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ANISOTROPIC ELLIPTIC EQUATIONS IN RN :
EXISTENCE AND REGULARITY RESULTS

Mostafa Bendahmane — Said El Manouni

Abstract. We investigate a class of anisotropic elliptic equations in the

whole RN . By a variational approach, we obtain existence and regularity
of nontrivial solutions in the framework of anisotropic Sobolev spaces. In

addition, when the data is assumed to be merely locally integrable, the
existence of solutions is established for a subclass of equations.

1. Introduction

We are interested in the existence and regularity results of distributional solu-
tions in an appropriate function space for nonlinear anisotropic elliptic equations.
In this paper, first we consider an elliptic equation of the form

(1.1) −
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)
+

N∑
i=1

β(x)|u|pi−2u = f(x)|u|s−1u in RN ,

where N ≥ 2. We assume that β and f satisfy the following conditions: β: RN →
R is a continuous function satisfying

(1.2) β(x) ≥ β0 a.e. in RN and lim
|x|→∞

β(x) = ∞,
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the function f : RN → R is nonnegative and satisfies

(1.3) f ∈ Lω(RN ) ∩ Lω/(1−δ)(RN ), ω =
p∗

p∗ − (s + 1)
,

Herein, β0 is a positive constant, 0 < δ < 1 is a small positive real,

1
p

=
1
N

N∑
i=1

1
pi

and p∗ =
Np

N − p

with p < N . For (1.1) we assume that the exponents p1, . . . , pN and s are
restricted as follows

(1.4)



pi > 1,
N∑

i=1

1
pi

> 1, i = 1, . . . , N,

0 < s < p∗ − 1, p∗ :=
N∑N

i=1
1
pi
− 1

,

pmax = max(p1, . . . , pN ) < p∗.

Remark 1.1. Note that (1.3) gives more restrictive integrability condition
on the function f . The function f is assumed to have optimal regularity condi-
tions which ensure existence and regularity results of solutions. Since pmax < p∗,
then p∗ is the critical exponent associated to the operator:

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)
.

Second, the problem of the existence and regularity of solutions with inte-
grable function will be studied for the following problem

(1.5) −
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)
+

N∑
i=1

β(x)|u|ri−1u = f(x)|u|s−1u + g(x)

in RN , where g ∈ L1
loc(RN ) and β satisfies (1.2). We strengthen a bit our condi-

tion on the data f of the problem (1.5). We require the nonnegative function f

to satisfy

(1.6) f ∈ Lω(RN ) ∩ Lω/(1−δ)(RN ), ω =
σ

σ − s
,

where, 0 < δ < 1/pi is a small positive real and

σ :=
(1− δ)spmin

1− δpmin
for i = 1, . . . , N.

Herein, pmin = min(p1, . . . , pN ).
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For (1.5) we assume that the exponents p1, . . . , pN and r1, . . . , rN are re-
stricted as follows:

(1.7)


pi > 1,

N∑
i=1

1
pi

> 1, i = 1, . . . , N,

p(N − 1)
N(p− 1)

< pi <
p(N − 1)
N − p

, i = 1, . . . , N,

ri > pmax, i = 1, . . . , N.

Remark 1.2. Note that the restriction on the exponents ri, i = 1, . . . , N ,
in the list (1.7), is needed to obtain regularity of solution in Lemma 3.4 below.
Observe that from the definition of

σ :=
(1− δ)spmin

1− δpmin
,

we deduce easily that 0 < s < σ.

To the best of our knowledge, anisotropic equations with different orders of
derivations in different directions involving critical exponents with unbounded
nonlinearities were never studied before. In the isotropic case, we can refer the
reader to the works by [10], [16] and [22] where existence and regularity results are
obtained. In passing, we mention that in [12] the authors have studied another
class of ansiotropic elliptic equations. Via an adaptation of the concentration-
compactness lemma of P.-L. Lions to anisotropic operators, they have obtained
the existence of multiple nonnegative solutions. Let us point out that in the case
of bounded domains, more work in this direction can be found in [13] where the
authors proved existence and nonexistence results for some anisotropic quasilin-
ear elliptic equations.

