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EXISTENCE, MULTIPLICITY AND CONCENTRATION
OF POSITIVE SOLUTIONS

FOR A CLASS OF QUASILINEAR PROBLEMS

Claudianor O. Alves – Yanheng Ding

Abstract. Using variational methods we establish existence and multi-

plicity of positive solutions for the following class of quasilinear problems

−∆pu + λV (x)|u|p−2u = µ|u|p−2u + |u|p
∗−2u in RN

where ∆pu is the p-Laplacian operator, 2 ≤ p < N, p∗ = pN/(N − p),

λ, µ ∈ (0,∞) and V :RN → R is a continuous function verifying some

hypothesis.

1. Introduction

We are concerned with the existence of positive solutions for the following
class of quasilinear elliptic problems

(Pλ,µ)


−∆pu + λV (x)|u|p−2u = µ|u|p−2u + |u|p∗−2u in RN ,

u > 0 in RN ,

u ∈ W 1,p(RN )

where ∆pu = div(|∇u|p−2∇u), 2 ≤ p < N , p∗ = pN/(N − p), λ, µ ∈ (0,∞)
and V : RN → R is a continuous function. Nonlinear equations involving the
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p-Laplacian ∆p have been studied extensively in the last years, see for example
[1]–[4], [14]–[16] and the references cited in these works. In this paper we study
the problems (Pλ,µ) with V verifying the following hypotheses:

(H1) V ≥ 0,Ω = int, V −1(0) is a nonempty bounded set with smooth bound-
ary.

(H2) There exists M0 > 0 such that L{x ∈ RN : V (x) ≤ M0} < ∞ where L
denotes the Lebesgue measure in RN .

Such hypotheses were firstly posed to the potentials of a class of Schrödinger
equations by Bartsch and Wang in the paper [5]. See also [6], [11] and [12].
Motivated by [6] and [11], we are here interested in the following problems related
to (Pλ,µ):

• Existence of least energy solutions for large λ.
• The concentration behaviour of the solutions as λ →∞.
• Multiplicity of solutions involving the Lusternick–Schineralmann cate-

gory of Ω.

Here by a least energy solution we understand a positive solution with minima
energy over all nontrivial solutions of (Pλ,µ). By concentration behaviors we
describe tendencies of solutions uλ of (Pλ,µ) as λ → ∞. Precisely, letting (Dµ)
denote the limit problem

(Dµ)


−∆pu = µ|u|p−2u + |u|p∗−2u in Ω,

u > 0 in Ω,

u = 0 in ∂Ω.

we say that the solutions (un) of (Pλn,µ) will be concentrate at a solution u of
(Dµ) if a subsequence converges strongly to u in W 1,p(RN ) as λn →∞.

We say that a sequence (un) of solutions of (Pλn,µ) concentrates at a solution
u of (Dµ) if along a subsequence it converges to u strongly in W 1,p(RN ) as
λn →∞.

The paper is organized as follows. In Section 2 we shall fix some notations
and give several technical results. Section 3 is devoted to prove the existence of
positive solution for (Pλ,µ), the main result reads as follows:

Theorem A. Assume (H1) and (H2) hold and N ≥ p2. Then, for every
0 < µ < µ1, there exists λµ > 0 such that (Pλ,µ) has at least energy solution uλ

for each λ ≥ λ(µ).

Here by µ1 we denote the first eigenvalue of (−∆p,W
1,p
0 (Ω)). In Section 4 we

shall study the concentrate behavior of the solutions found in the Theorem A,
and the main result is:
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Theorem B. Every sequence of solutions (un) of (Pλn,µ) such that µ ∈
(0, µ1), λn → ∞ and Iλn,µ(un) → c < 1/NSN/p as n → ∞ concentrates at a
solution of (Dµ).

In the above theorem, S is the best Sobolev constant of the imbedding
D1,p(RN ) ↪→ Lp∗(RN ), given by

S = inf
u∈W 1,p\{0}

|∇u|pp
|u|pp∗

,

and Iλ,µ is functional related to (Pλ,µ) given by

Iλ,µ(u) =
∫

RN

(
1
p
|∇u|p +

1
p
(λV (x)− µ)|u|p − 1

p∗
|u|p

∗
)

dx.

