R∗−

=
{

G(v, 0) +
∫

Ω

F (x, Tv(x), 0) dx

}
∩ R∗− ⊆

{
R+ +

∫
Ω

R+ dx

}
∩ R∗− = ∅,

contradiction. This means that S is a KKM-map. Since K is compact, applying
Lemma 2.13, we obtain

⋂
v∈K Sv 6= ∅, i.e. (HV⊆) has at least a solution. �

When K is not compact, we can state the following result, using a coercivity
assumption.

Theorem 3.3. Let K be a nonempty closed, convex subset of a Banach
space X. Let A, G and F be as in Theorem 3.2. In addition, suppose that there
exists a compact subset K0 of K and an element w0 ∈ K0 such that

(3.8)
{

σ(A(u), w0 − u) +
∫

Ω

F (x, Tu(x), Tw0(x)− Tu(x)) dx

+ G(u, w0 − u)
}
∩ R∗− 6= ∅

for all u ∈ K \K0. Then (HV⊆) has at least a solution.

Proof. We define the map S as in Theorem 3.2. Clearly, S is a KKM-map
and Sv is closed for all v ∈ K, as seen above. Moreover, Sw0 ⊆ K0. Indeed,
supposing the contrary, there exists an element u ∈ Sw0 ⊆ K such that u /∈ K0.
But this contradicts (3.8). Since K0 is compact, the set Sw0 is also compact.
Applying again Lemma 2.13, we obtain a solution for (HV⊆). �

4. Consequences

First, we obtain a result of Browder concerning variational inequalities (see
[3, Theorem 6]).
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Corollary 4.1. Let K be a nonempty compact convex subset of a Banach
space X, and let A:K  X∗ be an upper demicontinuous set-valued map with
bounded values. Then there exists u ∈ K such that

σ(A(u), v − u) ≥ 0 for all v ∈ K.

Proof. Choose F ≡ 0 and G ≡ 0 in Theorem 3.2. �

In particular, Corollary 4.1 reduces to a classical result of Hartman and
Stampacchia [7] if A is a single-valued continuous operator and X is of finite
dimension.

Now, we give a solution for the hemivariational inequality treated by Pana-
giotopoulos, Fundo and Rădulescu (see [10]). Before to do this, we recall two
elementary facts.

Lemma 4.2. Let K be a nonempty subset of a normed space X, and let
j:K → R be a function. Define J :K  R by J(u) = [j(u),∞) for all u ∈ K. If
j is upper semicontinuous on K, then J is lower semicontinuous on K.

Lemma 4.3. If h: Ω → R is a measurable function, then H: Ω  R defined
by H(x) = [h(x),∞) for all x ∈ Ω, is also measurable (as set-valued map).

Let Ω, X, K and T be as in the Introduction, let A:K → X∗ be an operator,
and we suppose that j: Ω× Rk → R is a Carathéodory function which is locally
Lipschitz continuous with respect to the second variable and which satisfies the
following assumption:

(j) there exist h1 and h2 as in (H2) such that

|w| ≤ h1(x) + h2(x)|y|p−1

for a.e. x ∈ Ω, every y ∈ Rk and w ∈ ∂j(x, y).

Here ∂j(x, y) is the Clarke generalized gradient of j, i.e.

∂j(x, y) = {w ∈ Rk: 〈w, z〉 ≤ j0
y(x, y; z) for all z ∈ Rk},

where j0
y(x, y; z) is the (partial) generalized directional derivative of the locally

Lipschitz continuous function j(x, · ) at the point y ∈ Rk with respect to the
direction z ∈ Rk, where x ∈ Ω, that is

j0
y(x, y; z) = lim sup

y′→y
t→0+

j(x, y′ + tz)− j(x, y′)
t

.

We consider the following hemivariational inequality problem:

(P) Find u ∈ K such that

〈Au, v − u〉+
∫

Ω

j0
y(x, Tu(x);Tv(x)− Tu(x)) dx ≥ 0 for all v ∈ K.
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Corollary 4.4 (see [10]). Let K be a nonempty compact convex subset of
a Banach space X, and let j: Ω × Rk → R satisfying the condition (j). If the
operator A:K → X∗ is w∗-demicontinuous, then (P) has at least a solution.

Proof. We choose A(u) = {A(u)} for all u ∈ K, G ≡ 0 and F : Ω × Rk ×
Rk  R as F (x, y, z) = [j0

y(x, y; z),∞) for all (x, y, z) ∈ Ω × Rk × Rk. Due to
Remark 2.4, the operator A is upper demicontinuous (with bounded values). We
will verify the hypotheses from Theorem 3.2 for F .

(H1) Using the linearity of T and the measurability of

x ∈ Ω 7→ j0
y(x, Tu(x);Tv(x)− Tu(x))

for all u, v ∈ K (see [8, p. 15]), from Lemma 4.3 we obtain that x ∈ Ω  
F (x, Tu(x), T v(x)− Tu(x)) is measurable.

(H2) Since j0
y(x, y; z) = max{〈w, z〉 : w ∈ ∂j(x, y)} = 〈w0, z〉, for some

w0 ∈ ∂j(x, y) (using (j)) we have

|j0
y(x, y; z)| ≤ |w0| · |z| ≤ (h1(x) + h2(x)|y|p−1)|z|.

Since dist(0, F (x, y, z)) ≤ |j0
y(x, y; z)|, we obtain the desired relation.

(H3) Since z ∈ Rk 7→ j0
y(x, y; z) is convex (see [4, p. 25]) we obtain that

z ∈ Rk  F (x, y, z) is convex for all x ∈ Ω and all y ∈ Rk.
(H4) Since j0

y(x, y; 0) = 0, we have F (x, y, 0) = R+ for all x ∈ Ω and all
y ∈ Rk.

(H6) Since (y, z) ∈ Rk × Rk 7→ j0
y(x, y; z) is upper semicontinuous (see [4,

p. 25]), and using Lemma 4.2 we obtain that (y, z) ∈ Rk × Rk  F (x, y, z) is
lower semicontinuous for all x ∈ Ω.

Therefore, from Theorem 3.2 we have a solution u ∈ K such that

〈Au, v − u〉+
∫

Ω

F (x, Tu(x), T v(x)− Tu(x))dx ⊆ R+ for all v ∈ K.

In particular, for the “lower” selection of F ( · , Tu( · ), T v( · ) − Tu( · )), i.e.
for j0

y( · , Tu( · );Tv( · )− Tu( · )), which is integrable due to (j), we have

〈Au, v − u〉+
∫

Ω

j0
y(x, Tu(x);Tv(x)− Tu(x)) dx ≥ 0 for all v ∈ K,

i.e. u is a solution for (P). �
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