Compared to [4], the main feature of the problem (1.5) is the combination
of an anisotropic diffusion operator, a restrictive integrability conditions on f ,
a locally integrable right-hand side g, and an unbounded domain. In the case of
the Dirichlet problem on a bounded domain, existence and regularity results for
distributional solutions with L1-data have been obtained in [6], [17] for a class
of anisotropic elliptic and parabolic equations. For an anisotropic parabolic
reaction-diffusion-advection system with a zero-flux boundary condition, still on
a bounded domain, similar results are established in [3].

The remaining part of the paper is organized as follows: Our main “elliptic”
results are stated in Section 2. Some preliminary results are given in Section 3.
Main results are proved in Section 4 (for the problem (1.1)) and Section 5 (for
the problem (1.5)).
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2. Statement of main theorem

We let 1 ≤ p1, . . . , pN < ∞ be N real numbers. Denote by p the harmonic
mean of these numbers, i.e.

1
p

=
1
N

N∑
i=1

1
pi

,

and set pmax = max(p1, . . . , pN ), pmin = min(p1, . . . , pN ), −→p = (p1, . . . , pN ).
We always have pmin ≤ p ≤ pmax. The Sobolev conjugate of p is denoted by p∗,
i.e. p∗ = (Np)/(N − p).

Anisotropic Sobolev spaces were introduced and studied by S. M. Nikol’skĭı
[21], L. N. Slobodeckĭı [24], M. Troisi [25], and later by N. S. Trudinger [26] in
the framework of Orlicz spaces.

Herein we need the anisotropic Sobolev space

Dβ,−→p (RN ) =
{

u ∈ W 1,p(RN ) :
∂u

∂xi
∈ Lpi(RN ),

β1/piu ∈ Lpi(RN ), i = 1, . . . , N

}
.

It is a Banach space under the norm

‖u‖ =
N∑

i=1

‖β1/piu‖Lpi (RN ) +
N∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (RN )

.

Observe that in the case β = 1, we can replace Dβ,−→p (RN ) by the standard
anisotropic Sobolev space W 1,−→p (RN ).

Now we define what we mean by weak solutions of the problems (1.1) and
(1.5). We also supply our main existence results.

Definition 2.1. We say that u ∈ Dβ,−→p (RN ) is a weak solution of (1.1) if

(2.1)
N∑

i=1

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

∂ϕ

∂xi
+ β(x)|u|pi−2uϕ

)
dx =

∫
RN

f(x)|u|s−1uϕ dx,

for all ϕ ∈ Dβ,−→p (RN ).

Remark 2.2. Note that the assumptions (1.2) and (1.3) guarantee that the
integrals given in (2.1) are well defined.

Now, we state the first main results of this paper.

Theorem 2.3. Assume conditions (1.2)–(1.3) hold, and the corresponding
exponents p1, . . . , pN and s are restricted as in (1.4). Then the problem (1.1) has
at least one nontrivial weak solution in the sense of Definition 2.1. Moreover,
the solution u satisfies

uκ

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

∈ L1(RN ) for all 0 < κ < ∞ and i = 1, . . . , N.
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Furthermore, if pi = p for i = 1, . . . , N , then uκ ∈ L1(RN ) with Np/(N − p) ≤
κ < ∞.

Remark 2.4. Remark that the condition
∑N

i=1 1/pi > 1 is indeed equivalent
to p < N . If pi = p for all i, then it is reduced to the isotropic case p < N .
This condition is generally used for problems involving critical exponents in
unbounded domains.

Next, we look for distributional solutions to (1.5) in the following sense:

Definition 2.5. A distributional solution of (1.5) is a function u: RN → R
such that

u ∈ W 1,−→q
loc (RN ) ∩ Lri

loc(R
N ), f(x)us−1u ∈ L1

loc(RN ),∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi
∈ L1

loc(RN ), for all 1 ≤ qi <
N(p− 1)
p(N − 1)

pi

with i = 1, . . . , N and

(2.2)
N∑

i=1

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

∂ϕ

∂xi
+ β(x)|u|ri−1uϕ

)
dx

=
∫

RN

f(x)us−1uϕ dx +
∫

RN

g(x)ϕ dx,

for all ϕ ∈ C1
c (RN ).

Remark 2.6. Note that in Definition 2.5 all terms in (2.2) are well-defined.

