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COMPACT COMPONENTS OF POSITIVE SOLUTIONS
FOR SUPERLINEAR INDEFINITE

ELLIPTIC PROBLEMS OF MIXED TYPE

Santiago Cano-Casanova

Abstract. In this paper we construct an example of superlinear indefinite
weighted elliptic mixed boundary value problem exhibiting a mushroom

shaped compact component of positive solutions emanating from the trivial

solution curve at two simple eigenvalues of a related linear weighted bound-
ary value problem. To perform such construction we have to adapt to our

general setting some of the rescaling arguments of H. Amann and J. López-

Gómez [2, Section 4] to get a priori bounds for the positive solutions. Then,
using the theory of [1], [4] and [5], we give some sufficient conditions on

the nonlinearity and the several potentials of our model setting so that the

set of values of the parameter for which the problem possesses a positive
solution is bounded. Finally, the existence of the component of positive so-

lutions emanating from the trivial curve follows from the unilateral results

of P. H. Rabinowitz ([18], [14]). Monotonicity methods, re-scaling argu-
ments, Liouville type theorems, local bifurcation and global continuation

are among the main technical tools used to carry out our analysis.

1. Introduction

The main goal of this paper is to give sufficient conditions on the poten-
tials W (x), a(x) ∈ L∞(Ω) and the nonlinearity F (x, u) so that the superlinear
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indefinite weighted elliptic mixed boundary value problem

(1.1)

{
Lu = λW (x)u− a(x)F (x, u)u in Ω,

B(b)u = 0 on ∂Ω,

has a compact component of positive solutions of (1.1) bifurcating from the trivial
branch (λ, u) = (λ, 0) at two bifurcation values of λ, σ1

1 , σ2
1 , σ1

1 6= σ2
1 , which

are simple eigenvalues of a certain linear weighted elliptic mixed boundary value
problem. In order to guarantee the existence of such compact component we first
adapt, to cover our more general setting here, some of the re-scaling arguments
of H. Amann and J. López-Gómez in [2, Section 4] about the existence of a priori
bounds for the positive solutions of (1.1), valid for the special case W = 1, to
show the existence of a priori bounds for the positive solutions of (1.1) for general
W ∈ L∞(Ω). Then, under adequate assumptions on the nonlinearity F (x, u) so
that the positive solutions of (1.1) have a priori bounds, and using the results
in [4] and [5], we give some sufficient conditions on the weights W (x), a(x) so that
the range of values of the parameter λ for which (1.1) possesses a positive solution
be bounded, as well as to guarantee the existence of two different bifurcation
values to positive solutions from the trivial branch (λ, u) = (λ, 0). These values,
σ1

1 and σ2
1 , are simple eigenvalues of a related weighted elliptic mixed boundary

value problem. Finally, thanks to the Rabinowitz global bifurcation theorem
(see [18]), the existence of a compact component of positive solutions of (1.1)
connecting the two bifurcation values (σ1

1 , 0) and (σ2
1 , 0) is shown.

Throughout this paper, we make the following assumptions:
(a) Ω is a bounded domain in RN , N ≥ 1, of class C2, i.e. Ω is an N -

dimensional compact connected C2-submanifold of RN with boundary ∂Ω of
class C2.

(b) λ ∈ R is regarded as the bifurcation and continuation parameter, W ∈
L∞(Ω) is a potential in front of λ, and

(1.2) L := −
N∑

i,j=1

αij(x)
∂2

∂xi∂xj
+

N∑
i=1

αi(x)
∂

∂xi
+ α0(x)

is an uniformly strongly elliptic differential operator in Ω with

(1.3) αij = αji ∈ C1(Ω), αi ∈ C(Ω), α0 ∈ L∞(Ω), 1 ≤ i, j ≤ N.

In the sequel we denote by µ > 0 the ellipticity constant of L in Ω. Then, for
any ξ ∈ RN \ {0} and x ∈ Ω we have that

N∑
i,j=1

αij(x)ξiξj ≥ µ|ξ|2.
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(c) As for as the potential a(x) ∈ L∞(Ω), we assume that the weights

a+(x) := max{a, 0} and a− := a+ − a

the positive and negative part of a, respectively, are two nonnegative bounded
potentials with disjoint supports, belonging to a very general class of nonnegative
potentials A(Ω) ⊂ L∞(Ω), which will be introduced in Section 2. Hereafter, Ω0

a+

and Ω0
a− will stand for the maximal open subsets of Ω where a+(x) and a−(x)

vanish, respectively, and Ω+
a+ and Ω+

a− the sets satisfying

Ω+
a+ := {x ∈ Ω : a+(x) > 0}, Ω+

a− := {x ∈ Ω : a−(x) > 0}.

In the sequel, we will set Ωa+ := Ω+
a+ and Ωa− := Ω+

a− .
In Section 2 we will introduce all the details about the structure and prop-

erties of the sets Ω0
a+ , Ω0

a− , Ωa+ and Ωa− . Since we are assuming that the po-
tentials a+(x) and a−(x) have disjoint supports, it follows that Ωa+ ∩ Ωa− = ∅,
and hence,

(1.4) Ωa+ ⊂ Ω0
a− and Ωa− ⊂ Ω0

a+ .

In the sequel we will denote by Ω0 the maximal open subset of Ω where a ∈
L∞(Ω) vanishes and by [Ω0

a− ]0a+ the maximal open subset of Ω0
a− where the

positive part of a, a+, vanishes. It should be noted that they coincide, that is
to say,

(1.5) Ω0 = [Ω0
a− ]0a+ .

We advance that with the assumptions that it will be imposed over the potential
a, the open set Ω0 will satisfy

(1.6) Ω0 ∈ C2 and dist(Γ1, ∂Ω0 ∩ Ω) > 0.

(d) As for as the nonlinearity F (x, u): Ω× [0,∞) → R, satisfies the following
assumptions:

(F1) F ∈ C1(Ω× [0,∞); R),
(F2) limu↗∞ F (x, u) = ∞ uniformly in Ω,
(F3) F ( · , 0) = 0 and ∂uF (x, u) > 0 for each (x, u) ∈ Ω× (0,∞),

and the following growth condition at infinity

(1.7) lim
u↗∞

F (x, u)
ur−1

= l(x) uniformly in Ωa− ,

where r > 1 and l ∈ L∞(Ωa−) is positive and bounded away from zero.
(e) B(b) stands for the boundary operator

(1.8) B(b)u :=

{
u on Γ0,

∂νu + bu on Γ1,
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where Γ0 and Γ1 are two disjoint open and closed subsets of ∂Ω with Γ0∪Γ1 = ∂Ω,
b ∈ C(Γ1), ν = (ν1, . . . , νN ) ∈ C1(Γ1, RN ) is any outward pointing nowhere
tangent vector field satisfying

(1.9) νi :=
N∑

j=1

αijnj , 1 ≤ i ≤ N,

on Γ1 ∩ ∂Ω0, where n = (n1, . . . , nN ) denotes the outward unit normal to Ω on
Γ1, ∂νu := 〈∇u, ν〉 and Ω0 the vanishing set defined by (1.5). It should be noted
as a consequence of (1.6), each component Γ∗ of Γ1 satisfies either Γ∗ ∩ ∂Ω0 = ∅
or Γ∗ ⊂ ∂Ω0. Thus, (1.9) implies that if Γ∗ is a component of Γ1 satisfying
Γ∗ ⊂ ∂Ω0, then ν is the conormal field on Γ∗ and ∂νu stands for the conormal
derivate of u on Γ∗; and if Γ∗ is a component of Γ1 satisfying that Γ∗ ∩∂Ω0 = ∅,
then ν|Γ∗ ∈ C1(Γ∗, RN ) is any outward pointing nowhere tangent vector field to
Ω on Γ∗. Moreover, Γ0 and Γ1 possess finitely many components. Thus, B(b)
is the Dirichlet boundary operator on Γ0, denoted in the sequel by D, and the
Neumann or a first order regular oblique derivative boundary operator on Γ1. It
should be pointed out that either Γ0 or Γ1 may be empty.

