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A SET-VALUED APPROACH
TO HEMIVARIATIONAL INEQUALITIES

ALEXANDRU KRISTALY — CSABA VARGA

ABSTRACT. Let X be a Banach space, X * its dual and let T: X— LP(Q, RF)
be a linear, continuous operator, where p,k > 1, 2 being a bounded open
set in RY. Let K be a subset of X, A:K ~» X* G:K x X ~» R and
F:Q x RF x R¥ ~» R set-valued maps with nonempty values. Using mainly
set-valued analysis, under suitable conditions on the involved maps, we
shall guarantee solutions to the following inclusion problem:

Find u € K such that, for every v € K

o(A(u),v —u) + G(u,v —u) + /Q F(z,Tu(z), Tv(z) — Tu(z))de CRy.

In particular, well-known variational and hemivariational inequalities can
be derived.

1. Introduction

Let K be a nonempty subset of Hg(£2), where 2 is a bounded open subset
of RY with C' boundary, N > 1. Many papers treat inclusion problems of the
form:

Find u € K such that

(1.1) —Au € G(z,u(x)) inQ,
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where G: 2 x R ~~ R is a set-valued map with nonempty values, satisfying some
growth and continuity conditions, see for instance [6] and [11]. In these papers
critical point arguments were used.

Here, we suppose that G has the form
(1.2) G(z,u(x)) = H(z,u(z)) — b(x)u(z), z€Q, uek,

where b € L>(Q), and H:Q x R ~» R satisfies for all x € Q the following

inclusion:
(1.3) H(z,u(@)) v(z)={h-v(z):he€ H(z,u(z))} C [-g(z,u(z),v(z)),00),

where g(-,u(-),v(-)) € LY(Q) for every u € K, v € H} ().
Multiplying (1.1) by (v — u), integrating over Q and applying the Gauss—
Green formula, from (1.2) and (1.3) we obtain:

(14) [ Vu-Vo—wde+ [ ba)ua)(ola) - u(w) do
+ [l 0w, v(@) - ), 00) do € R
Q

for all v € K, where the last term from the left hand side is the integral of a
set-valued map in the sense of Aumann (see [2]).
If H has the form

H(z,u(z)) = —0j(z,u(x)), x€Q,

where j: Q x R — R is a Carathéodory function such that j(x,-) is locally Lip-
schitz continuous and O denotes the generalized gradient, then (1.3) is verified
if we take g(z,y,z) = j)(x,y;2), j) being the (partial) generalized directional
derivative, supposing that j satisfies a growth condition (see Section 4). In this
situation, (1.4) reduces to the following classical hemivariational inequality, see
for instance Motreanu and Panagiotopoulos [8], Naniewicz and Panagiotopoulos
(see [9)):

(HV>) Find u € K such that, for all v € K

/ Vu-V(v—u)de+ / b(x)u(z)(v(z) — u(z)) dz
Q Q

+ [ e uta)sote) = u(e)) do > 0

So, it seems natural to study the following general problem.
Let X be a Banach space, X* its dual, and let T: X — LP(2,R¥) be a linear
continuous operator, where 1 < p < 0o, k > 1, Q being a bounded open set in RV,
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Let K be a subset of X, let A: K ~» X*, G: K x X ~» R and F: QxRF xRF ~» R
be set-valued maps with nonempty values, such that

(Hy) # € Q ~ F(z,Tu(x),Tv(z) — Tu(x)) is a measurable set-valued map
for all u,v € K.
(Hy) There exist hy € LP/P=D(Q, R, ) and hy € L>(,Ry) such that

dist(0, F(z,y, 2)) < (hi(2) + ha(2)|y|P~H)|2| for ae. z € Q,

for every y, z € R¥.
The aim of this paper is to study the following hemivariational inclusion
problem:
(HVQ) Find u € K such that, for all v € K

o(A(u),v —u) + G(u,v — u) + /Q F(z,Tu(z), Tv(z) — Tu(z))dx C R,.

We denoted by o(A(u), -) the support function of A(u), that is
o(A(u),h) = sup (z*,h) for all he X.
z*€A(u)

The euclidean norm in R¥ and the duality pairing between the Banach space
and its dual is denoted by | - |, respectively (-, -).