Our second main results are collected in the following theorem:

Theorem 2.7. Assume (1.2) and (1.6) hold and the corresponding exponents
p1, . . . , pN and r1, . . . , rN are restricted as in (1.7). Then (1.5) has at least
one distributional solution u in the sense of Definition 2.5. If p > N , then
u ∈ L∞loc(RN ).

3. Mathematical preliminaries

3.1. Anisotropic Sobolev spaces. Later we will need the following ani-
sotropic Sobolev embedding theorem.

Theorem 3.1. Let Q be a cube of RN with faces parallel to the coordinate
planes. Suppose u ∈ W 1,−→p (Q), and set

1
p

=
1
N

N∑
i=1

1
pi

, r =

 p∗ :=
Np

N − p
, if p∗ < N,

any number from [1,∞), if p∗ ≥ N.
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Then there exists a constant C, depending on N , p1, . . . , pN if p < N and also
on r and meas(Q) if p ≥ N , such that

‖u‖Lr(Q) ≤ C
N∏

i=1

[∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (Q)

+ ‖u‖Lpi (Q)

]1/N

.

Moreover, suppose u ∈ W 1,−→p (RN ) and p∗ < N . Then there exists a constant
T0 > 0 depending only on N and p1, . . . , pN such that

(3.2) T0‖u‖Lp∗ (RN ) ≤
N∏

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥1/N

Lpi (RN )

.

Remark 3.2. Theorem 3.1 is used to prove the “interpolation” lemma be-
low, which is a technical result we will use later to obtain a priori estimates. A
similar result is found in [6] with W 1,−→p (Q) replaced by W 1,−→p

0 (Ω) in the case of
a Dirichlet boundary condition.

Remark 3.3. We can replace the geometric mean on the right-hand side
of (3.2) by an arithmetic mean. Indeed, the inequality between geometric and
arithmetic means implies

‖u‖Lp∗ (RN ) ≤
1

NT0

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (RN )

.

3.2. Technical lemmas.

Lemma 3.4. Let Q be a cube of RN with faces parallel to the coordinate
planes and (uε)0<ε≤1 be a sequence in W 1,−→p (Q) with p ≤ N . Suppose that there
exists a constant c, independent of ε, such that

‖uε‖Lpi (Q) ≤ c, i = 1, . . . , N, and sup
γ>0

N∑
i=1

∫
Bγ

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

dx ≤ c,

where Bγ = {x ∈ Q : γ ≤ |uε| ≤ γ + 1} for γ > 0, or

N∑
i=1

∫
Q

|∂uε/∂xi|pi

(1 + |uε|)γ
dx ≤ c.

Then for every qi such that

1 ≤ qi <
N(p− 1)
p(N − 1)

pi,

there exists a constant C, depending on Q, N , p1, . . . , pN , q1, . . . , qN , and c, but
not ε, such that∥∥∥∥∂uε

∂xi

∥∥∥∥
Lqi (Q)

≤ C, i = 1, . . . , N, and ‖uε‖Lq(Q) ≤ C,
1
q

=
1
N

N∑
i=1

1
qi

.
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The proof of Lemma 3.4 is found in [4].

Lemma 3.5. Let

A = inf
u∈Dβ,−→p (RN ),‖u‖

Lp∗ (RN )=1

{ N∑
i=1

1
pi

∥∥∥∥ ∂u

∂xi

∥∥∥∥pi

Lpi (RN )

}
.

Then A > 0.

Proof. By Remark 3.3, we obtain

(3.3)
N∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (RN )

≥ NT0 > 0,

for ‖u‖Lp∗ (RN ) = 1. Note that the minimum A1 of the function h(x1, . . . , xN ) =∑N
i=1 xpi

i /pi over the set {(x1, . . . , xN ) ∈ RN :
∑N

i=1 xi ≥ NT0, xi ≥ 0} is
achieved and A1 > 0. By (3.3), we conclude that A ≥ A1 > 0. �

3.3. Mountain Pass Theorem. To deal with the functional framework we
apply the following basic theorem.

Theorem 3.6 (Mountain Pass [2]). Let I be a C1-differentiable functional
on a Banach space E and satisfying the Palais–Smale condition (PS), suppose
that there exists a neighbourhood U of 0 in E and a positive constant α satisfying
the following conditions:

(a) I(0) = 0.
(b) I(u) ≥ α on the boundary of U .
(c) There exists an e ∈ E \ U such that I(e) < α.