Throughout this paper, we regard to the positive solutions of (1.1) as couples
(λ, uλ) or simply by uλ, where λ is the bifurcation parameter. Moreover, for each
potential a(x) with a+, a− ∈ A(Ω) and each nonlinearity F (x, u) satisfying the
(d) assumptions, we will denote by Λ(a, F ) the set of values of λ for which (1.1)
possesses a positive solution.

This paper is strongly motivated by the previous work [18], [8], [1], [12], [13],
[10], [2], [5] and [4] and the main technical tools used to get our results are
monotonicity methods, re-scaling arguments, Liouville type theorems, local and
global bifurcation and continuation methods.

To explain the main results of this paper, we need introducing some addi-
tional concepts and notations. By a principal eigenvalue of the operator L in the
domain Ω, we mean any value of λ ∈ R for which there exists a positive function
ϕ satisfying

(1.10)

{
Lϕ = λϕ in Ω,

B(b)ϕ = 0 on ∂Ω.

The existence and the uniqueness of the principal eigenvalue under our general
assumptions goes back to H. Amann ([1]). In the sequel σΩ

1 [L,B(b)] will denote
the principal eigenvalue of (1.10). Also, given any proper subdomain Ω̃ of Ω of
class C2 with

(1.11) dist(Γ1, ∂Ω̃ ∩ Ω) > 0,
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we will denote by B(b, Ω̃) the boundary operator build up from B(b) through by

(1.12) B(b, Ω̃) :=

{
ϕ on ∂Ω̃ ∩ Ω,

B(b)ϕ on ∂Ω̃ ∩ ∂Ω.

When Ω̃ = Ω we set B(b, Ω̃) := B(b). If Ω̃ ⊂ Ω, then ∂Ω̃ ⊂ Ω and B(b, Ω̃)ϕ = ϕ

by definition. So, B(b, Ω̃) becomes into the Dirichlet boundary operator, denoted
in the sequel by D. Also, we denote by σ

eΩ
1 [L,B(b, Ω̃)] the principal eigenvalue of

the linear boundary value problem

(1.13)

{
Lϕ = λϕ in Ω̃,

B(b, Ω̃)ϕ = 0 on ∂Ω̃.

We now recall the concept of principal eigenvalue for a domain with several
components.

Definition 1.1. If Ω̃ is an open subset of Ω with a finite number of com-

ponents of class C2, say Ω̃j , 1 ≤ j ≤ m such that Ω̃
i

∩ Ω̃
j

= ∅ if i 6= j and

(1.14) dist(Γ1, ∂Ω̃ ∩ Ω) > 0,

then the principal eigenvalue of (L,B(b, Ω̃), Ω̃) is defined through

(1.15) σ
eΩ
1 [L,B(b, Ω̃)] := min

1≤j≤m
σ
eΩj

1 [L,B(b, Ω̃j)].

Remark 1.2. Since Ω̃ is of class C2, it follows from (1.14) that each of the
principal eigenvalues σ

eΩj

1 [L,B(b, Ω̃j)], 1 ≤ j ≤ m, is well defined. This shows
the consistency of Definition 1.1.

Hereafter, for each λ ∈ R we will denote by L(λ) the differential operator

(1.16) L(λ) := L − λW (x).

Note that L(λ) is uniformly strongly elliptic in Ω, with the same ellipticity
constant µ > 0 as L.

We now introduce some concepts and results concerning with the existence
and multiplicity of principal eigenvalues for a general class of weighted linear
elliptic mixed boundary value problems.

Definition 1.3. For each W ∈ L∞(Ω), any value of λ for which the problem

(1.17)

{
Lϕ = λWϕ in Ω,

B(b)ϕ = 0 on ∂Ω

admits a positive solution ϕ, it will be called a principal eigenvalue of (L,W,

B(b),Ω). If λ is a principal eigenvalue of (L,W,B(b),Ω) with

N [L − λW ] = span[ϕ] and Wϕ 6∈ R[L − λW ],
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then it will be said that λ is a simple eigenvalue of (L,W,B(b),Ω).

The previous concept of simple eigenvalue is consistent with the concept
of simple eigenvalue of (L − λW,W ) in Ω introduced in [8]. Thus, from Def-
inition 1.3 and due the uniqueness of the principal eigenpair associated with
(L− λW,B(b),Ω), guaranteed by [1, Theorem 12.1], the principal eigenvalues of
(1.17) are given by the zeroes of the map

(1.18) Σ(λ) := σΩ
1 [L(λ),B(b)], λ ∈ R,

where L(λ) is the differential operator just defined by (1.16)
Hereafter, for each a ∈ L∞(Ω) with a+ ∈ A(Ω) we will consider the map

(1.19) Σ0(λ) := σ
Ω0

a+
1 [L(λ),B(b, Ω0

a+)].

It should be noted, that the boundary operator B(b, Ω0
a+) and the principal

eigenvalue (1.19) are well defined in the sense of (1.8) and (1.10), respectively,
since as we will see in Section 2,

(1.20) Ω0
a+ ∈ C2 and dist(Γ1, ∂Ω0

a+ ∩ Ω) > 0,

are followed from the fact that a+ ∈ A(Ω).
Throughout this paper if λ̃ is a bifurcation value to positive solutions of (1.1)

from the trivial branch (λ, u) = (λ, 0), we will denote by C+(λ̃) the global con-
tinuum of positive solutions of (1.1) emanating from the trivial branch at the
bifurcation point (λ̃, 0), where by continuum we mean closed and connected. The
main result of this paper establishes the following

Theorem 1.4. Let a ∈ L∞(Ω) be where the positive and negative parts of
a, a+ = max{a, 0} and a− = a+ − a satisfy

a+, a− ∈ A(Ω), Ω0
a− is connected, a+ ∈ A(Ω0

a−), ∂Ωa− ∈ C1,

where A(Ω) is a very general class of nonnegative measurable bounded potential,
named Class of Admissible Potentials in Ω, that will be introduced in Section 2.
Assume in addition that

(1.21) a−(x) = C(x)dist(x, ∂Ωa−)γ , x ∈ Ωa− ,

with γ > 0 and C: Ωa− → [0,∞) is a continuous function bounded away from
zero near ∂Ωa− .

As far as the growth condition (1.7) assume that either N ≤ 2 and r > 1 or

(1.22) N ≥ 3 and r < min
{

N + 2
N − 2

,
N + 1 + γ

N − 1

}
.
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Further, suppose that the weight W satisfy that there exist two open subsets D+

and D− of Ω0
a+ for which infD+ W > 0 and supD− W < 0 with D+ ∩ Ωa− 6= ∅

and

(1.23) sup
λ∈R

Σ(λ) > 0,

where Σ(λ) is the map just defined by (1.18). Finally, set σ1
1 < σ2

1 the unique
roots of the map Σ(λ) and λ0

1 < λ0
2 the unique roots of the map Σ0(λ), whose

existence will be guaranteed. Then:

(a) Λ(a, F ) ⊂ (λ0
1, λ

0
2) and therefore, Λ(a, F ) is bounded.

(b) The roots σi
1, i = 1, 2 of the map Σ(λ) are simple eigenvalues of (L,W,

B(b),Ω) in the sense of Definition 1.3 and they are bifurcation values to
positive solutions of (1.1) from the trivial branch (λ, u) = (λ, 0).

(c) The global continuum C+(σ1
1) of positive solutions emanating from the

trivial branch at (λ, 0) = (σ1
1 , 0), it is bounded in R×L∞(Ω) and comes

back again to the trivial branch at the bifurcation point (λ, 0) = (σ2
1 , 0).

The same occur with the global continuum C+(σ2
1), which comes back to

the trivial branch at the bifurcation point (λ, 0) = (σ1
1 , 0). Therefore,

(1.24) C+(σ1
1) = C+(σ2

1).

(d) (σ1
1 , σ2

1) ⊂ Λ(a, F ) ⊂ (λ0
1, λ

0
2).

Figure 1.1 ilustrates a typical situation where (1.1) exhibits a mushroom
shaped compact component of positive solutions

C+ := C+(σ1
1) = C+(σ2

1),

emanating from the trivial solution curve at the bifurcation values (σ1
1 , 0) and

(σ2
1 , 0), situation whose existence is guaranteed under the assumptions of Theo-

rem 1.4.