In Section 5, we conclude the paper by showing a result of multiplicity which
is related to the Lusternick–Schineralmann category of Ω denoted by cat(Ω).
The result is the following:

Theorem C. Assume (H1) and (H2) hold and that N ≥ p2. Then there
exist 0 < µ∗ < µ1 and for each 0 < µ < µ∗ two numbers Λ(µ) > 0 and
0 < c(µ) < 1/NS(N/p) such that, if λ ≥ Λ(µ), then (Pλ,µ) has at least cat(Ω)
solutions with energy Iλ,µ ≤ c(µ).

Our methods to the problems are variational. The solutions are obtained
from critical points of Iλ,µ on its Nehari manifold. Since the problem is posed
on RN and the imbedding of W 1,p(RN ) into Lp(RN ) is not compact, we analyze
the Palais–Smale sequences with the aid of the parameter λ. We adapt an
argument similar to that of Brézis and Nirenberg [10] to deal with the critical
nonlinearity. By letting µ small and λ large we connect the multiplicity of
solutions with the topology of Ω; the idea here may go back to the work of Benci
and Cerami [7] (see also, e.g. [6], [11] and [20]). In addition, since the p-Laplacian
operator ∆p is nonlinear, it is clear that the arguments for general p ≥ 2 are
more subtle than that for p = 2.

2. Notations and technical results

From now on we always assume that (H1)–(H2) hold and that N ≥ p2. We
denote by | · |q and ‖ · ‖1,p the usual norms in the Banach spaces Lq(RN ) for
q ∈ [1,∞] and W 1,p(RN ) respectively, and by µ1 the first eigenvalue of the
following problem {

−∆pu = η|u|p−2u in Ω,

u = 0 in ∂Ω.

Let

E =
{

u ∈ W 1,p(RN ) :
∫

RN

V (x)|u|pdx < ∞
}
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be the Banach space endowed with the norm

‖u‖ =
(
‖u‖p

1,p +
∫

RN

V (x)|u|p dx

)1/p

which is equivalent to each of the norms

‖u‖λ =
(
‖u‖p

1,p + λ

∫
RN

V (x)|u|pdx

)1/p

for λ > 0.

Lemma 2.1. Let λn ≥ 1 and un ∈ E be such that λn →∞ and ‖un‖p
λn

< K

for some positive constant K. Then there is u ∈ W 1,p
0 (Ω) such that, up to

a subsequence, un ⇀ u weakly in E and un → u in Lp(RN ).

Proof. Since ‖un‖p ≤ ‖un‖p
λn

< K we may assume that un ⇀ u weakly
in E and un → u in Lp

loc(RN ). Set Cm = {x : |x| ≤ m, V (x) ≥ 1/m},m ∈ N.
Then ∫

Cm

|un|p ≤ m

∫
Cm

V (x)|un|p ≤
mK

λn
→ 0 as n →∞

for every m. This implies that u(x) = 0 for a.e. x ∈ RN \ Ω. Hence, since ∂Ω is
smooth, u ∈ W 1,p

0 (Ω).
We now show that un → u in Lp(RN ). Let F = {x ∈ RN : V (x) ≤ M0} with

M0 as in (H2). Then∫
F c

|un|p ≤
1

λnM0

∫
F c

λnV (x)|un|p ≤
K

λnM0
→ 0 as n →∞.

Setting BR = {x ∈ RN : |x| ≤ R}, and choosing r ∈ (1, N/(N − p)) , r′ =
r/(r − 1), we have∫

Bc
R∩F

|un − u|p ≤ |un − u|pprL(Bc
R ∩ F )1/r′ ≤ c‖un − u‖pL(Bc

R ∩ F )1/r′ → 0

as R →∞ due to (H2). Finally, since un → u in Lp
loc(RN ),∫

BR

|un − u|pdx as n →∞

from where follows un → u in Lp(RN ). �

Hereafter we denote by Lλ:W 1,p(RN ) → (W 1,p(RN ))′ the operator given by

〈Lλu, v〉 =
∫

RN

(|∇u|p−2∇u∇v + λV (x)|u|p−2uv) dx

and the number

γλ = inf
{ ∫

RN

(|∇u|p + λV (x)|u|p) dx; u ∈ E, |u|p = 1
}

.

