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Abstract. Consider the equation −∆u = up−1
+ − uq−1

− in the unit ball B
with a homogeneous Dirichlet boundary condition. We assume 2 < p, q <

2∗. Let ϕ(u) = (1/2)
R

B |∇u|2 dx− (1/p)
R

B up
+ dx− (1/q)

R
B uq

− dx be the

functional associated to this equation. The nodal Nehari set is defined by
M = {u ∈ H1

0 (B) : u+ 6= 0, u− 6= 0, 〈ϕ′(u+), u+〉 = 〈ϕ′(u−), u−〉 = 0}.
Now let Mrad denote the subset of M consisting of radial functions and let

βrad be the infimum of ϕ restricted to Mrad. Furthermore fix two disjoint
half balls B+ and B− and denote by Mh the subset of M consisting of

functions which are positive in B+ and negative in B−. We denote by
βh the infimum of ϕ restricted to Mh. In this note we are interested in

obtaining inequalities between βrad and βh. This problem is related to the

study of symmetry properties of least energy nodal solutions of the equa-
tion under consideration. We also consider the case of the homogeneous

Neumann boundary condition.

1. Introduction

Let B denote the open unit ball in RN with N ≥ 2. Consider the problem

(1.1)

{
−∆u = up−1

+ − uq−1
− in B,

u = 0 on ∂B,

where 2 < p, q < 2∗ and 2∗ is the critical Sobolev exponent. When q = p

the above equation reduces to −∆u = |u|p−2u which is the model equation in
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many studies on semilinear elliptic problems. We are interested in minimal sign
changing solutions of (1.1).

Least energy, or minimal, sign changing solutions have been obtained in [1]
for quite general equations −∆u = f(x, u) in smooth bounded domains (see
also [2] and references therein). In the special case of problem (1.1) these nodal
solutions are obtained in the following way. Let the functional

(1.2) ϕ(u) =
1
2

∫
B

|∇u|2 dx− 1
p

∫
B

up
+ dx− 1

q

∫
B

uq
− dx

be defined over H1
0 (B). A function u is a solution of (1.1) if and only if it is a

critical point of ϕ. Define the nodal Nehari set by

M = {u ∈ H1
0 (B) : u+ 6= 0, u− 6= 0, 〈ϕ′(u+), u+〉 = 〈ϕ′(u−), u−〉 = 0}.

It is shown in [1] and [2] that

(1.3) β = inf
u∈M

ϕ(u)

is achieved and, moreover, any minimizer u ∈ M is a critical point of ϕ having
exactly two nodal domains. Such a function u is called a least energy nodal
solution of (1.1).

The symmetry properties of least energy nodal solutions have been studied
in [2]. The authors show that minimal nodal solutions of −∆u = f(x, u) in
a radial domain with a quite general nonlinearity f(x, u) are foliated Schwartz
symmetric. An interesting question is to obtain further information about the
shape of the nodal domains of least energy sign changing solutions. Let A denote
the set of pairs (ω, ω̃) where ω and ω̃ are disjoint nonempty open subsets of B.
Then we have the following characterization

(1.4) β = min
(ω,eω)∈A

p− 2
2p

Sp(ω)p/(p−2) +
q − 2
2q

Sq(ω̃)q/(q−2)

where Sp(ω), given by equation (1.5) below, is the best Sobolev constant for the
injection H1

0 (ω) ↪→ Lp(ω). Moreover the minimum in (1.4) is achieved if and
only if ω and ω̃ are the nodal domains of some minimizer u of β. This formula
is presumably well known but we recall the proof further on for the reader’s
convenience.

The problem of describing the shape of the nodal domains of least energy sign
changing solutions is thus equivalent to finding a pair of domains ω and ω̃ which
minimize (1.4). Two natural structures have been suggested. First consider

βrad = inf
u∈Mrad

ϕ(u)

where Mrad is the subset of M consisting of radial functions. One may show
that βrad is achieved by a radial sign changing solution v of (1.1) which has
exactly two nodal domains (see [2]). Clearly the nodal domains of v are a ball
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and an annulus. Next let B± = {x ∈ B; ±xN > 0 } be half balls and denote
by Mh the subset of M consisting of functions which are positive in B+ and
negative in B−. The infimum of ϕ over Mh, denoted by βh, is achieved and we
have

βh =
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2).