�λ

σ1
1 σ2

1

C+

Figure 1.1. Mushroom shaped compact component of positive solutions
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We now shortly describe the distribution of this paper. In Section 2 are ex-
plained all the properties of the nonnegative measurable bounded potentials be-
longing to the class A(Ω) of Admissible Potentials in Ω. Section 3 contains some
preliminaries, among them the existence and some properties of the principal
eigenvalue σΩ

1 [L,B(b)] found in [1], the characterization of the strong maximum
principle found in [2], some of the main properties of the maps Σ(λ) and Σ0(λ)
found in [5] and a result about the existence of positive supersolutions of a very
general class of sublinear elliptic mixed boundary problem, found in [4]. Also
we definitively fix the notations used throughout the paper. Section 4 contains
results concerning with the existence of positive solutions of (1.1) and bifurcation
values to positive solutions of (1.1) from the trivial branch (λ, u) = (λ, 0). Sec-
tion 5 contains the results concerning with the existence of a priori bounds for the
positive solutions of (1.1), where we have adapted the theory of H. Amann and
J. López-Gómez ([2]) to our setting. Finally, Section 6 contains the main result
of this paper, in which are given sufficient conditions to (1.1) exhibits a bounded
global continuum of positive solutions connecting two different bifurcation values
to positive solutions of (1.1) from the trivial branch (λ, u) = (λ, 0).

2. Class A(Ω) of admissible potentials in Ω

In this section we introduce a very general class of nonnegative measurable
bounded potentials which will be denoted by class A(Ω) of admissible potentials
in Ω. It will play a crucial role troughout this paper.

Definition 2.1. It is defined the class A(Ω) of admissible potentials in Ω,
as the set of nonnegative measurable bounded potentials V > 0 for which there
exist an open subset Ω0

V of Ω and a compact subset KV of Ω with Lebesgue
measure zero such that

KV ∩ (Ω
0

V ∪ Γ1) = ∅,(2.1)

Ω+
V := {x ∈ Ω : V (x) > 0} = Ω \ (Ω

0

V ∪KV ),(2.2)

and each of the following conditions is satisfied:

(A1) Ω0
V possesses a finite number of components of class C2, say Ω0,j

V , 1 ≤
j ≤ m, such that Ω

0,i

V ∩ Ω
0,j

V = ∅ if i 6= j, and

(2.3) dist(Γ1, ∂Ω0
V ∩ Ω) > 0.

Thus, if we denote by Γi
1, 1 ≤ i ≤ n1, the components of Γ1, then for

each 1 ≤ i ≤ n1 either Γi
1 ⊂ ∂Ω0

V or Γi
1 ∩ ∂Ω0

V = ∅. Moreover, if Γi
1 ⊂

∂Ω0
V , then Γi

1 must be a component of ∂Ω0
V . Indeed, if Γi

1 ∩ ∂Ω0
V 6= ∅

but Γi
1 is not a component of ∂Ω0

V , then dist(Γi
1, ∂Ω0

V ∩ Ω) = 0.
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(A2) Let {i1, . . . , ip} denote the subset of {1, . . . , n1} for which Γj
1∩∂Ω0

V = ∅
if and only if j ∈ {i1, . . . , ip}. Then, V is bounded away from zero on
any compact subset of

Ω+
V ∪

p⋃
j=1

Γij

1 .

Note that if Γ1 ⊂ ∂Ω0
V , then we are only imposing that V is bounded

away from zero on any compact subset of Ω+
V .

(A3) Let Γi
0, 1 ≤ i ≤ n0, denote the components of Γ0, and let {i1, . . . , iq}

be the subset of {1, . . . , n0} for which (∂Ω0
V ∪KV )∩Γj

0 6= ∅ if and only
if j ∈ {i1, . . . , iq}. Then, V is bounded away from zero on any compact
subset of

Ω+
V ∪

[ q⋃
j=1

Γij

0 \ (∂Ω0
V ∪K)

]
.

Note that if (∂Ω0
V ∪KV )∩Γ0 = ∅, then we are only imposing that V is

bounded away from zero on any compact subset of Ω+
V .

(A4) For any η > 0 there exist a natural number `(η) ≥ 1 and `(η) open
subsets of RN , Gη

j , 1 ≤ j ≤ `(η), with |Gη
j | < η, 1 ≤ j ≤ `(η), such that

G
η

i ∩G
η

j = ∅ if i 6= j, KV ⊂
`(η)⋃
j=1

Gη
j ,

and for each 1 ≤ j ≤ `(η) the open set Gη
j ∩ Ω is connected and

of class C2.

a=0

a=0

a>0

a>0K

Γ

Γ

Γ

Γ

1

1

1

1

2

0

0

2

Figure 2.1. An admissible configuration
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In Figure 2.1 we have represented a typical configuration for which V ∈ A(Ω).
In this case, we have Γ1 = Γ1

1 ∪ Γ2
1, Γ0 = Γ1

0 ∪ Γ2
0, and Ω+

V – dark area, as well
as Ω0

V – white area, consists of two components; the compact set KV consisting
of a compact arc of curve. For such configuration, conditions (A1) and (A4) are
trivially satisfied. Moreover, (A2) is satisfied if, and only if, V is bounded away
from zero in any compact subset of Ω+

V ∪ Γ1
1, and (A3) holds if, and only if, V

is bounded away from zero in any compact subset of Ω+
V ∪ (Γ2

0 \ ∂Ω0
V ); V can

vanish on the component Γ1
0.

3. Preliminaries and notations

In this section we collect some of the main results of [1], [5] and [4] that are
going to be used throughout the rest of this paper.

For each p > 1 we denote

W 2
p,B(b)(Ω) := {u ∈ W 2

p (Ω) : B(b)u = 0},

W 2
B(b)(Ω) :=

⋂
p>1

W 2
p,B(b)(Ω) ⊂ H2(Ω),

and use the natural product order in Lp(Ω)× Lp(∂Ω),

(f1, g1) ≥ (f2, g2) ⇔ f1 ≥ f2 ∧ g1 ≥ g2.

It will be said that (f1, g1) > (f2, g2) if (f1, g1) ≥ (f2, g2) and (f1, g1) 6= (f2, g2).
Since b ∈ C(Γ1), it follows from [17] that for each p > 1

B(b) ∈ L(W 2
p (Ω),W 2−1/p

p (Γ0)×W 1−1/p
p (Γ1)).

Moreover, there exists a least real eigenvalue of the problem

(3.1)

{
Lϕ = λϕ in Ω,

B(b)ϕ = 0 on ∂Ω,

denoted in the sequel by σΩ
1 [L,B(b)] and called principal eigenvalue of (L,B(b),

Ω). The principal eigenvalue is simple and associated with it there is a positive
eigenfunction, unique up to multiplicative constants, denoted by ϕ[L,B(b)] and
called principal eigenfunction of (L,B(b),Ω). Thanks to Theorem 12.1 of [1] the
principal eigenfunction satisfies

ϕ[L,B(b)] ∈ W 2
B(b)(Ω) ⊂ H2(Ω)

and it is strongly positive in Ω in the sense that

ϕ[L,B(b)](x) > 0 for all x ∈ Ω ∪ Γ1 and ∂νϕ[L,B(b)](x) < 0 for all x ∈ Γ0.
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In addition, σΩ
1 [L,B(b)] is the only eigenvalue of (3.1) to possessing a positive

eigenfunction, and it is dominant in the sense that any other eigenvalue σ of
(3.1) satisfies

<σ > σΩ
1 [L,B(b)].

Furthermore, setting Lp := L|W 2
p,B(b)(Ω), for each ω > −σΩ

1 [L,B(b)] and p > N

we have that (ω + Lp)−1 ∈ L(Lp(Ω)) is a positive, compact and irreducible
operator (cf. [19, V.7.7]).

