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EXISTENCE, MULTIPLICITY AND CONCENTRATION
OF POSITIVE SOLUTIONS
FOR A CLASS OF QUASILINEAR PROBLEMS

CLAUDIANOR O. ALVES — YANHENG DING

ABSTRACT. Using variational methods we establish existence and multi-
plicity of positive solutions for the following class of quasilinear problems

—Apu 4+ AV (@) [u|P2u = plulP~2u + |u|p*72u in RY

where Apu is the p-Laplacian operator, 2 < p < N,p* = pN/(N — p),
Ao € (0,00) and V:RN — R is a continuous function verifying some
hypothesis.

1. Introduction

We are concerned with the existence of positive solutions for the following
class of quasilinear elliptic problems
—Apu 4+ AV () |[uP~2u = plufP~2u 4 |[u[P”"2u  in RN,
(Pap) u>0 in RY,
u € WHP(RN)
where Apu = div(|Vu|P™2Vu), 2 < p < N, p* = pN/(N —p), \,u € (0,00)
and V:RY — R is a continuous function. Nonlinear equations involving the
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266 C. O. ALVES — Y. DING

p-Laplacian A, have been studied extensively in the last years, see for example
[1]-[4], [14]-[16] and the references cited in these works. In this paper we study
the problems (P ,) with V verifying the following hypotheses:

(Hy) V >0,Q =int, V~1(0) is a nonempty bounded set with smooth bound-
ary.

(Hz) There exists My > 0 such that £L{z € RY : V(z) < My} < oo where £
denotes the Lebesgue measure in RY.

Such hypotheses were firstly posed to the potentials of a class of Schrédinger
equations by Bartsch and Wang in the paper [5]. See also [6], [11] and [12].
Motivated by [6] and [11], we are here interested in the following problems related
to (P)\’#)Z

e Existence of least energy solutions for large .

e The concentration behaviour of the solutions as A — oo.

e Multiplicity of solutions involving the Lusternick—Schineralmann cate-
gory of Q.

Here by a least energy solution we understand a positive solution with minima
energy over all nontrivial solutions of (P, ,). By concentration behaviors we
describe tendencies of solutions uy of (P ,) as A — oco. Precisely, letting (D)
denote the limit problem

—Apu = plulP"2u+ [uP" "2u in Q,
(D) u>0 in Q,
u=20 in 09.

we say that the solutions (u,) of (Py, ) will be concentrate at a solution u of
(D,,) if a subsequence converges strongly to u in WP (RY) as \,, — oo.

We say that a sequence (u,,) of solutions of (P, ) concentrates at a solution
u of (D,) if along a subsequence it converges to u strongly in W1P(RY) as
A, — 00.

The paper is organized as follows. In Section 2 we shall fix some notations
and give several technical results. Section 3 is devoted to prove the existence of
positive solution for (P ,), the main result reads as follows:

THEOREM A. Assume (Hi) and (Hz) hold and N > p?. Then, for every
0 < p < i, there exists A, > 0 such that (P ) has at least energy solution uy
for each A > A(p).

Here by j1; we denote the first eigenvalue of (—A,, Wy (€2)). In Section 4 we
shall study the concentrate behavior of the solutions found in the Theorem A,
and the main result is:
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THEOREM B. Every sequence of solutions (uy) of (P, .) such that p €
(0, 1), A\n — o0 and Iy, ,(u,) — ¢ < 1/NSN/P as n — oo concentrates at a
solution of (D).

In the above theorem, S is the best Sobolev constant of the imbedding
DVP(RN) s LP"(RY), given by
|Vulb

S = in
weWbhp\{0} |u

V4 )
p*

and Iy, is functional related to (P ,) given by

1 1 1 «
D) = [ (1 + SOV @) =l - ) de

In Section 5, we conclude the paper by showing a result of multiplicity which
is related to the Lusternick—Schineralmann category of @ denoted by cat(€2).
The result is the following:

THEOREM C. Assume (Hy) and (Hz) hold and that N > p*. Then there
exist 0 < p* < py and for each 0 < p < p* two numbers A(p) > 0 and
0 < c(p) < 1/NSWN/P) such that, if X > A(u), then (Py,) has at least cat(f)
solutions with energy Iy, < c(p).