When q = p and B is replaced by an annulus it is shown in [2] that β ≤
βh < βrad if p is sufficiently near to 2∗. We are interested in studying this kind
of inequality in the case of problem (1.1).

Theorem 1.1. Let βh and βrad be as above.

(a) If p is sufficiently near to 2 and if q is sufficiently near to p then βh <

βrad. In particular if q = p is near to 2 then the conclusion holds.
(b) Let p be fixed with 2 < p < 2∗. If q is sufficiently near to 2 or if q is

sufficiently near to 2∗ then βrad < βh.

A statement similar to (a) holds when q is fixed and p varies.

A similar result to Theorem 1.1 holds when the Dirichlet boundary condition
appearing in equation (1.1) is replaced by a homogeneous Neumann condition
∂u/∂ν = 0. The Neumann problem is considered in greater detail in Section 3.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1 we will recall some characterizations of the
minima under consideration. Let us first introduce some notations. Let ω ⊂ B

be a nonempty open subset of B and denote by

(2.1) Sp(ω) = inf
u∈H1

0 (ω)

∫
ω
|∇u|2 dx

(
∫

ω
|u|p dx)2/p

the best Sobolev constant for the injection

H1
0 (ω) ↪→ Lp(ω) with 2 ≤ p ≤ 2∗.

When ω is a radial domain we denote by Srad
p (ω) the infimum (2.1) taken over

radial functions. Note that if ω is a ball then Srad
p (ω) = Sp(ω) whereas if ω is an

annulus this is not always the case. Denote by A be the set of pairs (ω, ω̃) where
ω and ω̃ are disjoint nonempty open subsets of B. Let r ∈ ]0, 1[. We denote by
Br the open ball of radius r centered at the origin and Ar = B \Br the annulus
of unit outer radius and of inner radius r.
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Proposition 2.1. Let 2 < p, q < 2∗. Then we have the following characte-
rizations.

β = min
(ω,eω)∈A

p− 2
2p

Sp(ω)p/(p−2) +
q − 2
2q

Sq(ω̃)q/(q−2),(2.2)

βh =
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2),(2.3)

(2.4) βrad = min
0<r<1

min
{

p− 2
2p

Sp(Br)p/(p−2) +
q − 2
2q

Srad
q (Ar)q/(q−2);

p− 2
2p

Srad
p (Ar)p/(p−2) +

q − 2
2q

Sq(Br)q/(q−2)

}
.

Moreover, the minimum in (2.2) is achieved if and only if ω and ω̃ are the nodal
domains of some minimizer u for β. Likewise the minima in (2.4) are achieved
only by the nodal domains of some minimizer for βrad.

Proof. We will just prove (2.2) since (2.3) and (2.4) follow in the same way.
It is straightforward to check that β defined by (1.3) has the characterization

(2.5) β = min
(ω,eω)∈A

c(ω) + c(ω̃)

where

c(ω) = inf
u∈N (ω)

ϕ(u) and N (ω) = {u ∈ H1
0 (ω) : u > 0, 〈ϕ′(u), u〉 = 0}

for any nonempty open subset ω ⊂ B. Moreover, the minimum in (2.5) is reached
if and only if ω and ω̃ are the nodal domains of some minimizer u of β. Notice
that N (ω) is a Nehari manifold. It is well known that

c(ω) =
p− 2
2p

Sp(ω)p/(p−2) and c(ω̃) =
q − 2
2q

Sq(ω̃)q/(q−2)

The formula follows. �

We will use the following result in the proof of Theorem 1.1.

Lemma 2.2. Let 1 < p < 2∗ and let Br and Ar be as above with 0 < r < 1.
Then limr→0 Srad

p (Ar) = Sp(B).