Suppose p > N . Then, a function u ∈ W 2
p (Ω) is said to be a positive strict

supersolution of (L,B(b),Ω) if u ≥ 0 and (Lu,B(b)u) > 0. A function u ∈ W 2
p (Ω)

is said to be strongly positive if u(x) > 0 for each x ∈ Ω∪Γ1 and ∂βu(x) < 0 for
each x ∈ Γ0 with u(x) = 0 and any outward pointing nowhere tangent vector
field β ∈ C1(Γ0, RN ). Finally, (L,B(b),Ω) is said to satisfy the strong maximum
principle if p > N , u ∈ W 2

p (Ω), and (Lu,B(b)u) > 0 imply that u is strongly
positive. Recall that for any p > N

(3.2) W 2
p (Ω) ↪→ C2−N/p(Ω)

and that any function u ∈ W 2
p (Ω) is a.e. in Ω twice differentiable (cf. [20, Theo-

rem VIII.1]).
The following characterization of the strong maximum principle provides us

with one of the main technical tools to obtain most of the results used in this
paper. It comes from [15], [13] and [2].

Theorem 3.1. The following assertions are equivalent:

(a) σΩ
1 [L,B(b)] > 0,

(b) (L,B(b),Ω) possesses a positive strict supersolution,
(c) (L,B(b),Ω) satisfies the strong maximum principle.

The following results provides us with some of the main monotonicity proper-
ties of σΩ

1 [L,B(b)]; they are taken from [5], (cf. there in Propositions 3.2 and 3.3).

Proposition 3.2. Let Ω̃ be a proper subdomain of Ω of class C2 satisfying
(1.11). Then,

σΩ
1 [L,B(b)] < σ

eΩ
1 [L,B(b, Ω̃)],

where B(b, Ω̃) is the boundary operator defined by (1.12).

Proposition 3.3. Let P1, P2 ∈ L∞(Ω) such that P1 < P2 on a set of
positive measure. Then,

σΩ
1 [L+ P1,B(b)] < σΩ

1 [L+ P2,B(b)].

As far as the maps Σ(λ) and Σ0(λ) just defined by (1.18) and (1.19) it should
be noted that for each a ∈ L∞(Ω) with a+ ∈ A(Ω), the open subset Ω0

a+ ⊂ Ω
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satisfy (1.20) and thanks to Proposition 3.2 we have that

(3.3) Σ(λ) < Σ0(λ).

Now, in order to collect some of the main properties of above maps, which
will play a crucial role in the sequel, we introduce the following concept

Definition 3.4. Let W ∈ L∞(Ω) be. We will say that W changes of sign
in Ω, if there exist two open subsets D+ and D− of Ω for which

(3.4) inf
D+

W > 0, sup
D−

W < 0.

The following properties of Σ(λ) will be used along this paper and can be
found in [5, Section 12].

Theorem 3.5. Let W ∈ L∞(Ω) be. Then, the map Σ(λ) defined by (1.18)
is real holomorphic and concave. Therefore, either Σ′′(λ) = 0 for any λ ∈ R, or
there exists a discrete set Z ⊂ R such that Σ′′(λ) < 0 for each λ ∈ R \ Z. By
discrete it is meant that Z ∩K is finite for any compact subset K of R.

Assume in addition that W changes of sign in Ω in the sense of Definition 3.4.
Then:

(a) The asymptotic behaviour of the map Σ(λ) is

(3.5) lim
λ↗∞

Σ(λ) = −∞ and lim
λ↘−∞

Σ(λ) = −∞.

In particular, there exists λ0 ∈ R for which

Σ(λ0) = sup
λ∈R

Σ(λ).

Moreover, Σ′(λ0) = 0, Σ′(λ) > 0 if λ < λ0, and Σ′(λ) < 0 if λ > λ0.
Therefore, λ0 is unique.

(b) The eigenvalue problem (1.17) possesses a principal eigenvalue if and
only if Σ(λ0) ≥ 0. Moreover, λ0 is the unique principal eigenvalue
of (1.17) if Σ(λ0) = 0, whereas (1.17) possesses exactly two principal
eigenvalues, say σ1

1 < σ2
1, if Σ(λ0) > 0. Moreover, in this case σ1

1 <

λ0 < σ2
1, and σi

1, i = 1, 2 is a simple eigenvalue of (L,W,B(b),Ω) in
the sense of Definition 1.3 and [8].

It should be noted that for each a ∈ L∞(Ω) with a+ ∈ A(Ω), the previous
result can be applied to the map Σ0(λ), just defined by (1.19), substituting Ω
by Ω0

a+ and considering the restriction of W to Ω0
a+ .

Finally, we will say that a function u ∈ W 2
p (Ω) with p > N is a positive strict

supersolution (resp. a positive strict subsolution) of (1.1), if u ≥ 0 and

(L(λ)u + a(x)F (x, u)u,B(b)u) > 0 (resp. < 0).
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The following is [4, Theorem 1.3] and it provides us a sufficient condition about
the λ-parameter for the existence of positive strict supersolution of a very general
sublinear elliptic weighted mixed boundary value problem.

Theorem 3.6. Assume the general conditions of the introduction and let
consider the sublineal weighted elliptic mixed boundary value problem

(3.6)

{
Lu = λWu− V (x)f(x, u)u in Ω,

B(b)u = 0 on ∂Ω,

where the potential V ∈ A(Ω) and the function f ∈ C1(Ω× [0,∞); R) satisfies

lim
u↗∞

f(x, u) = ∞ uniformly in Ω.

Then, (3.6) possesses a positive strict supersolution arbitrarily large and bounded
away from zero in Ω, provided λ ∈ R satisfies

(3.7) σ
Ω0

V
1 [L(λ),B(b, Ω0

V )] > 0.

4. Existence of positive solutions and bifurcation values

In this section we give a necessary condition for the existence of positive
solutions of (1.1) and we characterize the bifurcation values to positive solutions
of (1.1) from the trivial branch.

Definition 4.1. A function uλ: Ω → [0,∞) is said to be a positive solution
of (1.1) if uλ ∈ W 2

p (Ω) with p > N , uλ > 0 and uλ satisfies (1.1)λ almost
everywhere in Ω.

Lemma 4.2. Let u0 be a positive solution of (1.1)λ0 . Then u0 is strongly
positive in Ω and u0 ∈ W 2

B(b)(Ω). In particular, u0 ∈ C1,γ(Ω) for all 0 < γ < 1.
Moreover, u0 is a.e. in Ω twice continuously differentiable.

Proof. Indeed, if (λ, u) = (λ0, u0) is a positive solution of (1.1)λ0 , then
u0 ∈ W 2

p (Ω) for some p > N and thanks to Morrey’s Theorem, u0 ∈ L∞(Ω).
Thus,

a( · )F ( · , u0( · )) ∈ L∞(Ω)

and u0 satisfies {
L0u0 = 0 in Ω,

B(b)u0 = 0 on ∂Ω,

where L0 := L(λ0) + a( · )F ( · , u0( · )).
In other words, u0 is a positive eigenfunction of L0 associated with the eigen-

value 0. Thus, by the uniqueness of the principal eigenpair, (0, u0) is the princi-
pal eigenpair of L0 in Ω and therefore u0 ∈ W 2

B(b)(Ω) and u0 is strongly positive
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in Ω (cf. [1, Theorem 12.1]). The remaining assertions follow easily from the
embedding W 2

p (Ω) ⊂ C2−N/p(Ω) for each p > N , and [20, Theorem VIII.1]. �

It should be pointed out that thanks to Lemma 4.2, (1.1) admits two kinds of
non-negative solutions. Namely, u = 0 and the positive solutions of (1.1), which
are strongly positive in Ω.

The following result gives a necessary condition for the existence of positive
solutions of (1.1).

Proposition 4.3. Under the general conditions of the introduction, if (λ, uλ)
is a positive solution of (1.1), then

(4.1) Σ0(λ) > 0,

where Σ0(λ) is the map just defined by (1.19).

Proof. Indeed, if (λ, uλ) is a positive solution of (1.1), then uλ is strongly
positive in Ω,

uλ ∈ L∞(Ω), a( · )F ( · , uλ( · )) ∈ L∞(Ω),

and (0, uλ) is the principal eigen-pair associated with

(L(λ) + a( · )F ( · , uλ( · )),B(b),Ω).