Then
c = inf

γ∈Γ
sup

y∈[0,1]

I(γ(y))

is a critical value of I with Γ = {g ∈ C([0, 1]) : g(0) = 0, g(1) = e}.

Let us recall that the functional I:E → R of class C1 satisfies the Palais-
Smale compactness condition (PS) if every sequence (un)∞n=1 ⊂ E for which
there exists M > 0 such that: I(un) ≤ M and I ′(un) → 0 strongly in E∗ as n

goes to infinity (called a (PS) sequence), has a convergent subsequence. Here,
E∗ denotes the dual of E.

Remark 3.7. The Moutain pass theorem is a fundamental tool where it
is used to prove existence results for variational problems of a general class of
elliptic equations utilizing the topological min–max approach.

3.4. The variational formulation. Let us consider the functional

I:Dβ,−→p (RN ) → R
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given by

I(u) =
N∑

i=1

s + 1
pi

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

+ β(x)|u|pi

)
dx−

∫
RN

f(x)|u|s+1 dx,

for all u ∈ Dβ,−→p (RN ). By assumption (1.3) and Sobolev’s inequality, we can see
that the functional K defined by

K(u) =
∫

RN

f(x)|u|s+1 dx

is indeed well defined and of class C1 on the space Dβ,−→p (RN ) with

〈K ′(u);ϕ〉 = (s + 1)
∫

RN

f(x)|u|s−1uϕ dx,

for all u, ϕ ∈ Dβ,−→p (RN ). Herein, 〈 · ; · 〉 denotes the duality pairing between
Dβ,−→p (RN ) and (Dβ,−→p (RN ))∗. Therefore a weak solution of a problem (1.1) is
a critical point u of I, i.e.

〈I ′(u);ϕ〉 = 0 for all ϕ ∈ Dβ,−→p (RN ).

Herein, (Dβ,−→p (RN ))∗ is the dual of Dβ,−→p (RN ).
The following lemma is crucial to prove Theorem 2.3, it has basic topology

properties.

Lemma 3.8. Assume (1.2) and (1.3) hold, then

(a) Dβ,−→p (RN ) is compactly embedded in Lp(RN ).
(b) K ′ is a compact map from Dβ,−→p (RN ) to (Dβ,−→p (RN ))∗.

Proof. (a) Without loss more of generality, we will show that un → 0
strongly in Lp(RN ) for such sequence un ∈ Dβ,−→p (RN ) which converges weakly
to 0.

Indeed, we have ‖un‖ ≤ C for some constant C > 0. From (1.2), for a given
ε > 0 and R > 0 such that

β(x) ≥ 2
Cp

ε
for all |x| ≥ R,

we have
un ⇀ 0 weakly in W 1,p(BR),

where BR is the Ball of radius R centered at origin. By using the compact
imbedding W 1,p(BR) ↪→ Lp(BR), we get

(3.4)
∫

BR

|un|p dx ≤ ε

2
for all n ≥ n0,

for some n0 ∈ N.
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Since pmin < p < pmax, there exists 0 < α < 1 such that

1
p

=
α

pmin
+

1− α

pmax
.

Then applying the Hölder inequality gives

(3.5)
( ∫

RN

β(x)|u|p dx

)1/p

≤
( ∫

RN

β(x)|u|pmin dx

)α/pmin
( ∫

RN

β(x)|u|pmax dx

)(1−α)/pmax

since
β(x)|u|p = (β(x))αp/pmin |u|αp(β(x))(1−α)p/pmax |u|(1−α)p.

An application of Young’s inequality, we deduce from (3.5)( ∫
RN

β(x)|u|p dx

)1/p

≤α

( ∫
RN

β(x)|u|pmin dx

)1/pmin

+ (1− α)
( ∫

RN

β(x)|u|pmax dx

)1/pmax

≤
( ∫

RN

β(x)|u|pmin dx

)1/pmin

+
( ∫

RN

β(x)|u|pmax dx

)1/pmax

.

This implies

(3.6)
( ∫

RN

β(x)|u|p dx

)1/p

≤
N∑

i=1

‖β1/piu‖Lpi (RN ) +
N∑

i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lpi (RN )

= ‖u‖.