It is easy to check that γλ is a nondecreasing function in λ.
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Lemma 2.2. For each µ ∈ (0, µ1) there is λ(µ) > 0 such that

γλ ≥
(µ + µ1)

2
for all λ ≥ λ(µ).

Consequently, there exists αµ > 0 such that

αµ‖u‖p
λ ≤

∫
RN

(|∇u|p + (λV (x)− µ)|u|p) dx for all u ∈ E and λ ≥ λ(µ).

Proof. Assume by contradiction that there exists a sequence λn →∞ such
that

γλn < (µ + µ1)/2 for all n ∈ N
and

γλn
→ τ ≤ (µ + µ1)/2 as n →∞.

Let un ∈ E be such that |un|p = 1 and 〈Lλn
un, un〉 = τ + on(1). Since

‖un‖p
λn

=
∫

RN

(|∇un|p + (1 + λnV (x))|un|p) dx

we have
‖un‖p

λn
≤ 2(1 + µ1)

for all n large. By Lemma 2.1 there is u ∈ W 1,p
0 (Ω) such that

un ⇀ u weakly in E and un → u in Lp(RN ).

Therefore

|u|p = 1 and lim inf
n→∞

∫
RN

|∇un|p dx ≥
∫

RN

|∇u|p dx

so ∫
Ω

(|∇u|p − τ |u|p) dx ≤ lim inf
n→∞

∫
RN

(|∇un|p − τ |un|p) dx

which implies∫
Ω

(|∇u|p − τ |u|p) dx ≤ lim inf
n→∞

(〈Lλnun, un〉 − τ) = 0

and thus ∫
Ω

|∇u|p dx ≤ τ

∫
Ω

|u|pdx = τ < µ1

obtaining this way a contradiction. �

Consider the functional

Iλ,µ(u) =
1
p

∫
RN

(|∇u|p + λV (x)|u|p − µ|u|p) dx− 1
p∗

∫
RN

|u|p
∗
dx

that is,

Iλ,µ(u) =
1
p
(〈Lλu, u〉 − µ|u|pp)−

1
p∗
|u|p

∗

p∗ .
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Then Iλ,µ ∈ C1(E, R) and critical points of Iλ,µ are solutions of

−∆pu + λV (x)|u|p−2u = µ|u|p−2u + |u|p
∗−2u, u ∈ W 1,p(RN ).

Recall that a sequence (un) ⊂ E is called a (PS)c sequence for Iλ,µ, if
Iλ,µ(un) → c and I ′λ,µ(un) → 0 as n → ∞. Iλ,µ is said to satisfy the (PS)c

condition if any (PS)c sequence contains a convergent subsequence.

Lemma 2.3. If µ ∈ (0, µ1) and λ ≥ λ(µ), the functional Iλ,µ satisfies the
(PS)c condition for all c < 1/NS(N/p).

Proof. By definition,

(2.1) Iλ,µ(un)− 1
p∗

I ′λ,µ(un)un =
1
N

(〈Lλun, un〉 − µ|un|pp)

and

(2.2) Iλ,µ(un)− 1
p
I ′λ,µ(un)un =

1
N
|un|p

∗

p∗ .

Using Lemma 2.2 and (2.1), we get that un is a bounded sequence in E.
To prove that (un) has a strongly convergent subsequence in E, we assume

that λ(µ) verifies the following inequality λ(µ) ≥ µ/M0, thus

(2.3) λM0 − µ ≥ 0 for all λ ∈ [λ(µ),∞).

Since (un) is a bounded in E, we may assume without loss of generality that

un ⇀ u in E,

un → u in Lp
loc(R

N ),

un(x) → u(x) a.e. in x ∈ RN .