Proof. Let u be a minimizer for Sp(B). It is well known that u is a radial
function. Now let v ∈ C∞(R) be such that 0 ≤ v ≤ 1, v(r) = 0 for 0 ≤ r ≤ 1
and v(r) = 1 for r ≥ 2. Define un(x) = v(n|x|)u(x) for x ∈ B. We have that
un → u and vn(n|x|)(∂u/∂xk) → ∂u/∂xk in L2(B) for all 1 ≤ k ≤ N . On the
other hand by Hardy’s inequality we have

nu(x)v′(n|x|) =
u(x)
|x|

n|x|v′(n|x|) ≤ 2|v′|∞
u(x)
|x|

∈ L2(B),

so that nv′(n|x|)u(x) → 0 in L2(B). It follows that un → u in H1
0 (B).
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Now Sp(B) < Srad
p (Ar) since Ar  B for all 0 < r < 1. On the other hand

if r = 1/n then

Srad
p (Ar) ≤

∫
B
|∇un|2 dx

(
∫

B
up

n dx)2/p

and ∫
B
|∇un|2 dx

(
∫

B
up

n dx)2/p
→ Sp(B) as n →∞. �

Proof of Theorem 1.1. Statement (1.1). Let λr be the second radial
eigenvalue of the Laplacian and let Br0 and Ar0 be the nodal domains of an
associated eigenfunction. Then it is well known that λr = S2(Br0) = S2(Ar0).
Let λ2(B) be the second eigenvalue of the Laplacian. It is well known that the
nodal domains of an associated eigenfunction are precisely two half balls so that
λ2(B) = S2(B+) = S2(B−). Since λ2(B) < λr we have S2(Br0) > S2(B+) and
S2(Ar0) > S2(B−). Let us consider first the inequality S2(Br0) > S2(B+). By
continuity there is a number δ > 0 and c > 1 such that Sp(Br0) > cSp(B+) for
any p ∈ [2, 2 + δ]. It follows that for some δ > 0 small enough we have(

Sp(Br0)
Sp(B+)

)p/(p−2)

> 2 for all p ∈ ]2, 2 + δ].

Similarly, (
Sp(Ar0)
Sp(B−)

)p/(p−2)

> 2 for all p ∈ ]2, 2 + δ].

Using that S2(B+) = S2(B−) we then get

p− 2
2p

Sp(Br0)
p/(p−2) >

p− 2
2p

Sp(B+)p/(p−2) +
p− 2
2p

Sp(B−)p/(p−2),

for all p ∈ ]2, 2 + δ]. Now by continuity we have

p− 2
2p

Sp(Br0)
p/(p−2) >

p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2),

for any p ∈ ]2, 2 + δ] and for any q ∈ [p − δp, p + δp] for some 0 < δp < δ that
depends on p. Since Sp(Br) > Sp(Br0) when r < r0, we have

inf
0<r<r0

p− 2
2p

Sp(Br)p/(p−2) +
q − 2
2q

Sq(Ar)q/(q−2) >
p− 2
2p

Sp(Br0)
p/(p−2)

>
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2),

for any p ∈ ]2, 2 + δ] and for any q ∈ [p− δp, p + δp].
Using the fact that S2(Ar) > S2(Ar0) when r > r0, we get

inf
r0<r<1

p− 2
2p

Sp(Br)p/(p−2) +
q − 2
2q

Sq(Ar)q/(q−2)

>
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2),
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for any p ∈ ]2, 2 + δ] and for any q ∈ [p − δp, p + δp]. Combining the above
inequalities we have

inf
0<r<1

p− 2
2p

Sp(Br)p/(p−2) +
q − 2
2q

Sq(Ar)q/(q−2)

>
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2) = βh,

for any p ∈ ]2, 2 + δ] and for any q ∈ [p− δp, p + δp]. Clearly we can swap p and
q in the above inequality. This proves the first statement.