Finally we deduce from (3.6)

(3.7)
2
ε

∫
RN\BR

|un|p dx ≤
∫

RN\BR

β(x)
Cp

|un|p dx ≤ 1,

Combining (3.4) and (3.7), we get∫
RN

|un|p dx ≤ ε, for all n ≥ n0.

(b) Let un be a sequence in Dβ,−→p (RN ) which converges weakly to u0. The
compactness of K ′ follows from the estimate

〈K ′(un)−K ′(u0);ϕ〉 = J,

where

J =
∫

RN

f(x)(|un|s−1un − |u0|s−1u0)ϕ dx.

The objective is to prove that J → 0. On one hand, by choosing δ sufficiently
small such that δ ≤ (ω/p)s(1−p/p∗), we obtain p ≤ sx < p∗ with x = 1/(s/p∗+
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δ/ω) > 1. Then in view of (1.3) and Hölder inequality, we get the following
estimate

J ≤ ‖f‖Lω/(1−δ)(RN )‖|un|s−1un − |u0|s−1u0‖Lx(RN )‖ϕ‖Lp∗ (RN ).

On the other hand, since the imbedding Dβ,−→p (RN ) ↪→ Lp(RN ) is compact, it
follows from the interpolation inequality i.e.

‖u‖Lt(RN ) ≤ ‖u‖σ
Lp(RN )‖u‖

1−σ
Lp∗ (RN ), for all u ∈ Lp(RN ) ∩ Lp∗(RN ),

where 1/t = σ/p + (1− σ)/p∗, that the imbedding Dβ,−→p (RN ) ↪→ Lp1(RN ) is
compact for p ≤ p1 < p∗. Hence, we get J → 0 (strongly) as n goes to infinity,
since p ≤ sx < p∗. Therefore

K ′(un) → K ′(u0) strongly in (Dβ,−→p (RN ))∗.

as n tends to infinity. This ends the proof of Lemma 3.8. �

Remark 3.9. In Lemma 3.8 the function f is supposed to be not in L∞(RN ),
we consider more restrictions on the regularity of f for optimal values of δ.

Let us see that the assumption (1.3) gives a compact imbedding result which
is used to prove that the functional I satisfies a compactness condition, that is,
the Palais–Smale sequence obtained by Mountain Pass type argument converges
to a weak nontrivial solution.

In order to prove that a Palais–Smale sequence converges to a solution of the
problem (1.1), we need to establish the following lemma.

Lemma 3.10. Suppose pmax < s+1, let (un)∞n=0 be a Palais–Smale sequence.
Then (un)∞n=0 possesses a subsequence which converges strongly in Dβ,−→p (RN ).

Proof. Let (un)∞n=1 ∈ Dβ,−→p (RN ) be a Palais–Smale sequence. We have

(3.8) I(un) − 1
pmax

〈I ′(un);un〉

=
N∑

i=1

s + 1
pi

∫
RN

(∣∣∣∣∂un

∂xi

∣∣∣∣pi

+ β(x)|un|pi

)
dx−

∫
RN

f(x)|un|s+1 dx

− 1
pmax

N∑
i=1

(s + 1)
∫

RN

(∣∣∣∣∂un

∂xi

∣∣∣∣pi

+ β(x)|un|pi

)
dx

+
s + 1
pmax

∫
RN

f(x)|un|s+1 dx

=
N∑

i=1

(s + 1)
(

1
pi
− 1

pmax

) ∫
RN

(∣∣∣∣∂un

∂xi

∣∣∣∣pi

+ β(x)|un|pi

)
dx

+
(

s + 1
pmax

− 1
) ∫

RN

f(x)|un|s+1 dx,
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Since pmax < s + 1, we deduce from (3.8)

N∑
i=1

(s + 1)
(

1
pi
− 1

pmax

) ∫
RN

(∣∣∣∣∂un

∂xi

∣∣∣∣pi

+ β(x)|un|pi

)
dx

≤ M − 1
pmax

〈I ′(un);un〉,

where M is the constant of Palais–Smale sequence. From this inequality, we eas-
ily deduce that un is a bounded sequence in Dβ,−→p (RN ). Consequently, there ex-
ists a subsequence still denoted by un such that it converges weakly inDβ,−→p (RN ).