Moreover, using the same arguments developed in Garcia Azorero and Peral
Alonso [14], Gueda and Veron [16] and Alves [1], we have

|∇un|p−2 ∂un

∂xi
⇀ |∇u|p−2 ∂u

∂xi
in Lp(RN ), i = 1, . . . , N.

The above informations imply that u is a weak solution of

−∆pu + λV (x)|u|p−2u = µ|u|p−2u + |u|p
∗−2u in RN .

Let wn = un − u. By the Brézis and Lieb Lemma [9], we have

|V 1/pun|pp = |V 1/pu|pp + |V 1/pwn|pp + on(1),(2.4)

|un|p
∗

p∗ = |u|p
∗

p∗ + |wn|p
∗

p∗ + on(1).(2.5)

Moreover, using a lemma proved by Alves in [2], we also have

(2.6)
∫

RN

||∇un|p−2∇un − |∇u|p−2∇u− |∇wn|p−2∇wn|p/(p−1) dx = on(1).
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From (2.4)–(2.6) together I ′λ,µ(un) → 0 follow

(2.7) (〈Lλwn, wn〉 − µ|wn|pp)− |wn|p
∗

p∗ = on(1).

By the last equality, up to a subsequence, we can assume that

lim
n→∞

(〈Lλwn, wn〉 − µ|wn|pp) = l and lim
n→∞

|wn|p
∗

p∗ = l ≤ Nc < SN/p.

As in the proof of Lemma 2.1 one shows that∫
F

|wn|p dx → 0 as n →∞

where F = {x ∈ RN : V (x) ≤ M0}. Using the inequality (2.3)

S|wn|p
∗

p∗ ≤ |∇wn|pp ≤ |∇wn|pp +
∫

F c

(λV (x)− µ)|wn|p dx

hence
S|wn|p

∗

p∗ ≤ (〈Lλwn, wn〉 − µ|wn|pp) + µ

∫
F

|wn|p dx,

or equivalently

S|wn|p
∗

p∗ ≤ (〈Lλwn, wn〉 − µ|wn|pp) + on(1).

Passing to the limit in the last inequality, we obtain Sl(p/p∗) ≤ l. Since l < S(N/p)

it follows l = 0, hence wn → 0 in E. �

3. Existence of positive solutions

The main objective of this section is to prove the Theorem A. We begin
recalling the definition of the Nehari manifold Mλ,µ related to the functional
Iλ,µ given by

Mλ,µ = {u ∈ E \ {0} : I ′λ,µ(u)u = 0}.
Note that by well know arguments, we have that following equality

cλ,µ = inf
u∈Mλ,µ

Iλ,µ(u) =
1
N

inf
v∈V

(〈Lλu, u〉 − µ|u|pp)N/p

where V = {v ∈ E : |v|p∗ = 1}.
Using arguments explored by Benci and Cerami [7], we have the following

result:

Proposition 3.1. Let u ∈ Mλ,µ be a critical point of Iλ,µ with Iλ,µ(u) <

2cλ,µ. Then u does not change sign,hence, we can assume that it is a positive
function of (Pλ,µ).

Below, for every domain D ⊂ RN , we consider the functional

Iµ,D(u) =
1
p

∫
D

(|∇u|p−µ|u|p) dx− 1
p∗

∫
D
|u|p

∗
dx =

1
p
(〈L0u, u〉−µ|u|pp)−

1
p∗
|u|p

∗

p∗
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on W 1,p
0 (D). Its Nehari manifold is

Mµ,D = {u ∈ W 1,p
0 (D) \ {0} : 〈L0u, u〉 − µ|u|pp = |u|p

∗

p∗}

and
c(µ,D) = inf

u∈Mµ,D
Iµ,D(u) =

1
N

inf
v∈VD

(〈L0u, u〉 − µ|u|pp)N/p

where VD = {v ∈ W 1,p
0 (D) : |v|p∗ = 1}.

Lemma 3.2. If µ ∈ (0, µ1), and λ ≥ λ(µ) then

1
N

(αµS)N/p ≤ cλ,µ < c(µ,Ω) <
1
N

SN/p.