Our methods to the problems are variational. The solutions are obtained
from critical points of Iy ,, on its Nehari manifold. Since the problem is posed
on RV and the imbedding of W'?(RY) into LP(R") is not compact, we analyze
the Palais—-Smale sequences with the aid of the parameter \. We adapt an
argument similar to that of Brézis and Nirenberg [10] to deal with the critical
nonlinearity. By letting p small and A large we connect the multiplicity of
solutions with the topology of ; the idea here may go back to the work of Benci
and Cerami [7] (see also, e.g. [6], [11] and [20]). In addition, since the p-Laplacian
operator A, is nonlinear, it is clear that the arguments for general p > 2 are
more subtle than that for p = 2.

2. Notations and technical results

From now on we always assume that (H;)—(Hsy) hold and that N > p2. We
denote by |- |, and | - ||1,, the usual norms in the Banach spaces LI(RY) for
q € [1,00] and WHP(RY) respectively, and by u; the first eigenvalue of the
following problem

—Apu=nlulP"2u in Q,
{ u=20 in 0Q2.
Let

E= {u c WhP(RY) . /

RN

V(2)|ulPde < oo}
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be the Banach space endowed with the norm

1/p
lull = <IIUI’1’,p+/ V(m)ludeJ)
RN

which is equivalent to each of the norms

1/p
|ullx = <|u||1197p + )\/ V(x)|u|pd:1:> for A > 0.

]RN
LEMMA 2.1. Let A\, > 1 and u,, € E be such that \,, — oo and Huan{n <K

for some positive constant K. Then there is u € Wol’p(Q) such that, up to
a subsequence, u, — u weakly in E and u, — u in LP(RY).

PROOF. Since [[u,||? < |lun | < K we may assume that u, — u weakly
in £ and u, — u in LY (RY). Set Cy, = {z : [z| <m, V(z) > 1/m},m € N.

Then
m.

K
/ |un|p§m/ V(x)|un|? < —0 asn— oo
Cm Cm )\n

for every m. This implies that u(z) = 0 for a.e. z € RY \ Q. Hence, since 01 is
smooth, u € W, ?(Q).

We now show that u, — u in LP(RY). Let F = {z € RY : V(2) < My} with
My as in (Hg). Then

1 K
/FC unl? < WA /F AV (@)|un [P < o 0 esm e

Setting Bg = {z € RY : |z| < R}, and choosing 7 € (1, N/(N —p)) , r' =
r/(r — 1), we have

/ [wp —ul? < [up —ulf L(BR N YY" < elju, —ul|PL(BG N F)YT =0
BgNF

as R — oo due to (Hz). Finally, since u,, — u in LY (RY),

/ |un, — u|Pdz  as n — oo
Br
from where follows u,, — u in LP(RY). O

Hereafter we denote by Ly: WLP(RY) — (WLP(RY)) the operator given by

(L, v) = / (IVulP~2VuVo + AV (@) |ulP~2uv) de
RN
and the number
v = inf { / (IVul? + AV (z)|u|P)dz; w e E, |u|p, = 1}.
RN

It is easy to check that -, is a nondecreasing function in \.
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LEMMA 2.2. For each p € (0, p1) there is A() > 0 such that

T > 7(“2“1) for all A > \(p).

Consequently, there exists oy, > 0 such that
aylullf < / (IVul? + AV (z) — w)|ulP)dz  for allu € E and X > \().
RN

PROOF. Assume by contradiction that there exists a sequence \,, — oo such
that

Y, < (p+p1)/2 forallmeN
and
Y, =7 < (u+u1)/2 asn— oo.
Let u,, € E be such that |u,|, =1 and (L, un, up) = T + 0,(1). Since

lanl, = [ (Ve + (14 AVl ) d

we have
lunllX, < 201+ p1)
for all n large. By Lemma 2.1 there is u € W,*(€2) such that
U, —u weakly in £ and wu, —u in LP(RY).
Therefore