Now, we claim that un converges strongly in Dβ,−→p (RN ). Indeed, for any
pair integer (n, m) we have

N∑
i=1

∫
RN

(∣∣∣∣∂un

∂xi

∣∣∣∣pi−2
∂un

∂xi
−

∣∣∣∣∂um

∂xi

∣∣∣∣pi−2
∂um

∂xi

)(
∂un

∂xi
− ∂um

∂xi

)
= 〈I ′(un)− I ′(um); (un − um)〉

+
∫

RN

f(x)((|un|s−1un − |um|s−1um)(un − um)) dx.

By Palais–Smale condition, it is easy to see that 〈I ′(un)−I ′(um); (un−um)〉 → 0
as n and m tend to infinity.

From Lemma 3.8 (K ′ is compact), we have∫
RN

f(x)(|un|s−1un − |um|s−1um)(un − um) dx → 0,

as n and m tend to infinity. Finally, in virtue of the following algebraic relation

|ξ1 − ξ2|r ≤ ((|ξ1|r−2ξ1 − |ξ2|r−2ξ2)(ξ1 − ξ2))ρ/2(|ξ1|r + |ξ2|r)1−ρ/2,

with ρ = r if 1 < r ≤ 2 and ρ = 2 if 2 < r, we deduce that (un)∞n=0 is a Cauchy
sequence in Dβ,−→p (RN ), therefore it converges strongly. This concludes the proof
of Lemma 3.10. �

4. Proof of Theorem 2.3

For the proof of the existence result, we apply Mountain Pass Theorem 3.6
and local minimization to find nontrivial solutions. For that, we will study the
cases when s /∈ [pmin − 1, pmax − 1]. On the other hand, to prove our regularity
result due to Proposition 4.2 below, we construct an effective iteration scheme
to bound the maximal norm of the solution with it’s partial derivative. First, we
need the following Lemma to show that the functional I satisfies the geometric
conditions of Theorem 3.6.

Lemma 4.1. Suppose (1.2), (1.3) and pmax < s + 1, then

(a) There exist constants α and ρ, such that I(u) ≥ α for ‖u‖ = ρ.
(b) I(tu) → −∞ as t →∞.
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Proof. (a) From Theorem 3.1 and Remark 3.2, we obtain

I(u) ≥
N∑

i=1

s + 1
pi

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

+ β(x)|u|pi

)
dx− C‖f‖Lω(RN )‖u‖

s+1
Lp∗ (RN ),

which implies, for small ‖u‖, that

I(u) ≥ s + 1
pmax

‖u‖pmax − C ′‖u‖s+1
,

for some constants C,C ′ > 0. Herein, we have used that ‖u‖Lp∗ (RN ) ≤ D‖u‖
for some constant D > 0. Therefore, there exist α and ρ small enough positive
constants such that I(u) ≥ α > 0 for all ‖u‖ = ρ.

(b) From the expression

I(t1/pmaxu) =
N∑

i=1

tpi/pmax(s + 1)
pi

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

+ β(x)|u|pi

)
dx

− t(s+1)/pmax

∫
RN

f(x)|u|s+1 dx,

and the fact that pmax < s + 1, we deduce that I(t1/pmaxu) → −∞ as t →∞. �

In view of Lemmas 3.10 and 4.1, we can apply the Mountain Pass Theorem
(c.f. [2]) which garantees the existence of nontrivial weak solutions of (1.1).

To prove the existence result in the case s + 1 < pmin, we may use the local
minimization of the functional I. Indeed, by hypothesis (1.3), the functional I

is weakly lower semi continuous differentiable. Moreover, I is bounded below.
In fact, we have

I(u) ≥
N∑

i=1

s + 1
pi

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

+ β(x)|u|pi

)
dx− C‖f‖Lω(RN )‖u‖

s+1
Lp∗ (RN ),

which implies that

I(u) ≥ s + 1
pmax

‖u‖ − C ′‖f‖ω‖u‖
s+1

,

for some constants C,C ′ > 0. This implies that I is bounded below. Thus I has
a critical point u

I(u) = inf{I(v) : v ∈ Dβ,−→p (RN )},
which is solution of the problem (1.1). Note that u must be nontrivial since