Proof. By Lemma 2.2,

αµ‖v‖p
W 1,p ≤ αµ‖v‖p

λ ≤ 〈Lλv, v〉 − µ|v|pp.

Using the definitions of the numbers S, cλ,µ and c(µ,Ω), we have the following
inequalities

1
N

(αµS)N/p ≤ cλ,µ ≤ c(µ,Ω).

From the results showed by Guedda and Veron in [16], we know that

c(µ,Ω) <
1
N

SN/p for all µ ∈ (0, µ1)

and c(µ,Ω) is achieved at some u0 > 0 with u0 ∈ W 1,p
0 (Ω) ∩ C(Ω). Therefore

cλ,µ < c(µ,Ω), because otherwise would be also achieved at u0 which vanish
outside Ω. From Harnack’s inequality (see Trudinger [19]) follows that u0 ≡ 0
in RN , contradicting the fact that u0 is positive on Ω. �

Proof of Theorem A. Let (uλ
n) be a minimizing sequence for Iλ,µ on

Mλ,µ. Then by Ekeland’s variational principle (see Ekeland [13]), we may as-
sume that it is a (PS) sequence. It follows from Proposition 3.1 and Lemmas 2.3
and 2.4 that a subsequence converges to a least energy solution uλ of (Pλ,µ). �

4. Concentration of the solutions

Now we prove Theorem B. We need two technical results. The first one is
the following (cf. Alves, Carrião and Medeiros [3])

Lemma 4.1. Let F ∈ C2(R, R+) a convex and even function such F (0) = 0
and f(s) = F ′(s) ≥ 0 for all s ∈ [0,∞). Then, for all φ, ϕ ≥ 0 we have

|F (φ− ϕ)− F (φ)− F (ϕ)| ≤ 2(f(φ)ϕ + f(ϕ)φ).

Proof. Indeed, we have two cases to be considered. If ϕ ≤ φ, by convexity
we have

F (ϕ)− F (0)
ϕ− 0

≤ f(φ),
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that is, F (ϕ) ≤ f(φ)ϕ. On the other hand, since f ′ = F ′′ ≥ 0 we have that f is
nondecreasing and consequently

|F (φ− ϕ)− F (φ)| ≤ ϕ

∫ 1

0

f(φ− tϕ) dt ≤ ϕf(φ).

Therefore,

(4.1) |F (φ− ϕ)− F (φ)− F (ϕ)| ≤ 2ϕf(φ).

If φ ≤ ϕ, we repeat the above argument to find

(4.2) |F (φ− ϕ)− F (φ)− F (ϕ)| ≤ 2φf(ϕ).

From (4.1)–(4.2) the lemma follows. �

The second one reads as

Proposition 4.2. Let un be a sequence of solutions related to (Pλn,µ) with
λn →∞. Then, if wn = un − u where u is the weak limit of un in E, we have

〈Lλnun, un〉 = 〈L0u, u〉+ 〈Lλnwn, wn〉+ on(1).

Proof. Using Lemma 4.1 with F (u) = |u|p (p ≥ 2), φ = un and ϕ = u, we
get

(4.3) |un|p + |u|p − 2pΘn ≤ |wn|p ≤ |un|p + |u|p + 2pΘn

where Θn = |un|p−2unu + |u|p−2uun. Repeating the same arguments explored
in the proof of Lemma 2.1, we observe that u ∈ W 1,p

0 (Ω), thus∫
RN

V (x)Θn dx = 0

and, by (4.3), ∫
RN

V (x)|un|p dx =
∫

RN

V (x)|wn|p dx.

The last equality and Brézis and Lieb’s Lemma imply

〈Lλn
un, un〉 = 〈L0u, u〉+ 〈Lλn

wn, wn〉+ on(1). �

Proof of Theorem B. Let (un) be a sequence of solutions of (Pλn,µ),
µ ∈ (0, µ1), λn →∞ such that

NIλn,µ(un) = 〈Lλnun, un〉 − µ|un|pp → Nc < SN/p.