Moreover, since a+ ∈ A(Ω), we have that

Ω0
a+ ∈ C2, Ω0

a+ ⊂ Ω, dist(Γ1, ∂Ω0
a+ ∩ Ω) > 0

and hence, Proposition 3.2 gives

0 = σΩ
1 [L(λ) + (a+ − a−)F ( · , uλ),B(b)](4.2)

< σ
Ω0

a+
1 [L(λ)− a−F ( · , uλ),B(b, Ω0

a+)].

On the other hand, owing to (F3) and (1.4) a−( · )F ( · , uλ( · )) > 0 in Ω0
a+ , and

hence, Proposition 3.3 gives that

(4.3) σ
Ω0

a+
1 [L(λ)− a−F ( · , uλ),B(b, Ω0

a+)] < σ
Ω0

a+
1 [L(λ),B(b, Ω0

a+)] = Σ0(λ).

Therefore, (4.2) and (4.3) imply the result. This completes the proof. �

In the sequel we will denote by

(4.4) Λ+
0 := {λ ∈ R : Σ0(λ) > 0},

and therefore, Proposition 4.3 establishes that Λ(a, F ) ⊂ Λ+
0 for any a ∈ L∞(Ω)

with a+ ∈ A(Ω) and F (x, u) satisfying the (d) requirements of the introduction.
The following result provides us with a necessary condition for the existence

of positive strict supersolution of the sublinear elliptic problem associated to
(1.1) in the vanishing set of the negative part of the potential a ∈ L∞(Ω).
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Proposition 4.4. Let a = a+ − a− ∈ L∞(Ω) with a+, a− ∈ A(Ω). Assume
in addition that the C2-domain Ω0

a− is connected and that a+ ∈ A(Ω0
a−). Then,

the sublineal weighted elliptic mixed boundary value problem

(4.5)

{
Lu = λWu− a+(x)F (x, u)u in Ω0

a− ,

B(b, Ω0
a−) = 0 on ∂Ω0

a− ,

possesses a positive strict supersolution arbitrarily large and bounded away from
zero in Ω

0

a− , provided λ ∈ R satisfies

(4.6) σΩ0
1 [L(λ),B(b, Ω0)] > 0,

where Ω0 stands for the vanishing set just defined by (1.5).

Proof. Indeed, since a− ∈ A(Ω), the vanishing set Ω0
a− satisfies (A1) and

hence

Ω0
a− ∈ C

2 and dist(Γ1, ∂Ω0
a− ∩ Ω) > 0.

Therefore, the boundary operator B(b, Ω0
a−) is well defined in the sense of (1.12).

On the other hand, since Ω0
a− is connected and a+ ∈ A(Ω0

a−), the vanishing set
of the potential a+ in the domain Ω0

a− , denoted by [Ω0
a− ]0a+ which coincides with

Ω0, satisfies again the assumption (A1) and hence,

Ω0 ∈ C2 and dist(Γ1, ∂Ω0 ∩ Ω) > 0.

Therefore, the boundary operator B(b, Ω0) also is well defined in the sense of
(1.12). Now, since Ω0

a− is connected, a+ ∈ A(Ω0
a−) and thanks to assumptions

(F1) and (F2), (4.5) becomes into the abstract framework of (3.6) and therefore,
Theorem 3.6 implies the result, provided λ ∈ R satisfies (4.6). This completes
the proof. �

Remark 4.5. It should be noted that to impose that a+ ∈ A(Ω0
a−) assuming

previously that a+ ∈ A(Ω) in some situations does not suppose any additional
restriction since under certain structural conditions about the domain Ω0

a− it is
satisfied that

A(Ω) ⊂ A(Ω0
a−),

that is to say, it is satisfied that if the potential a+ ∈ A(Ω), then the restriction
a+|Ω0

a−
∈ A(Ω0

a−). In [7, Section 3] are given sufficient conditions about a

subdomain Ω̃ of Ω to ensure that the nonnegative measurable potential V |
eΩ ∈

A(Ω̃) provided that V ∈ A(Ω). We do not include them by do not enlarge the
exposition.

Now, we characterize the set of bifurcation values to positive solutions of (1.1)
from the trivial branch (λ, u) = (λ, 0).
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Theorem 4.6. Let W ∈ L∞(Ω) be and set O := {λ ∈ R : Σ(λ) = 0} where
Σ(λ) is the map just defined by (1.18). Assume that W changes of sign in Ω in
the sense of Definition 3.4 and

(4.7) sup
λ∈R

Σ(λ) > 0.

Then, λ̃0 is a bifurcation value to positive solutions of (1.1) from the trivial
branch (λ, u) = (λ, 0), if and only if λ̃0 ∈ O.

Proof. The positive solutions of (1.1) are the zeroes of the operator H: R×
U+ → U , defined by

H(λ, u) := u− (L+ M)−1[(λW ( · ) + M)J u− a( · )F ( · ,J u)J u],

where U = W 2
p (Ω), p > N , J :U+ ↪→ Lp(Ω) is the inclusion operator, which is

compact, and
M > −σΩ

1 [L,B(b)].

Moreover, H(λ, 0) = 0 for each λ ∈ R and

DuH(λ, 0) := I − T (λ)

where for each λ ∈ R, T (λ):U+ → U is the operator defined by

T (λ) := (L+ M)−1[λW ( · ) + M ]J

and I is the identity operator in U+. Also,

DuλH(λ, 0) := −(L+ M)−1W.

Tkanks to the compactness of T (λ) as an operator in U+, for each λ ∈ R we
have that the operator DuH(λ, 0) is a Fredholm operator of index 0. Moreover,

N [DuH(λ, 0)] = N [L(λ)].

We now prove the necessary condition. Indeed, if λ̃0 is a bifurcation value
to positive solutions of (1.1) from the trivial branch (λ, u) = (λ, 0), necessar-
ily dim[N [DuH(λ̃0, 0)]] ≥ 1 and hence, N [L(λ̃0)] 6= 0. Thus, it follows from
the uniqueness of the principal eigenpair of the problem (L(λ̃0),B(b),Ω), that
Σ(λ̃0) = 0 and therefore, λ̃0 ∈ O. This proves the necessary condition.

We now prove the sufficient condition. Let λ̃0 ∈ O. Since W changes of
sign in Ω and (4.7) is satisfied, it follows from Theorem 3.5 that λ̃0 is a simple
eigenvalue of the problem (L,W,B(b),Ω) in the sense of Definition 1.3. Hence, if
ϕ0 denotes the principal eigenfunction of L(λ̃0) associated with Σ(λ̃0) = 0, then

N [DuH(λ̃0, 0)] = N [L(λ̃0)] = span[ϕ0],(4.8)

Wϕ0 /∈ R[L(λ̃0)].(4.9)
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Moreover,

(4.10) DuλH(λ̃0, 0)ϕ0 /∈ R[DuH(λ̃0, 0)],

because if (4.10) is not satisfied, then Wϕ0 ∈ R[L(λ̃0)] and this contradicts (4.9).
Thus, due to the fact that DuH(λ̃0, 0) is a Fredholm operator of index 0 and
owing to (4.8) and (4.10), we find that

dim N [DuH(λ̃0, 0)] = codim R[DuH(λ̃0, 0)] = 1,

DuλH(λ̃0, 0)ϕ0 /∈ R[DuH(λ̃0, 0)].

Therefore, 0 is aDuλH(λ̃0, 0)-simple eigenvalue ofDuH(λ̃0, 0) and [8, Lemma 1.1,
Definition 1.2] implies that λ̃0 is a bifurcation value to positive solutions of (1.1)
from the trivial branch (λ, u) = (λ, 0). This completes the proof. �

5. A priori bounds for the positive solutions of (1.1)

In this section we adapt to our general setting some of the re-scaling ar-
guments showed in the previous work of H. Amann and J. López-Gómez [2,
Section 4], to get a priori bounds for the positive solutions of (1.1). To deal with
this problem, firstly we show that if the positive and negative part of a ∈ L∞(Ω)
satisfy certain structural conditions, then the existence of a priori bounds for
the positive solutions of (1.1) in Ωa− implies the existence of a priori bounds
for them in Ω. Throughout this section we will suppose that the positive and
negative part of a ∈ L∞(Ω), a+ and a− respectively, satisfy the assumptions of
Proposition 4.4.