lul, =1 and liminf/ |wn|pdxz/ [Vul” dz
RN RN

0
/(|Vu|p — 7|ulP) dr < liminf (IVup|? — 7|un|?) dz
Q n—oo JrN

which implies
/(|Vu|p — 7|ulP) dz <liminf({(Lx, up,u,) —7) =0
Q n—oo

and thus

/|Vu|pdx§7/\u|pdxzr<u1
Q Q

obtaining this way a contradiction. O

Consider the functional

1 1 -
Do) == [ (9uP AV @l =y do = — [l do

that is,

1 1 *
Do) = 2 (L w) = pluly) — -l
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Then I, € C*(E,R) and critical points of I , are solutions of
—Apu+ AV (@) |[ulP2u = pluP"2u + [uP "2u,  uwe WEP(RY),

Recall that a sequence (u,) C E is called a (PS). sequence for I ,, if
Dop(un) — cand I (un) — 0 as n — oo. I, is said to satisfy the (PS).
condition if any (PS). sequence contains a convergent subsequence.

LEMMA 2.3. If p € (0, 1) and X > X(u), the functional Iy, satisfies the
(PS). condition for all ¢ < 1/NSWN/P),

PRrROOF. By definition,

1 1
(2.1) Iy u(un) = Ejgﬂ(un)un = N(<L>\“mun> = plunly)
and
1, 1 »*
(2.2) Iy u(un) — EI)\#(un)un = N\un\p*.

Using Lemma 2.2 and (2.1), we get that u, is a bounded sequence in E.
To prove that (u,) has a strongly convergent subsequence in E, we assume
that A(p) verifies the following inequality A(p) > /My, thus

(2.3) AMo —p >0 for all A € [A(u), 00).
Since (u,,) is a bounded in E, we may assume without loss of generality that
Up — U in E,
(R™),

U (r) — u(z) ae. inzeRY.

Up — U in L

Moreover, using the same arguments developed in Garcia Azorero and Peral
Alonso [14], Gueda and Veron [16] and Alves [1], we have

IVun\p*Q% — |Vu|P*2§—“ in L?(RM), i=1,...,N.
i X

The above informations imply that u is a weak solution of
—Apu+ NV (@)|uP 20 = pluP"2u + julP" 20 in RY,
Let w, = 4y, — u. By the Brézis and Lieb Lemma [9], we have
(2.4) [V Puy P = [VVPup 4 [V Pw, [P 4 0,(1),

(2.5) [ lbe = |ulbs +wnlb- 4 0n(1).

Moreover, using a lemma proved by Alves in [2], we also have

(2.6) / [Vt [P~2 Vi — |VuP~2V 0 — [V [P~2 Vw0, [P/ P dar = o, (1).
RN
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From (2.4)—(2.6) together I}  (u,) — 0 follow

(2.7) ({(Latwn, wy) — p|w[B) = wy |5 = 0,(1).

By the last equality, up to a subsequence, we can assume that

lim ((Lawn,wn) — plw,f) =1 and lim |w,
n—oo n—oo

As in the proof of Lemma 2.1 one shows that
/F|wn|pdx—>0 as n — 0o
where F = {z € RY : V(z) < My}. Using the inequality (2.3)
Slwalle < |Vwy[p < [Vaw,[? +/F AV () — p)|wn P da

hence
Slwy,

1< (o) = slunlg) + [ ol do.
F
or equivalently

SlwnlZl < (Latwn, wa) = ptlewa]2) + 0a(1).

gi =1< Nc< SN/»,

271

Passing to the limit in the last inequality, we obtain S1?/?") < [. Since | < S(N/P)

it follows [ = 0, hence w, — 0 in E.

3. Existence of positive solutions

O

The main objective of this section is to prove the Theorem A. We begin

recalling the definition of the Nehari manifold M) , related to the functional

I, given by
My =A{ue E\{0}: I} ,(u)u = 0}.

Note that by well know arguments, we have that following equality

1
exp = inf I ,(u) = N in )N/p

f
uEMA veEV

where V = {v € E: |v],- = 1}.

((Lau, u) — pluly

Using arguments explored by Benci and Cerami [7], we have the following

result:

PROPOSITION 3.1. Let u € My, be a critical point of I, with I ,(u) <
2¢cx,u- Then u does not change sign,hence, we can assume that it is a positive

function of (Py ).