Then, it follows from Lemmas 2.1 and 2.2 that there exists a u ∈ W 1,p
0 (Ω) such

that along a subsequence un ⇀ u weakly in E and

(4.4) un → u in Lp(RN ).
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Since un is a solution of (Pλn,µ), we have, for all v ∈ E, the following equality:∫
RN

|∇un|p−2∇un∇v + λnV (x)|un|p−2unv − µ|un|p−2unv =
∫

RN

|un|p
∗−2unv.

Using the Concentration–Compactness Principle by Lions [17], and similar ar-
guments found in [14] and [1], we have that

un → u in Lp∗

loc(Ω)

which implies

un → u in W 1,p
loc (Ω).

If v ∈ W 1,p
0 (Ω) then

∫
RN V (x)|un|p−2unv dx = 0 for all n ∈ N. So, letting n →∞

in the above equality yields∫
RN

|∇u|p−2∇u∇v − µ|u|p−2uv =
∫

RN

|u|p
∗−2uv for all v ∈ W 1,p

0 (Ω).

This implies that u is a solution of (Dµ). Setting wn = un − u, by Proposition
4.2 and Brézis and Lieb’s Lemma

(〈Lλn
wn, wn〉 − µ|wn|pp)− |wn|p

∗

p∗ = on(1).

We claim that |wn|p∗ → 0. Assume by contradiction that |wn|p
∗

p∗ → l > 0. Then,
since

S|wn|pp∗ ≤ |∇wn|pp ≤ (〈Lλn
wn, wn〉 − µ|wn|pp) + on(1)

we have

S|wn|pp∗ ≤ |wn|p
∗

p∗ + on(1).

Using the fact that |un|p
∗

p∗ ≥ |wn|p
∗

p∗ + on(1), we get

SN/p ≤ lim
n→∞

|un|p
∗

p∗ = Nc < SN/p,

which is a contradiction. Therefore, |wn|p∗ → 0 and 〈Lλnwn, wn〉 − µ|wn|pp → 0
which, jointly with (4.4), implies 〈Lλn

wn, wn〉 → 0 consequently,

(4.5)
∫

RN

(|∇wn|p + λnV |wn|p) → 0.

Now the combination of (4.4) and (4.5) shows that un → u in E finishing the
proof. �

Corollary 4.3. For each µ ∈ (0, µ1), limλ→∞ cλ,µ = c(µ,Ω).

Proof. By Lemma 3.2, cλ,µ → c ≤ c(µ,Ω) < (1/N)SN/p and, by Theo-
rem A, cλ,µ is achieved for λ ≥ λ(µ). So Theorem B implies that c is achieved
by Iµ,Ω on Mµ,Ω. Hence, c ≥ c(µ, Ω). �
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5. Multiplicity of solutions involving cat(Ω)

In this section we prove Theorem C which establishes the existence of mul-
tiply solutions related with category of set Ω.

Following the arguments of Benci and Cerami [7], Since Ω is a bounded
smooth domain of RN , we may fix r > 0 small enough such that

Ω+
2r = {x ∈ RN : dist(x,Ω) < 2r} and Ω−r = {x ∈ Ω : dist (x, ∂Ω) > r}

are homotopically equivalent to Ω. Moreover, we may assume that Br = {x ∈
RN : |x| < r} ⊂ Ω. We write c(µ, r) = c(µ, Br). Then, arguing as in the proof
of Lemma 3.2, we have that

c(µ, Ω) < c(µ, r) <
1
N

SN/p for 0 < µ < µ1.

By Talenti [18], we know that the numbers c(0, G) with G ⊂ RN are inde-
pending of G, in the sense that c(0, G) = (1/N)SN/p. Moreover, in Alves and
Ding [4, Lemma 2.4] it was proved that

(5.1) lim
µ→0

c(µ,G) =
1
N

SN/p.

For 0 6= u ∈ Lp∗(Ω) we consider its center of mass

β(u) =

∫
Ω
|u|p∗x dx∫

Ω
|u|p∗ dx

.