Theorem 5.1. Let a = a+ − a− ∈ L∞(Ω) be with a+ and a− satisfying the
assumptions of Proposition 4.4. Assume in addition that there exists a constant
C > 0 such that

(5.1) sup
Ωa−

u ≤ C

for any positive solution u of (1.1). Then, there exists a constant C1 > 0 such
that

(5.2) sup
Ω

u ≤ C1

for any positive solution of (1.1). Moreover, if (5.1) is satisfied for all λ in a
compact subinterval [α, β] ⊂ Λ+

0 , then (5.2) also holds uniformly in [α, β].

Proof. Let (λ, uλ) be a positive solution of (1.1). Then, Proposition 4.3,
implies that

(5.3) Σ0(λ) > 0,
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and Lemma 4.2 gives that uλ is strongly positive in Ω. Then, it follows from
(5.1) and the above arguments that uλ satisfies the following sublineal elliptic
boundary value problem in Ω0

a−

(5.4)


Lu = λWu− a+(x)F (x, u)u in Ω0

a− ,

∂u + bu = 0 on ∂Ω0
a− ∩ Γ1,

u = 0 on ∂Ω0
a− ∩ Γ0,

0 < u ≤ C on ∂Ω0
a− ∩ Ω.

Thus, uλ is a positive subsolution of the following sublineal elliptic mixed bound-
ary value problem

(5.5)


Lu = λWu− a+(x)F (x, u)u in Ω0

a− ,

∂u + bu = 0 on ∂Ω0
a− ∩ Γ1,

u = 0 on ∂Ω0
a− ∩ Γ0,

u = C on ∂Ω0
a− ∩ Ω.

On the other hand, since a+ ∈ A(Ω0
a−), due to the fact that F (x, u) satisfies

(F1) and (F2) and since (5.3) is satisfied, it follows from Theorem 3.6 that the
sublineal elliptic problem

(5.6)

{
Lu = λWu− a+(x)F (x, u)u in Ω0

a− ,

B(b, Ω0
a−)u = 0 on ∂Ω0

a− ,

possesses a positive strict supersolution arbitrarily large and bounded away from
zero in Ω

0

a− , since

Ω0 = [Ω0
a− ]0a+ ⊂ Ω0

a+ ,

and by Proposition 3.2 we have that

σΩ0
1 [L(λ),B(b, Ω0)] > Σ0(λ) > 0.

Let θC ∈ W 2
p , p > N, a positive strict supersolution of (5.6) satisfying

(5.7) θC > C in Ω
0

a− .

Then θC is a positive strict supersolution of (5.5) and since uλ is a positive
subsolution of (5.5), it follows from (F3) and Theorem 3.1 that

(5.8) uλ ≤ θC in Ω
0

a− .

Therefore, (5.1) and (5.8) imply that supΩ uλ ≤ C1, by taking

C1 := max{‖θC‖L∞(Ω0
a−

), C}.

This completes the proof. �
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Corollary 5.2. Let I := [α, β] ⊂ Λ+
0 , with α < β, such that the positive

solutions of (1.1) do not have uniform a priori bounds in I. Then, there exists
a sequence (λk, uk) of solutions of (1.1) with λk ∈ I, k ≥ 1 and a sequence of
points xk ∈ Ωa− , k ≥ 1, such that

(5.9) lim
k→∞

uk(xk) = ∞.

Proof. It follows from Theorem 5.1 taking into account that if uk grows to
infinity on ∂Ωa− , then it grows to infinity close to the boundary and therefore
the x′ks can be taken in Ωa− . This completes the proof. �

Proposition 5.3. Suppose that either

(5.10) r > 1 and N = 1, 2,

or

(5.11) r <
N + 2
N − 2

and N ≥ 3.

Let I := [α, β] ⊂ Λ+
0 be such that the positive solutions of (1.1) do not have

uniform a priori bounds for λ ∈ I and let (λk, uk), k ≥ 1, be a sequence of
positive solutions of (1.1) with

(5.12) lim
k→∞

‖uk‖L∞(Ω) = ∞.

For each k ≥ 1, let xk ∈ Ωa− be such that

(5.13) uk(xk) = sup
Ωa−

uk.

Then,

(5.14) lim
k→∞

uk(xk) = ∞,

and for any compact subset K ⊂ Ωa− , K contains at most a finite number of xk.
In particular, by choosing a subsequence, if necessary, we can assume that

(5.15) lim
k→∞

(λk, xk) = (λ∞, x∞) ∈ I × ∂Ωa− .

Proof. Thanks to Theorem 5.1, (5.12) and (5.13) imply (5.14). Let K be
any compact subset of Ωa− . To show that K contains at most a finite number
of points xk, k ≥ 1 we argue by contradiction. Then, by taking a subsequence,
if necessary, we can assume that

lim
k→∞

xk = x∞ ∈ K ⊂ Ωa− ,

and hence,

d :=
dist (x∞, ∂Ωa−)

2
> 0.
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Now, for each k ≥ 1, we set

(5.16) Mk := uk(xk), ρk := M
(1−r)/2
k .

Then, thanks to (5.14), limk→∞Mk = ∞ and since r > 1,

(5.17) lim
k→∞

ρk = 0.

It can be easily seen that the change of variables

y :=
x− xk

ρk
, vk(y) := ρ

2/(r−1)
k uk(x),

transforms the differential equation of (1.1) into

(5.18) Lkvk = ρ2
kλkWvk + a−(xk + ρky)F (xk + ρky, ρ

−2/(r−1)
k vk(y))ρ2

kvk(y),

provided xk + ρky ∈ Ωa− , where the operator Lk is defined by

Lk := −
N∑

i,j=1

αij(xk + ρky)
∂2

∂yi∂yj
+

N∑
j=1

ρkαj(xk + ρky)
∂

∂yj
+ ρ2

kα0(xk + ρky).

Moreover, by definition of d, for k sufficiently large we have that |x − xk| ≤ d

implies x ∈ Ωa− . Thus, |y| ≤ d/ρk implies xk + ρky ∈ Ωa− and therefore, (5.18)
holds. Hereafter, Qδ will stand for the ball of radius δ > 0 centered at the origin.
Note that since limk→∞ d/ρk = ∞, given any radius R > 0, QR ⊂ Qd/ρk

for k

sufficiently large. Moreover, it follows from (5.16) that

(5.19) 0 < vk ≤ ρ
2/(r−1)
k Mk = 1 in Qd/ρk

.

Thus, by the growth condition (1.7),

lim
k→∞

|ρ2
kF (xk + ρky, ρ

−2/(r−1)
k vk(y))vk(y)− l(xk + ρky)vr

k(y)| = 0.

Fix R > 0. Thanks to (5.19), by the elliptic Lp estimates we have uniform
bounds for vk in W 2

p (QR) for each p ≥ 2. Thus, by Morrey’s theorem (see [16]),
we also uniform bounds for vk in C1,ν(QR) for each ν ∈ (0, 1). Therefore, by
taking a subsequence, if necessary, we can assume that vk → v in W p,2(QR) ∩
C1,ν(QR), p > N . By Holder continuity v(0) = 1. Moreover, since xk → x∞ and
ρk → 0 as k →∞, the following relations are satisfied

lim
k→∞

αij(xk + ρky) = αij(x∞),

lim
k→∞

ρkαj(xk + ρky) = lim
k→∞

ρ2
kα0(xk + ρky) = 0,

lim
k→∞

l(xk + ρky) = l(x∞) > 0,

lim
k→∞

a−(xk + ρky) = a−(x∞) > 0,
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uniformly in y ∈ QR. Therefore, passing to the limit as k →∞ in (5.18) we find
that v(y) is a non-negative solution of

(5.20) −
N∑

i,j=1

αij(x∞)
∂2v

∂yi∂yj
= a−(x∞)l(x∞)vr, v(0) = 1,

in QR. The same argument of the last paragraph of [11, p. 889] shows that
in fact v is well defined in all of RN . By [11, Theorem 1.2] necessarily v = 0,
a contradiction, since v(0) = 1. This completes the proof. �

Theorem 5.4. Let a ∈ L∞(Ω) with

a+, a− ∈ A(Ω), Ω0
a− connected, a+ ∈ A(Ω0

a−), ∂Ωa− ∈ C1,

where

(5.21) a−(x) = C(x)dist(x, ∂Ωa−)γ , x ∈ Ωa− ,

with γ > 0 and C: Ωa− → [0,∞) is a continuous function bounded away from
zero near ∂Ωa− . Assume in addition that either

(5.22) N ≤ 2 and r > 1

or

(5.23) N ≥ 3 and r < min
{

N + 2
N − 2

,
N + 1 + γ

N − 1

}
.