2. Preliminaries

We need some definitions and notions in order to state existence results
concerning the problem (HVC).

Let J: Q2 ~» R be a measurable set-valued map with nonempty closed values,
see [1, p. 307]. Define the set

J={je L'(QR):j(x) € J(z) ae. in Q}.

DEFINITION 2.1 (see [2]). The integral of J on § is the set of integrals of
integrable selections of J, i.e.

LJ@Mw{Aﬂ@dmjej}

From the above definition we clearly have

LEMMA 2.2. Let J1, J2: Q ~» R be two measurable set-valued maps with closed
values. Then the following assertions hold:
(a) If Ji(z) C Ja(z) a.e. x € Q, then [, Ji(z)dx C [, Jo(x)d.
(b) Jo, Ji(z)dx + [, Jo(z)dx C [, Ji(x) + Jo(z) dz.
(¢) A Ja(x)de C [ AJi(2)dx for all X € R.
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DEFINITION 2.3. Let X be a Banach space, and let K be a nonempty subset
of X. A set-valued map A: K ~» X* with bounded values is said to be upper
demicontinuous at ug € K (u.d.c. at ug € K) if, for any h € X, the real-valued
function

u€ K o(A(u),h) = sup (=", h)
z*€A(u)

is upper semicontinuous at ug. A is upper demicontinuous on K (u.d.c. on K)
if it is udc at every u € K.

REMARK 2.4. If A(u) = {A(u)} for all u € K, that is, if A is a single-
valued map, then A is u.d.c. at ug € K if and only if the map A: K — X* is
w*-demicontinuous at uy € K, i.e. for each sequence {u, } in K converging to ug
(in the strong topology), the image sequence {A(u,)} converges to A(up) in the
weak*-topology of X*.

It is easy to verify that, for all u € K, the function h € X — o(A(u),h) is
lower semicontinuous, subadditive and positive homogeneous. Moreover, due to
Banach—Steinhaus theorem, we can state the following useful result.

PRrROPOSITION 2.5. Let K be a nonempty subset of a Banach space X, and
let A: K ~ X* be an upper demicontinuous set-valued map with bounded values.
Then the function u € K — o(A(u),v — u) is upper semicontinuous for all
ve K.

DEFINITION 2.6. Let W, Y be two metric spaces. A set-valued map (with
nonempty values) J: W ~ Y is called lower semicontinuous at w € W (Ls.c.
at w) if and only if for any y € J(w) and for any sequence {w, }, converging to
w, there exists a sequence {y,}, yn € J(w,) converging to y. J is said to be
lower semicontinuous (l.s.c.) if it is Isc at every point w € W.

DEFINITION 2.7. Let {K,} be a sequence of subsets of a metric space Y.
The set

Liminf K, = {y € Y : lim dist(y, K,,) = 0}
is the (Kuratowski) lower limit of the sequence K.

REMARK 2.8. Liminf, .., is the set of limits of sequences y,, € K, (see [1,
p. 18]).

PROPOSITION 2.9 (see [1, p. 42]). Let X be a normed space. A set-valued
map F: X ~» R is lower semicontinuous at uw € X if and only if

F(u) C Liminf F(uy,)

n—o0

for any sequence {u,} in X converging to u.
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LEMMA 2.10. Let Y be a real normed space, and let {K,},{Ln} be two
sequences of subsets of Y. Then the following assertions hold:
(a) Liminf, . K, + Liminf,,_ L, C Liminf,,_ o (K, + Ly)-
(b) If K, C L, for all n € N, then Liminf,,_ ., K, C Liminf,_ . L,.

DEFINITION 2.11. Let W, Y be real normed spaces, K C W be a convex
subset. The set-valued map J: K ~» Y with nonempty values is convez if and
only if

N wi, Wy € K, Ve [0, 1] : )\J(U/l) + (1 — )\)J(’U)Q) - J()\wl + (]. — )\)wg)

REMARK 2.12. J: K ~» Y is convex if and only if for all w; € K, for all
A; > 0 such that " | A; =1, n € N, we have

n n
i=1 i=1
Finally, we recall the well-known result of Ky Fan.