Using the same arguments explored by Alves and Ding in [4, Lemma 3.3], we
have the following result

Lemma 5.1. There exists a µ∗ = µ∗(r) ∈ (0, µ1) such that, for 0 < µ < µ∗,

(a) c(µ, r) < 2c(µ, Ω),
(b) β(u) ∈ Ω+

r for every u ∈Mµ,Ω with Iµ,Ω(u) ≤ c(µ, r).

As in Bartsch and Wang [6], we choose R > 0 with Ω ⊂ BR and set

ξ(t) =

{
1 for 0 ≤ t ≤ R,

R/t for R ≤ t.

Define

β0(u) =

∫
Ω
|u|p∗ξ(|x|)x dx∫

Ω
|u|p∗ dx

for u ∈ Lp∗(RN ) \ {0}.

Lemma 5.2. There exist µ∗ = µ∗(r) ∈ (0, µ1) and for each 0 < µ < µ∗

a number Λ(µ) ≥ λ(µ) with the following properties:

(a) c(µ, r) < 2cλ,µ for all λ ≥ Λ(µ), and
(b) β0(u) ∈ Ω+

2r for all λ ≥ Λ(µ) and all u ∈Mλ,µ with Iλ,µ ≤ c(µ, r).
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Proof. Assertion (a) follows immediately from Lemma 5.1 and Corolla-
ry 4.3. We now prove (b). Assume, by contradiction, that for µ arbitrarily small
there is a sequence (un) such that un ∈Mλn,µ, λn →∞, Iλn,µ(un) → c ≤ c(µ, r)
and β0(un) /∈ Ω+

2r. Then, by Lemma 2.1, there is u ∈ W 1,p
0 (Ω) such that un ⇀ u

weakly in E and un → u in Lp(RN ). We distinguish two cases:

Case 1. |u|p
∗

p∗ ≤ 〈L0u, u〉 − µ|u|pp.
Let wn = un − u. Since V (x) = 0 for x ∈ Ω, as before, we have

〈Lλn
un, un〉 − µ|un|pp = 〈L0u, u〉 − µ|u|pp + 〈Lλn

wn, wn〉 − µ|wn|pp + on(1).

Using the fact that un ∈Mλn,µ,

〈Lλnwn, wn〉 − µ|wn|pp ≤ |wn|p
∗

p∗ + on(1).

We claim that |wn|p∗ → 0. Assume by contradiction that |wn|p
∗

p∗ → l > 0. Then,
since

S|wn|pp∗ ≤ |∇wn|pp ≤ 〈Lλn
wn, wn〉 − µ|wn|pp + on(1)

that is,
S|wn|pp∗ ≤ |wn|p

∗

p∗ + on(1).

Recalling that |un|p
∗

p∗ ≥ |wn|p
∗

p∗ follows that

SN/p ≤ lim
n→∞

|un|p
∗

p∗ = Nc < SN/p,

which a contradiction. Consequently, un → u in Lp∗(RN ) and, therefore, β0(un)
→ β(u). But, since Iµ,Ω(u) ≤ c(µ, r), it follows from Lemma 5.1 that β(u) ∈ Ω+

r .
This contradicts our assumptions that β0(un) /∈ Ω+

2r.

Case 2. |u|p
∗

p∗ > 〈L0u, u〉 − µ|u|pp.
In this case tu ∈Mµ,Ω for some t ∈ (0, 1) and, therefore,

c(µ, Ω) ≤ Iµ,Ω(tu) =
tp

N
(〈L0u, u〉 − µ|u|pp) ≤ lim

n→∞
Iλn,µ(un) ≤ c(µ, r).

Since, by (5.1),

lim
µ→0

c(µ,Ω) = lim
µ→0

c(µ, r) =
1
N

SN/p,

we have that for each ε > 0,∣∣∣∣ lim
n→∞

Iλn,µ(un)− Iµ,Ω(tu)
∣∣∣∣ <

ε

2N
for all µ ∈ (0, µ∗).

Consequently, there is a n(µ) large enough such that

||un(µ)|p
∗

p∗ − |tu|p
∗

p∗ | < ε

which implies ∣∣β0(un(µ))− β(tu)
∣∣ < r.
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From Lemma 5.1, β(tu) ∈ Ω+
r , consequently by the last inequality β0(un(µ)) ∈

Ω+
2r, which is a contradiction. �

We will apply the following result of [11] to prove Theorem C.