Let I ⊂ Λ+
0 be a compact interval. Then, the positive solutions of (1.1) have

uniform a priori bounds for λ ∈ I.

Proof. We argue by contradiction. Assume that (1.1) does not admit uni-
form a priori bounds in I. Then, due to Corollary 5.2 and Proposition 5.3,
there exists a sequence (λk, uk) of positive solutions of (1.1) with λk ∈ I and
a sequence of points xk ∈ Ωa− , k ≥ 1 such that

lim
k→∞

xk = x∞ ∈ ∂Ωa− ,

uk(xk) = sup
Ωa−

uk →∞ as k →∞.

Now, for each k ≥ 1 we consider Mk and ρk defined by

(5.24) Mk = uk(xk), ρ
(2+γ)/(r−1)
k Mk = 1.

Then, the change of variables

(5.25) y =
x− xk

ρk
, vk(y) = ρ

(2+γ)/(r−1)
k uk(x),

transforms the differential equation of (1.1) into

(5.26) Lkvk = ρ2
kλkWvk − ρ2

ka(xk + ρky)F (xk + ρky, ρ
−(2+γ)/(r−1)
k vk(y))vk(y).
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Since ∂Ωa− is of class C1, by a change of variable we can assume that near x∞ ∈
∂Ωa− , ∂Ωa− is contained in the hyperplane xN = 0 and that xN > 0 if, and only
if x ∈ Ωa− . This can be achieved by straightening ∂Ωa− in a neighbourhood of
x∞ by a non-singular change of coordinates. Hereafter, we shall denote by xj the
j-th coordinate of x. Given ε > 0 small enough, assume that x ∈ Qε(x∞)∩Ωa− .
Then, for k large enough, |x− xk| < 2ε and hence

(5.27) y ∈ Hk := Q2ε/ρk
∩

{
yN ≥ −xN

k

ρk

}
.

Thus, for large k, vk is well defined in Hk defined by (5.27). Moreover, if y ∈ Hk,
xk + ρky ∈ Ωa− and so, a+(xk + ρky) = 0. Therefore, in Hk (5.26) reduces to

(5.28) Lkvk = ρ2
kλkWvk +ρ2

ka−(xk +ρky)F (xk +ρky, ρ
−(2+γ)/(r−1)
k vk(y))vk(y).

In Hk, we have 0 < vk ≤ vk(0) = uk(xk) = 1, and by the assumption (5.21),

a−(xk + ρky) = C(xk + ρky)(xN
k + ρkyN )γ ,

where we have used that xN = dist(x, ∂Ωa−). Setting

(5.29) dk := xN
k = dist(xk, ∂Ω+

a−)

yields

a−(xk + ρky) = C(xk + ρky)ργ
k

(
yN +

dk

ρk

)γ

,

and therefore, (5.28) can be written as

Lkvk = ρ2
kλkWvk + ρ2+γ

k C(xk + ρky)
(

yN +
dk

ρk

)γ

(5.30)

· F (xk + ρky, ρ
−(2+γ)/(r−1)
k vk(y))vk(y).

In the sequel we shall distinguish three different situations according to the
behaviour of dk/ρk as k →∞.

Case 1. The sequence dk/ρk, k ≥ 1 is not bounded away from zero. Then,
by choosing a subsequence, if necessary, we can assume that

(5.31) lim
k→∞

dk

ρk
= 0.

Then, using (5.29) and taking into account that limk→∞ ρk = 0, it is clear
that the Hk defined by (5.27) approaches the half-space yN > 0, and the same
compactness argument of the proof of Proposition 5.3 shows that along some
subsequence vk → v, where v is a non-negative regular solution of

(5.32) −
N∑

i,j=1

αij(x∞)
∂2vk

∂yi∂yj
= C(x∞)l(x∞)(yN )γvr in yN > 0,
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such that v(0) = 1. By assumption either (5.22) or (5.23) this is impossible, since
due to [3, Corollary 2.1], v = 0 is the unique non-negative solution of (5.32).

Case 2. The sequence dk/ρk, k ≥ 1 is not bounded above. Then, by choosing
a subsequence, if necessary, we can assume that

(5.33) lim
k→∞

dk

ρk
= ∞.

Now, the Hk defined by (5.27) converges to RN and so, vk is defined on arbitrarily
large balls for k large enough. Moreover, the change of variables

βk :=
(

ρk

dk

)γ/2

, z :=
y

βk
, wk(z) := vk(y),

transforms (5.30) into

(5.34) Akwk = ρ2
kβ2

kλkwk + ρ2+γ
k C(xk + ρkβkz)(β2/γ+1

k zN + 1)γ

· F (xk + ρkβkz, ρ
−(2+γ)/(r−1)
k wk(z))wk(z)

where Ak is the differential operator defined by

Ak := −
N∑

i,j=1

αij(xk + ρkβkz)
∂2

∂zi∂zj

+
N∑

j=1

ρkβkαj(xk + ρkβkz)
∂

∂zj
+ ρ2

kβ2
kα0(xk + ρkβkz).

By (5.33), limk→∞ βk = 0. Thus, the same compactness argument of the proof
of Proposition 5.3 shows that along some subsequence wk → w, where w is a
non-negative regular solution of

(5.35) −
N∑

i,j=1

αij(x∞)
∂2wk

∂zi∂zj
= C(x∞)l(x∞)wr in RN ,

such that w(0) = 1. Since r < (N + 2)/(N − 2), it follows from [11, Theorem 1.2]
that w = 0, which is impossible.

Case 3. The sequence dk/ρk, k ≥ 1 is bounded above and bounded away
from zero. Then, by choosing a subsequence, if necessary, we can assume that

(5.36) lim
k→∞

dk

ρk
= s > 0.

Then, passing to the limit as k →∞ in (5.30), we find that there exists a positive
solution v of

(5.37) −
N∑

i,j=1

αij(x∞)
∂2v

∂yi∂yj
= C(x∞)l(x∞)(yN + s)γvr in yN > −s,
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such that v(0) = 1. The change of variable zj = yj , 1 ≤ j ≤ N−1, zN = yN +s,
w(z) = v(y) transforms (5.37) into

(5.38) −
N∑

i,j=1

αij(x∞)
∂2w

∂zi∂zj
= C(x∞)l(x∞)(zN )γwr, in zN > 0,

with w(0, . . . , 0, s) = 1. Since r < (N + γ + 1)/(N − 1), of [3, Corollary 2.1]
implies w = 0, which again is a contradiction. This completes the proof of the
theorem. �

Theorem 5.4 shows that if N ≤ 2, then we always have uniform a priori
bounds on compact subintervals of λ. When N ≥ 3, it provides us with the
folllowing result

Corollary 5.5. Let a ∈ L∞(Ω) with

a+, a− ∈ A(Ω), Ω0
a− connected, a+ ∈ A(Ω0

a−), ∂Ωa− ∈ C1.

Assume in addition that N ≥ 3,

(5.39) r <
N + 2
N − 2

,

and
a−(x) = C(x)dist(x, ∂Ωa−)γ , x ∈ Ωa− ,

where

(5.40) γ ≥ 2N

N − 2

and C: Ωa− → (0,∞) is a continuous function bounded away from zero near
∂Ωa− . Then, the positive solutions of (1.1) have uniform a priori bounds for λ

varying on any compact subinterval of Λ+
0 .