LEMMA 2.13 (see [5]). Let X be a Hausdorff topological vector space, K
a subset of X and for each x € K, let S(zx) be a closed subset of X, such that

(a) there exists xg € K such that the set S(xo) is compact,
(b) S is a KKM-map, i.e. for each xi,...,z, € K, co{xy,... ,z,} C

Ui, S(z;), where co stands for the convex hull operator.

Then (,cx S(z) # 0.

3. Main results

We need some additional hypotheses to obtain a solution for (HVC).

(H3) w € X ~ G(u,w) and z € R¥ ~ F(z,y, z) are convex for all u € K,
r e, yeRk,

(Hy) G(u,0) C R, and F(z,y,0) CR, forallu € K, z € Q, y € R,

(Hs) (u,w) € K x X ~» G(u,w) is lower semicontinuous.

(Hg) (y,2) € R¥ x R¥ ~» F(z,y,2) is lower semicontinuous for all x € Q.

REMARK 3.1. If F:Q x RF x R* ~» R is a closed-valued Carathéodory map
(i.e. for any (y,2) € RF x R¥, x € Q ~ F(x,y,2) is measurable and for any
r €, (y,2) € R¥ x RF ~» F(x,y,2) is continuous), then the hypotheses (He)
and (H;) hold automatically (see [1, p. 314]).

Now, we establish the main result of this paper.

THEOREM 3.2. Let K be a nonempty compact convexr subset of a Banach
space X. Let F:Q x R¥F x RF ~» R and G:K x X ~ R be two set-valued
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maps satisfying (Hy)—(Hg), of which F is closed-valued. If A: K ~~ X* is upper
demicontinuous on K with bounded values, then (HVC) has at least a solution.

ProOF. For any v € K we set
Sy = {uGK co(A(u),v —u) + G(u,v — u)

—|—/QF(1:,Tu(x),Tv(x) —Tu(x))dx C R+}.

First, we prove that S, is closed set for all v € K. Fix av € K. Of
course, S, # 0, since v € S, due to (Hy). Now, let {u,,} be a sequence in S,
which converges to u € X. We prove that u € S,. Since T: X — LP(Q,RF) is
continuous, it follows that

Tu, — Tu in LP(Q,R¥) as n — oo.
Clearly, there exists a subsequence {u,,} of {u,}, see Proposition 2.5, such that

(3.1) limsup o(A(uy),v —up) = lim o(A(um), v — Um).

n—oo m—oo

Moreover, by [12, Lemma A.1, p:133] there exists a subsequence {Tw;} of {Tu,}
and g € LP(2, Ry ) such that

(3.2) |Tu(2)] < g(x), Tw(x)— Tu(z) forae. z €.

In the relation

o(A(ur),v —wy) + G(ug, v —wy) + /Q F(z,Tuw(z), Tv(z) — Tw(x)) de C Ry,

letting the lower limit and using Lemma 2.10 (with ¥ = R) we obtain

(3.3) Liminf o(A(w),v —w) + Lliminf G(ug, v —uy)

l—o0

+ Liminf / F(x,Tw(z), Tv(z) — Tu;(x)) de C Liminf Ry =Ry
Q

l—o00 l—o00

Using Remark 2.8, relation (3.1) and Proposition 2.5, we obtain

(3.4) Liminf o(A(w),v —u;) = llim o(Aup),v —uy)

l—o00

= limsup o(A(un),v — u,) < o(A(u),v —u).

n—oo

From (Hs) and Proposition 2.9 we obtain
(3.5) G(u,v —u) C Lliminf G(up, v — ).

Let F; = F(-,Tu(-),Tv(-) — Tw(-)). From (Hy), F} is measurable, for any .
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The function z € Q — sup, dist(0, F;(x)) is integrable. Indeed, from (Hs)
and relation (3.2) we have

dist(0, Fi(2)) < (h(2) + ho(a)|Tu(2) =) To(x) — Tuy(a)|
< (@) + ha(2) - [g@)P ") (1 To(@)| + g(x)  ae. €.

Let h(z) = (hi(z) + ha(z) - [g(x)]P~1)(|Tv(x)| + g(x)). From Hélder’s inequality
and from the conditions for hy and hy it follows that h € L'(2,R). Therefore,
the function z €  +— sup, dist(0, F;(x)) is integrable. Applying the Lebesque
dominated convergence theorem for set-valued maps (see [1, p. 331]), one has

(3.6) /QLiminf F(z, Tu(z), Tv(x) — Tw(z)) dx

l—o0

Clelnf/ F(z,Tuw(z), Tv(z) — Tu(z)) de.