Proposition 5.3. Let I:M → R be an even C1−functional on a complete
symmetric C1,1-submanifold M ⊂ X \ 0 of some Banach space X. Assume that
I is bounded below and satisfies the Palais–Smale condition (PS)c for all c ≤ b.
Further, assume that there are maps

i:Z → I≤b and β0: I≤b → W

where I≤b = {u ∈ M : I(u) ≤ b}, whose compositions β0i is a homotopy equiva-
lence, and that β0(u) = β0(−u) for all u ∈ M ∩ I≤b. Then I has at least cat(Z)
pairs {u,−u} of critical points with I(u) = I(−u) ≤ b.

Proof of Theorem C. We are going to apply Proposition 5.3. Take X =
E, Z = Ω−r and W = Ω+

2r. For 0 < µ ≤ µ∗ and λ ≥ Λ(µ) we consider I = Iλ,µ,
M = Mλ,µ and b = c(µ, r). As mentioned before, b < (1/N)SN/p, hence by
Lemma 2.3 Iλ,µ satisfies the (PS)c condition for all c ≤ b. Clearly Iλ,µ(u) =
Iλ,µ(−u). Take α = β0 defined above. Lemma 5.2 shows that it is well defined
from I

≤c(µ,r)
λ,µ into Mλ,µ. By definition β0(u) = β0(−u). Let ur ∈ W 1,p

0 (Br) ⊂ E

be a minimizer of Iµ,Br
on Mµ,Br

with ur > 0, radially symmetric. We define
the map i by setting i(x) = ur( · − x). Since i(x) ≡ 0 in RN \ Ω for every
x ∈ Ω−r , we have i(x) ∈Mλ,µ and Iλ,µ(i(x)) = Iµ,Br (ur) = c(µ, r). The radially
symmetry implies that β0(i(x)) = x for every x ∈ Ω−r . Now it follows from
Proposition 5.3 that (Pλ,µ) has at least cat(Ω) solutions, finishing the proof. �
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[10] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations in-

vovling critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–447.

[11] M. Clapp and Y. H. Ding, Positive solutions of a Schrodinger equation with critical

nonlinearity, Z. Angew. Math. Phys 55 (2004), 592–605.

[12] D. G. de Figueiredo and Y. H. Ding, Solutions of a nonlinear Schrodinger equation,

Discr. Cont. Dynam. System 08 (2002), 563–584.

[13] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

[14] J. Garcia Azorero and I. Peral Alonso, Existence and non-uniqueness for the
p-Laplacian: Nonlinear eigenvalues, Comm. Partial Differentil Equations 12 (1987),

1389–1430.

[15] , Multiplicity of solutions for elliptic problems with critical exponent or with a

nonsymmetric term, Trans. Amer. Math. Soc. 323 (1991), 877–895.

[16] M. Gueda and L. Veron, Quasilinear ellipitc equations involving critical Sobolev ex-

ponents, Nonlinear Anal. 13 (1989), 879–902.

[17] P. L. Lions, The concentration-compactness principle in the calculus of variations: The

limit case,, Rev. Mat. Iberoamericana 1 (1985), 145–201.

[18] G. Talenti, Best constant in Sobolev inequality, Annali di Mat. 110 (1976), 353–372.

[19] N. S. Trudinger, On Harnack type imequalities and their applications to a quasilinear

ellipitc equations, Comm. Pure Appl. Math. 20 (1967), 721–747.

[20] W. Willem, Minimax Theorems, Birkhäuser, 1986.
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CEP:58109-970, Campina Grande, PB, BRASIL

E-mail address: coalves@dme.ufcg.edu.br

Yanheng Ding

Institute of Mathematics, AMSS

Chine? Academy of Science
100080 Beijing, P.R. China

E-mail address: dingyh@math03.math.ac.cn

TMNA : Volume 29 – 2007 – No 2