Proof. Under condition (5.40), (5.23) becomes into (5.39). This completes
the proof. �

6. Compact components of positive solutions of (1.1)

Throughout this section, we will assume that we are working under the as-
sumptions of either Theorem 5.4, or Corollary 5.5. In any of these cases, we have
a priori bounds for the positive solutions of (1.1) in compact subset of Λ+

0 .

Theorem 6.1. Let a = a+ − a− ∈ L∞(Ω) be with a+ and a− satisfying

a+, a− ∈ A(Ω), Ω0
a− is connected, a+ ∈ A(Ω0

a−), ∂Ωa− ∈ C1.

Assume in addition that the potential W changes of sign in Ω0
a+ in the sense of

Definition 3.4 with D+ satisfying D+ ∩ Ωa− 6= ∅ and

(6.1) sup
λ∈R

Σ(λ) > 0.
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Set σ1
1 < σ2

1 the unique roots of the map Σ(λ) and λ0
1 < λ0

2 the unique roots of
the map Σ0(λ), whose existence will be guaranteed. Then:

(a) Λ(a, F ) ⊂ (λ0
1, λ

0
2) and therefore, Λ(a, F ) is bounded.

(b) The roots σi
1, i = 1, 2 of the map Σ(λ) are simple eigenvalues of (L,W,

B(b),Ω) in the sense of Definition 1.3 and they are bifurcation values to
positive solutions of (1.1) from the trivial branch (λ, u) = (λ, 0).

(c) The global continuum C+(σ1
1) of positive solutions emanating from the

trivial branch at (λ, 0) = (σ1
1 , 0), it is bounded in R×L∞(Ω) and comes

back again to the trivial branch at the bifurcation point (λ, 0) = (σ2
1 , 0).

Therefore,

(6.2) C+(σ1
1) = C+(σ2

1).

(d) (σ1
1 , σ2

1) ⊂ Λ(a, F ) ⊂ (λ0
1, λ

0
2).

Proof. (a) Indeed, thanks to (6.1), it follows from (3.3) that

(6.3) sup
λ∈R

Σ0(λ) ≥ sup
λ∈R

Σ(λ) > 0.

Moreover, since W changes of sign in Ω0
a+ , W changes of sign in Ω and hence,

thanks to Theorem 3.5, it follows that

lim
λ→∞

Σ(λ) = lim
λ→−∞

Σ(λ) = −∞

and

lim
λ→∞

Σ0(λ) = lim
λ→−∞

Σ0(λ) = −∞.

Thus, thanks to (6.3) and the concavity of Σ(λ) and Σ0(λ) guaranteed by Theo-
rem 3.5, it follows that eachone of the maps Σ(λ) and Σ0(λ) have two real roots
denoted by σ1

1 , σ2
1 and λ0

1, λ0
2, respectively. Then,

(6.4) Λ+
0 = (λ0

1, λ
0
2),

and owing to Proposition 4.3, Λ(a, F ) ⊂ (λ0
1, λ

0
2). In particular Λ(a, F ) is

bounded. Moreover, thanks to the fact that D+ ∩ Ωa− 6= ∅, arguing as in
Lemma 3.4 and Theorem 3.5 of [2], we have that Λ(a, f) is strongly contained
in (λ0

1,Λ
0
2), that is to say, Λ(a, F ) ⊂ (λ0

1, λ
0
2).

(b) Due to the fact that W changes of sign in Ω and thanks to (6.1), the
result it is straighforward from Theorems 3.5 and 4.6.

(c) Set C+(σi
1), i = 1, 2 the global continuum of positive solutions of (1.1) em-

anating from the trivial branch at the bifurcation point (λ, 0) = (σi
1, 0), i = 1, 2,

whose existence is guaranteed by (b). Since we are assuming the assumptions of
either Theorem 5.4 or Corollary 5.5, the existence of a priori bounds in compact
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subset of Λ+
0 for the positive solutions of (1.1) is guaranteed. Hence, thanks to

thanks to the fact that (a) is satisfied, the continuum

C+(σi
1) ⊂ (λ0

1, λ
0
2)× [0,M ], i = 1, 2

for M > 0 sufficiently large. Therefore, owing to Rabinowitz global bifurcation
theorem (see [18], [14]), the continuum C+(σ1

1) must necessarily come back again
to the trivial branch at the bifurcation point (λ, u) = (σ2

1 , 0), since σ1
1 and σ2

1

are the unique bifurcation values to positive solutions of (1.1) from the trivial
branch and they are simple eigenvalues for the problem (L,W,B(b),Ω) in the
sense of Definition 1.3. The same occur with the continuum C+(σ2

1), which
must necessarily come back to the trivial branch at the bifurcation point (σ1

1 , 0).
Therefore, (6.2) is followed.

(d) Since (6.2) is satisfied,

C+(σ1
1) ∩ {(λ, 0)} = {(σ1

1 , 0)} ∪ {(σ2
1 , 0)},

and the λ-projection Pλ(C+(σ1
1)) of the continuum C+(σ1

1) on the λ-axes is con-
nected, we have that (σ1

1 , σ2
1) ⊂ Pλ(C+(σ1

1)), and hence, (σ1
1 , σ2

1) ⊂ Λ(a, F ).
Now, the result it follows from (a). This completes the proof. �

Theorem 6.2. Under the assumptions of Theorem 6.1, set C+ the global
bounded continuum of positive solutions of (1.1) emanating from the trivial
branch at the bifurcation points (λ, u) = (σ1

1 , 0) and (λ, u) = (σ2
1 , 0), whose

existence is guaranteed by Theorem 6.1. Then, the following is satisfied:

(a) If C+ emanates subcritically from the bifurcation point (λ, u) = (σ1
1 , 0),

then there exists λ∗1 satisfying λ0
1 < λ∗1 < σ1

1 such that

(6.5) [λ∗1, σ
2
1) ⊂ Λ(a, F ) ⊂ (λ0

1, λ
0
2).

In particular, (1.1) possesses a positive solution for λ = σ1
1.

(b) If C+ emanates supercritically from the bifurcation point (λ, u) = (σ2
1 , 0),

then there exists λ∗2 satisfying σ2
1 < λ∗2 < λ0

2 such that

(6.6) (σ1
1 , λ∗2] ⊂ Λ(a, F ) ⊂ (λ0

1, λ
0
2).

In particular, (1.1) possesses a positive solution for λ = σ2
1.

Proof. Set Pλ(C+) the λ-projection of C+.
(a) Indeed, by taking λ∗1 := minPλ(C+), and due to the fact that C+ em-

anates subcritically from the bifurcation point (σ1
1 , 0), we have that λ∗1 < σ1

1 .
Moreover, thanks to the existence of a priori bounds for the positive solutions
of (1.1) it follows by an standart compactness arguments the existence of a non-
negative solution u∗1 of (1.1) for λ = λ∗1. Now taking into account that σ1

1 and
σ2

1 are the unique bifurcation values to positive solutions of (1.1) from the trivial
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branch and thanks to Proposition 4.3 and (a) of Theorem 6.1, it follows that u∗1
is a positive solution of (1.1) for λ = λ∗1 ∈ (λ0

1, σ
1
1). Then, since C+ is connected,

it follows (6.5) and thanks to the simplicity of the eigenvalue σ1
1 , (1.1) possesses

a positive solution for λ = σ1
1 .

(b) It follows arguing as in (a) by taking λ∗2 := maxPλ(C+). This completes
the proof. �

Remark 6.3. It should be noted that it might exist either λ∗ or µ∗ satisfying

λ0
1 < λ∗ < minPλ(C+) or supPλ(C+) < µ∗ < λ0

2,

for which (1.1) possesses a positive solution uλ∗ or uµ∗ , since the existence of
other continuum of positive solutions of (1.1) bounded away from the trivial
branch are not discarded. Nevertheless, under the assumptions either Theo-
rem 5.4 or Corollary 5.5, and thanks to Proposition 4.3, any global continuum C̃∗

of positive solutions of (1.1) bounded away from the trivial branch (λ, u) = (λ, 0)
is bounded in R× L∞(Ω) and exactly

C̃∗ ⊂ (λ0
1, λ

0
2)× (0,M)

for M > 0 sufficiently large.
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