Below, for every domain D C R, we consider the functional

1 1 « 1 1
I,Du:f/ VulP — p|ulP dz——/ ul? dr = —((Lou, u) — plulp) — —|u
(1) pp(| P —plul?) p Dl\ p((o )—ufulp) p*l

.
o
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on Wy**(D). Its Nehari manifold is

M,p = {u € Wy P(D)\ {0} : (Lou, u) — plul? = |ul?-}

and

. 1
(D)= inf Lp(u) = inf ({Lou,u) - polulB)N/P
u ", v

where Vp = {v € Wol’p(D) s o] =1}
LEMMA 3.2. If p € (0,p1), and A > A(u) then

1 1
N(auS)N/p <eap <c(p,Q) < NSN/p.

ProoF. By Lemma 2.2,

apllollyr, < aullvllX < (Lav,0) = plofj.

Using the definitions of the numbers S, ¢y, and c¢(x,2), we have the following
inequalities

1
N(auS)N/p <eanp < e(p, Q).

From the results showed by Guedda and Veron in [16], we know that
1
e(p, Q) < NSN“’ for all i € (0, p1)

and ¢(, Q) is achieved at some wug > 0 with ug € Wy?(Q) N C(Q). Therefore
exp < c(p,Q), because otherwise would be also achieved at up which vanish
outside . From Harnack’s inequality (see Trudinger [19]) follows that ug = 0
in RY, contradicting the fact that ug is positive on €. O

PROOF OF THEOREM A. Let (u})) be a minimizing sequence for I, , on
My, Then by Ekeland’s variational principle (see Ekeland [13]), we may as-
sume that it is a (PS) sequence. It follows from Proposition 3.1 and Lemmas 2.3
and 2.4 that a subsequence converges to a least energy solution uy of (P ,). O

4. Concentration of the solutions

Now we prove Theorem B. We need two technical results. The first one is
the following (cf. Alves, Carrido and Medeiros [3])

LEMMA 4.1. Let F € C*(R,R4) a convex and even function such F(0) =0
and f(s) = F'(s) > 0 for all s € [0,00). Then, for all ¢, > 0 we have

[F (¢ — @) = F(¢) — F(p)l <2(f(d)p + f(£)9).
PRrROOF. Indeed, we have two cases to be considered. If ¢ < ¢, by convexity

F(p) - F(0)
p—20

we have

< f(9),
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that is, F/(p) < f(é)¢. On the other hand, since f' = F” > 0 we have that f is
nondecreasing and consequently

F(¢— ) — F(6)| < ¢ /0 f(6—to) dt < pf(6).

Therefore,

(4.1) [F (¢ —¢) — F(¢) — Fo)| < 20f(¢).

If ¢ < ¢, we repeat the above argument to find

(4.2) [F (¢ —¢) — F(¢) — Fo)| < 26f(¢).

From (4.1)~(4.2) the lemma follows. 0

The second one reads as

PROPOSITION 4.2. Let u,, be a sequence of solutions related to (P, ) with

Ap — 00. Then, if w, = u, —u where u is the weak limit of u,, in E, we have
(L, Un, un) = (Lou, u) + (Lx, Wp, wn) + 0p(1).

PROOF. Using Lemma 4.1 with F(u) = |[u? (p > 2), ¢ = u, and ¢ = u, we
get
(4.3) [unl? + |u” = 2pOn < Jwn]” < funl” + [u]” + 2pOy,

where ©,, = |u, [P~ %u,u + |u|P~2uu,. Repeating the same arguments explored
in the proof of Lemma 2.1, we observe that u € Wg’p(Q), thus

V(x)0,dx =0
RN

and, by (4.3),
/ V(@) un|? dz :/ V(@) w,|? dz.
RN RN

The last equality and Brézis and Lieb’s Lemma imply
(L, Un, un) = (Lou, u)y + (L, Wn, wp) + 0p(1). O

PrOOF OF THEOREM B. Let (u,) be a sequence of solutions of (Px, ),
€ (0, p1), A, — oo such that

NIy, p(un) = (Lx, tn, un) — ptlug |2 — Ne < SN/P.