Of course, the first integrand is measurable (see [1, p. 312]). Using the hypothesis
(Hg) (therefore Proposition 2.9) and (3.2), one has

F(z,Tu(z), Tv(z) — Tu(x)) C Lligi)gf F(z, Tu(x), Tv(z) — Tu(z))
a.e. € Q. From Lemma 2.2(a) and (3.6), we obtain
(3.7) /Q F(z, Tu(x), To(z) — Tu(z)) dx
€ Liminf / Fla, Tu(z), To(z) — Tuy(x)) da.
Therefore, from (3.4), (3.5), (3.7) and (3.3) we obtain

o(A(u),v —u) + G(u,v —u) + /Q F(z,Tu(z), Tv(z) — Tu(x)) de C Ry,

ie. u € S,.
Finally, we prove that S: K ~» K is a KKM-map. To this end, let {v1,... ,v,}
be an arbitrary finite subset of K. We prove that co{vi,...,v,} C Ui, Sy,

Supposing the contrary, there exist A; > 0 (i € {1,... ,n})such that Y. | \; =1
and = >  \v; € Sy, for all i € {1,...,n}. The above relations mean that
foralli e {1,... ,n}

|:0'(.A(’U),Ui —-7)+ G(v,v; — ) + /Q F(z,To(x), Tvi(x) — To(x)) dz] NR* # 0.

(Here, R* =]—00,0[.) Let I = {i € {1,...,n}: \; > 0}. From the above we
obtain
0 # { >N {U(A(v), v; —T) + G(T,v; — 1)
i€l

+ /Q Flz, To(z), Tvs(x) — To(x)) dm} } NR®.
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Using the sublinearity of the function h € X — o(A(7),h), (Hs), Lemma 2.2,
the linearity of 7' and (Hy4), we obtain

0+ {U(.A(v), PPIED )\iv) +3 NG (@,v; — )

i€l i€l i€l

+ Z Y /Q F(z,Tv(z), Tv(z) — Tv(x)) dm} NRZ

el
c {O'(A(’U), 0)+G (v, ; A\ivi — ; /\iv>
+ /Q ze; NiF(z, To(x), Tvi(z) — To(z)) dz} NR*
c {G(v, 0)+ /Q F <x T5(2), ; ATwi() — ; /\iTv(x)) dm} AR*

= {G(v, 0) +/QF(x,T@(x),0) dx} NR* C {R+ + /QR+ dz} NR™ =0,

contradiction. This means that S is a KKM-map. Since K is compact, applying
Lemma 2.13, we obtain [,cx Sy # 0, i.e. (HVC) has at least a solution. O

When K is not compact, we can state the following result, using a coercivity
assumption.

THEOREM 3.3. Let K be a nonempty closed, convex subset of a Banach
space X. Let A, G and F' be as in Theorem 3.2. In addition, suppose that there
ezists a compact subset Ky of K and an element wy € Ky such that

(3.8) {J(A(u), wo —u) + /Q F(z, Tu(z), Two(x) — Tu(zx)) dx

+G(u,w0—u)}ﬂﬂ%*_ #0

for allu € K\ Ky. Then (HVC) has at least a solution.

PrROOF. We define the map S as in Theorem 3.2. Clearly, S is a KKM-map
and S, is closed for all v € K, as seen above. Moreover, S,, C Ky. Indeed,
supposing the contrary, there exists an element u € S,,, € K such that u ¢ K.
But this contradicts (3.8). Since K| is compact, the set S, is also compact.
Applying again Lemma 2.13, we obtain a solution for (HVC). 0

4. Consequences

First, we obtain a result of Browder concerning variational inequalities (see
[3, Theorem 6]).
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COROLLARY 4.1. Let K be a nonempty compact convex subset of a Banach
space X, and let A: K ~» X* be an upper demicontinuous set-valued map with
bounded values. Then there exists u € K such that

o(A@),v—u) >0 for allve K.