Statement (b). Let p be fixed with 2 < p < 2∗. We consider first the case
when q is near to 2. There holds S2(B+) > S2(B) = λ1(B) = j2

N/2−1,1 where
λ1(B) is the first eigenvalue of the Laplacian and jN/2−1,1 is the first zero of
the Bessel function of the first kind and of order N/2 − 1. By [3] we have that
S2(B) > j2

0,1 + (N/2 − 1)2 > 1. Thus by continuity there is a δ > 0 and c > 1
such that

(2.6) Sq(B+) > cSq(Br) > 1,

for some fixed r > 0 sufficiently near to 1 and for any q ∈ [2, 2 + δ]. Now let

α =
∣∣∣∣p− 2

2p
Srad

p (Ar)p/(p−2) − p− 2
2p

Sp(B−)p/(p−2)

∣∣∣∣.
It follows from (2.6) that if δ > 0 is small enough then

Sq(B+)q/(q−2) > Sq(Br)q/(q−2) + α
2q

q − 2
,

for any q ∈ ]2, 2 + δ]. Thus

βh =
q − 2
2q

Sq(B+)q/(q−2) +
p− 2
2p

Sp(B−)p/(p−2)

>
q − 2
2q

Sq(Br)q/(q−2) +
p− 2
2p

Srad
p (Ar)p/(p−2) ≥ βrad.

Now we consider the case when q is near to 2∗. Since B+  B we have
Sp(B+) > Sp(B). By Lemma 2.2 there holds limr→0 Srad

p (Ar) = Sp(B), thus we
may fix r > 0 small such that

p− 2
2p

Sp(B+)p/(p−2) >
p− 2
2p

Srad
p (Ar)p/(p−2).

On the other hand

q − 2
2q

Sq(Br)q/(q−2) → 1
N

SN/2 and
q − 2
2q

Sq(B−)q/(q−2) → 1
N

SN/2,
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as q → 2∗, where S is the critical Sobolev constant. Consequently if q is suffi-
ciently near to 2∗ then

βh =
p− 2
2p

Sp(B+)p/(p−2) +
q − 2
2q

Sq(B−)q/(q−2)

>
p− 2

p
Srad

p (Ar)2p/(p−2) +
q − 2
2q

Sq(Br)q/(q−2) ≥ βrad. �

3. The Neumann problem

In this section we consider the problem

(3.1)

{ −∆u = up−1
+ − uq−1

− in B,

∂u

∂ν
= 0 on ∂B.

Let the functional ϕ given by (1.2) be defined over H1(B) and let

H = {u ∈ H1(B) : u+ 6= 0, u− 6= 0, 〈ϕ′(u+), u+〉 = 〈ϕ′(u−), u−〉 = 0}.

As in the case of the Dirichlet boundary condition it can be shown that

(3.2) η = inf
u∈H

ϕ(u)

is achieved. Likewise, the procedure described in the proof of Proposition 3.1
of [2] carries over to the Neumann case with some obvious modifications and
we get that any minimizer u ∈ H is a critical point of ϕ having exactly two
nodal domains. Such a function u is called a least energy nodal solution of (3.1).
As above we may define quantities ηrad and ηh as the infimum of ϕ over the
subsets of H consisting respectively of radial functions and of functions which
are positive in B+ and negative in B−. Let ω ⊂ B be a nonempty open subset
and define

(3.3) νp(ω) = inf
u∈H1

∗(ω)

∫
ω
|∇u|2 dx

(
∫

ω
|u|p dx)2/p

where H1
∗ (ω) is the subset of H1(B) consisting of functions which are zero in

B\ω. We have νp(B) = 0 whereas if B\ω is nonempty then there holds a Poincaré
type embedding for functions in H1

∗ (ω) and it follows that νp is achieved by some
u ∈ H1

∗ (ω) and that νp > 0. When ω is a radial domain we denote by νrad
p (ω)

the infimum (3.3) taken over radial functions. Let us remark that, for 0 < r < 1,
νp(Br) = Sp(Br). As in Proposition 2.1 we have the following characterizations.