Then, it follows from Lemmas 2.1 and 2.2 that there exists a u € W, *(£2) such
that along a subsequence u,, — u weakly in F and

(4.4) u, —u in LP(RY).
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Since u,, is a solution of (Py, ,), we have, for all v € E, the following equality:

.
P20,

/ |Vt P72V, Vo + A V(@) |t [P 2 unv — ptlun, [P 2w, = / It
RN on

Using the Concentration-Compactness Principle by Lions [17], and similar ar-
guments found in [14] and [1], we have that

Up —u In L{’OC(Q)
which implies

u, — u  in WLP(Q).

loc
If v € W, P(Q) then Jan V(@) |un [P~ 2uyv da = 0 for all n € N. So, letting n — oo
in the above equality yields

/ |VulP~2VuVo — plulP?uv = / [ulP" ~2uv  for all v € Wol’p(Q).
RN RN

This implies that u is a solution of (D,). Setting w, = u, — u, by Proposition
4.2 and Brézis and Lieb’s Lemma

b = on(1).

(<L>\nwn7wn> - lenlg) - |wn

We claim that |w,|,+ — 0. Assume by contradiction that |w, Z: — [ > 0. Then,
since

S|wn‘§* < |an|§ < ({(L, wn, wp) — ﬂ|wn|g) + on(1)
we have

S|w,
Using the fact that |u, P2 > |w,

e < Jwalpe +o0n(1).

"
» T on(l), we get

SN/P < 1im \un\gi = Nc < SN/P,
n—0o0
which is a contradiction. Therefore, |wy|,- — 0 and (Lx, wn, wn) — plwp[h — 0
which, jointly with (4.4), implies (L, wy,w,) — 0 consequently,

(4.5) / (V[P + AV ]wa]?) — 0.
]RN

Now the combination of (4.4) and (4.5) shows that u, — w in F finishing the
proof. O

COROLLARY 4.3. For each p € (0, 1), limy o cx, 0 = ¢(p, Q).

PROOF. By Lemma 3.2, ¢y, — ¢ < ¢(u, Q) < (1/N)SN/? and, by Theo-
rem A, ¢y, is achieved for A > A(x). So Theorem B implies that ¢ is achieved
by I, on M, o. Hence, ¢ > ¢(u, Q). O
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5. Multiplicity of solutions involving cat(f2)

In this section we prove Theorem C which establishes the existence of mul-
tiply solutions related with category of set (2.

Following the arguments of Benci and Cerami [7], Since  is a bounded
smooth domain of RN, we may fix r > 0 small enough such that

QF, = {z e RY : dist(x,Q) < 2r} and Q; = {x € Q:dist (z,00) > r}

are homotopically equivalent to 2. Moreover, we may assume that B, = {z €
RY @ |z| < 7} C Q. We write ¢(u,7) = ¢(u1, B,). Then, arguing as in the proof
of Lemma 3.2, we have that

1
c(p, ) < e(p,r) < NSN/” for 0 < p < p1.

By Talenti [18], we know that the numbers ¢(0,G) with G C RY are inde-
pending of G, in the sense that ¢(0,G) = (1/N)SN/P. Moreover, in Alves and
Ding [4, Lemma 2.4] it was proved that

i _Lonp
(5.1) ﬁl}g}) c(u,G) = NS .

For 0 # u € LP" () we consider its center of mass

B Ja |ulP” x dx

ﬂ(u) - fQ |u‘p* dx .

Using the same arguments explored by Alves and Ding in [4, Lemma 3.3], we
have the following result

LEMMA 5.1. There exists a p* = p*(r) € (0, 1) such that, for 0 < p < p*,

(a) c(p,r) < 2¢(p, <),
(b) B(u) € Qf for every uw € M, o with I, o(u) < c(p, 7).