PRrROOF. Choose F'=0 and G = 0 in Theorem 3.2. O

In particular, Corollary 4.1 reduces to a classical result of Hartman and
Stampacchia [7] if A is a single-valued continuous operator and X is of finite
dimension.

Now, we give a solution for the hemivariational inequality treated by Pana-
giotopoulos, Fundo and Réadulescu (see [10]). Before to do this, we recall two
elementary facts.

LEMMA 4.2. Let K be a nonempty subset of a normed space X, and let
j: K — R be a function. Define J: K ~~ R by J(u) = [j(u),0) for allu € K. If
7 is upper semicontinuous on K, then J is lower semicontinuous on K.

LEMMA 4.3. If h: Q) — R is a measurable function, then H:Q ~» R defined
by H(x) = [h(x),00) for all x € Q, is also measurable (as set-valued map).

Let Q, X, K and T be as in the Introduction, let A: K — X* be an operator,
and we suppose that j: Q x R¥ — R is a Carathéodory function which is locally
Lipschitz continuous with respect to the second variable and which satisfies the
following assumption:

(j) there exist hy and hs as in (Hs) such that
[w] < hy(@) + ha(z)ly/"~!

for a.e. x € Q, every y € R¥ and w € 9j(z,y).
Here 0j(z,y) is the Clarke generalized gradient of j, i.e.

dj(z,y) = {w € R*: (w, 2) < jg(gc,y;z) for all z € R*},

where jg(x,y;z) is the (partial) generalized directional derivative of the locally
Lipschitz continuous function j(zx, -) at the point y € R* with respect to the
direction z € R¥, where = € , that is
j(z,y +tz2) — j(x, vy
jg(x,y;z) zlimsupj( y ) =i y)
‘ Y —y t
t—0t

We consider the following hemivariational inequality problem:

(P) Find @ € K such that

(Au,v —u) + /ng(LTﬂ(x);Tv(x) —Tu(z))de >0 forallve K.
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COROLLARY 4.4 (see [10]). Let K be a nonempty compact convex subset of
a Banach space X, and let j:Q x RF — R satisfying the condition (j). If the
operator A: K — X* is w*-demicontinuous, then (P) has at least a solution.

PrOOF. We choose A(u) = {A(u)} for all u € K, G =0 and F:Q x R* x
R* ~ R as F(z,y,2) = g (2, y; 2), 00) for all (z,y,2) € Q x R* x R*. Due to
Remark 2.4, the operator A is upper demicontinuous (with bounded values). We
will verify the hypotheses from Theorem 3.2 for F'.

(H;) Using the linearity of T' and the measurability of

r €N jg(x,Tu(x);TU(x) — Tu(x))

for all u,v € K (see [8, p. 15]), from Lemma 4.3 we obtain that z € Q ~-
F(z,Tu(z), Tv(z) — Tu(x)) is measurable.

(Hz) Since jo(z,y;2) = max{(w,z) : w € dj(x,y)} = (wo,z), for some
wo € 0j(x,y) (using (j)) we have

[y @,y 2)| < wo| - |2] < (ha(x) + ha(@)[y[P~) 2]

Since dist(0, F(z,y, 2)) < |j)(x, y; z)|, we obtain the desired relation.

(Hs) Since z € R* +— j9(x,y;2) is convex (see [4, p. 25]) we obtain that
2z € R¥ ~ F(x,y,2) is convex for all x €  and all y € RF.

(H4) Since j)(z,y;0) = 0, we have F(z,y,0) = Ry for all z € Q and all
y € R

(Hg) Since (y,2) € R¥ x RF Ju(x,y; z) is upper semicontinuous (see [4,
p. 25]), and using Lemma 4.2 we obtain that (y,z) € R¥ x R¥ ~ F(x,y,2) is
lower semicontinuous for all z € €.

Therefore, from Theorem 3.2 we have a solution w € K such that

(Au,v — @) —|—/ F(z,Tu(z), Tv(z) — Tu(z))de CR; for allv e K.
Q

In particular for the “lower” selection of F(-,Tu(-),Tv(-) — Tu(-)), i.e.

for jy(-,Tu(-); Tw(-) — Tu(-)), which is integrable due to (j), we have

(Aw,v — 1) + /jng Tv(z) — Tu(x))dx >0 for allv e K,
Q

i.e. W is a solution for (P). O
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