ηh =
p− 2
2p

νp(B+)p/(p−2) +
q − 2
2q

νq(B−)q/(q−2),(3.4)

(3.5) ηrad = min
0<r<1

min
{

p− 2
2p

νp(Br)p/(p−2) +
q − 2
2q

νrad
q (Ar)q/(q−2);

p− 2
2p

νrad
p (Ar)p/(p−2) +

q − 2
2q

νq(Br)q/(q−2)

}
.
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Theorem 3.1. Let ηh and ηrad be as above.

(a) If p is sufficiently near to 2 and if q is sufficiently near to p then ηh <

ηrad. In particular if q = p is near to 2 then the conclusion holds.
(b) Let p be fixed with 2 < p < 2∗. If q is sufficiently near to 2 then

ηrad < ηh.

A statement similar to (b) holds when q is fixed and p varies.

Proof. The proof of the first statement in Theorem 3.1 is similar to the
proof of the first statement in Theorem 1.1 and we will not include it here. Let
us consider the second statement. Using a similar argument to the one appearing
in the proof of Lemma 2.2 one may show that limr→0 νrad

2 (Ar) = ν2(B) = 0.
Thus we may fix r > 0 small such that νrad

2 (Ar) < 1. On the other hand ν2(B+)
is the first nonzero eigenvalue of the Laplacian with a homogeneous Neumann
condition and it is well known that ν2(B+) = j′N/2,1 > 1, where j′N/2,1 is the
first zero of the derivative of the Bessel function of the first kind and of order
N/2. Now, by continuity, there is 0 < ε < 1 and δ > 0 such that

(3.6) νrad
q (Ar) < 1− ε and νq(B+) > 1 + ε,

for any q ∈ [2, 2 + δ]. Now let 2 < p < ∞ be fixed and let

α =
∣∣∣∣p− 2

2p
νp(Br)p/(p−2) − p− 2

2p
νp(B−)p/(p−2)

∣∣∣∣.
From (3.6) we may choose δ > 0 small such that

νq(B+)q/(q−2) > νrad
q (Ar)q/(q−2) +

2q

q − 2
α,

for any q ∈ ]2, 2+ δ]. We then obtain ηh > ηrad as in the proof of Theorem 1.1.�

4. Numerical computations

In what follows we assume q = p. By Theorem 1.1 we have βh < βrad

provided p is sufficiently near to 2. It has been suggested that in fact βh < βrad

for any 2 < p < 2∗. We have tested the validity of this statement numerically
for N = 3.

First we obtain an approximation of βrad. Let a > 0 and let ua be a solution
of the equation

−u′′(r) =
N − 1

r
u′(r) + |u(r)|p−2u(r)

on ]0, 1[ with Cauchy data u(0) = a and u′(0) = 0. We may adjust a in such
a way that ua has exactly two nodal domains and ua(1) = 0. Thus if v denotes
a minimizer for βrad then ua and v are two radial solutions of the boundary value
problem (1.1) having exactly two nodal domains. By the uniqueness result of [4]
we have ua ≡ v. Thus we may compute βrad = ϕ(ua).
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An upper bound for βh is given by β̃ = ϕ(f) for some f ∈ Mh. When
2 < p ≤ 4.5 we take f to be a second eigenfunction of the Laplacian. When
4.5 < p < 2∗ = 6 let λ > 0 and let v(|x|) = (λ + |x|2)−1/2 − (λ + 1/4)−1/2 for
0 < |x| < 1/2 and v(|x|) = 0 for |x| > 1/2. We may translate v so that its
support lies in B+ and then take f to be an appropriate multiple of the odd
extension of v to B. Table 1 contains data which suggests that βh < β̃ < βrad

for a large range of values of p. To compute the last three columns for β̃ we took
respectively λ = 10−2, 10−3 and 10−5.

p 2.5 3.5 4.5 5.5 5.7 5.9

βrad 1.2 e 7 912.4 96.54 21.97 15.98 11.03

β̃ 5.1 e 5 313.2 73.63 17.61 12.61 9.898

Table 1. βrad and eβ with N = 3.
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