As in Bartsch and Wang [6], we choose R > 0 with Q C By and set

1 for 0 <t <R,
£t) =
R/t for R <t.
Define

o lulPé(lz))x da
folu) = Jo lulP™ dx

LEMMA 5.2. There exist u* = p*(r) € (0,u1) and for each 0 < p < p*
a number A(p) > M(p) with the following properties:

(a) c(p,r) < 2ey,, for all A > A(p), and
(b) Bo(u) € Q3 for all X > A(p) and all u € My, with I, < c(p,r).

for u € LP" (RY)\ {0}.
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PROOF. Assertion (a) follows immediately from Lemma 5.1 and Corolla-
ry 4.3. We now prove (b). Assume, by contradiction, that for u arbitrarily small
there is a sequence (uy,) such that u, € My, ., An — 00, Iy, u(un) — ¢ < c(p,r)
and Bo(un) ¢ Q. Then, by Lemma 2.1, there is u € W' (Q) such that u,, — u
weakly in E and u,, — u in LP(RY). We distinguish two cases:

Case 1. |u\£: < (Lou,u) — plulb.

Let wy, = uy, — u. Since V(z) = 0 for x € Q, as before, we have

(Lx, Uns un) — ,u|un|£ = (Lou,u) — N|U|£ + (L, Wn, wn) — /‘|wn|g +on(1).

Using the fact that u, € My, ,,

(L, wn, wn) — plwp]? < Jwplh. 4 0n(1).

We claim that |wy, |, — 0. Assume by contradiction that |w, g — 1> 0. Then,

since
Slwn|pe < [Vwn[b < (Ly, wn, wn) — plw, [} + 0, (1)
that is,
Slwa P < Jw, P2 + 0, (1)

g: > \wn|£: follows that

Recalling that |u,

SN/P < 1im \un\gi = Nc < SN/P,
n—oo

which a contradiction. Consequently, u,, — u in LP (R™) and, therefore, o ()
— B(u). But, since I, o(u) < ¢(u, ), it follows from Lemma 5.1 that 3(u) € Q.
This contradicts our assumptions that B (u,) ¢ Q..

Case 2. |u\§i > (Lou,u) — plulb.

In this case tu € M, o for some t € (0,1) and, therefore,

tP .
(1) < Lualtu) = = (Lowu) = plulf) < lim Ty, () < (7).

Since, by (5.1),
. T - 1 N/p
}Ell)I}) c(p, Q) = /EILI}J c(p,r) = =57

we have that for each € > 0,

lim Iy, . (un) — Loo(tu)| < ﬁ for all 1 € (0, u*).

n—oo
Consequently, there is a n(u) large enough such that

p*
p* <e

gi — |tu

[t ()

which implies

|50(Un(u)) — ﬁ(tu)‘ <T.
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From Lemma 5.1, S(tu) € Q;f

ro

consequently by the last inequality B (un(.)) €
QF , which is a contradiction. O

We will apply the following result of [11] to prove Theorem C.

PROPOSITION 5.3. Let I: M — R be an even C'—functional on a complete
symmetric CH-submanifold M C X \ 0 of some Banach space X. Assume that
I is bounded below and satisfies the Palais—Smale condition (PS). for all ¢ <b.
Further, assume that there are maps

i:Z — I and Bo: IS — W

where ISP = {u € M : I(u) < b}, whose compositions Boi is a homotopy equiva-
lence, and that Bo(u) = Bo(—u) for allu € M NI=. Then I has at least cat(Z)
pairs {u, —u} of critical points with I(u) = I(—u) < b.

ProOOF OoF THEOREM C. We are going to apply Proposition 5.3. Take X =
E,Z=Q; and W =Qj . For 0 < u < p* and A > A(u) we consider I = I, ,,,
M = My, and b = c(p,r). As mentioned before, b < (1/N)SN/P, hence by
Lemma 2.3 I, satisfies the (PS). condition for all ¢ < b. Clearly I ,(u) =
I . (—u). Take oo = (B defined above. Lemma 5.2 shows that it is well defined
from 755" into My .. By definition fo(u) = fo(—u). Let u, € WyP(B,) C E
be a minimizer of I, g, on M, g, with u, > 0, radially symmetric. We define
the map 4 by setting i(x) = u,(- — ). Since i(z) = 0 in RV \ Q for every
x € Q,, we have i(z) € My, and I ,(i(z)) = I, B, (ur) = ¢(i, ). The radially
symmetry implies that Gyp(i(z)) = z for every z € Q.. Now it follows from
Proposition 5.3 that (P, ,) has at least cat({2) solutions, finishing the proof. O
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