I(sϕ) =
N∑

i=1

spi(s + 1)
pi

∫
RN

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

dx− ss+1

∫
RN

f(x)|ϕ|s+1 dx

for some ϕ ∈ C∞0 (RN ). Hence, since s + 1 < pmin, we get I(sϕ) < 0 for small s.
To complete the proof of Theorem 2.3, we need the following result.
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Proposition 4.2. Let u be a solution of (1.1). Then uκ|∂u/∂xi|pi ∈ L1(RN )
for all 0 < κ < ∞ and i = 1, . . . , N . Moreover, if pi = p for i = 1, . . . , N , then
uκ ∈ L1(RN ) with Np/(N − p) ≤ κ < ∞.

Proof. In this proof, we may choose u ≥ 0 since we can show that argument
developed here is true for u+ and u− where u+ = max(u, 0) and u− = min(u, 0).
We set uM (x) = min{u(x),M}, M ∈ N. Observe that (uM )j ∈ Dβ,−→p (RN ) for
any real j ≥ 1. We have

(4.1)
N∑

i=1

∫
RN

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

∂ϕ

∂xi
+ β(x)|u|pi−2uϕ

)
dx =

∫
RN

f(x)|u|s−1uϕ dx

for all ϕ ∈ Dβ,−→p (RN ). Inserting ϕ = uj
M into (4.1), gives

(4.2)
N∑

i=1

j

∫
RN

uj−1
M

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

dx ≤
∫

RN

f(x)|u|s+j dx,

for any j ≥ 1. First, we set j0 = 1 + p∗δ/ω and t0 = p∗δ/ω. Using Hölder’s
inequality with (1− δ)/ω + (s + j0)/p∗ = 1, taking j = j0 and sending M →∞
in (4.2), we get by Fatou’s lemma

(4.3) ut0

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

∈ L1(RN ), i = 1, . . . , N.

Second, we set t1 = p∗ δ
ω + pip

∗ δ
ω and j1 = 1 + p∗δ/ω + pip

∗δ/ω = j0 + pip
∗δ/ω

for i = 1, . . . , N . Observe that (s + j1)/p∗ + ((1− δ)/ω − piδ/ω) = 1 and f ∈
Lω/(1−δ(1+pi))(RN ) for δ small enough and i = 1, . . . , N . Repeating the same
argument as (4.3) to deduce

ut1

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

∈ L1(RN ), i = 1, . . . , N.

Iterating this process gives

utm

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

∈ L1(RN ), i = 1, . . . , N,

where tm = p∗(δ/ω)(1 + pi + . . . + pi
m) for i = 1, . . . , N . Hence, it follows

uκ

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi

∈ L1(RN ), i = 1, . . . , N,

for all 0 < κ < ∞.
Now we prove the second part of Proposition 4.2. Let pi = p for i = 1, . . . , N .

Since

(uM )j−1

∣∣∣∣∂uM

∂xi

∣∣∣∣p =
(

p

j + p− 1

)p∣∣∣∣∂(uM )(j+p−1)/p

∂xi

∣∣∣∣p,
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we deduce from Sobolev’s inequality W 1,p(RN ) ↪→ Lp∗(RN ) and (4.2)

(4.4)
( ∫

RN

(uM )N(j+p−1)/(N−p) dx

)(N−p)/N

≤ C

∫
RN

f(x)|u|s+j dx,

for some constant C > 0.
We set j0 = 1 + p∗δ/ω, τ0 = N(j0 + p− 1)/(N − p) = N(p + p∗δ/ω)/(N − p)

and we let M →∞ in (4.4). The result is

(4.5) uτ0 ∈ L1(RN ),

where we have used j = j0 in (4.4) and (1 − δ)/ω + (s + j0)/p∗ = 1. Next, we
set

j1 = 1 + p∗
δ

ω
+

N

N − p
p∗

δ

ω
= j0 +

N

N − p
p∗

δ

ω
.

Observe that
s + j1

p∗
+

(
1− δ

ω
− N

N − p

δ

ω

)
= 1

and f ∈ Lω/(1−δ(1+N/(N−p))(RN ) for δ small enough. Taking j = j1 in (4.4) and
repeating the same argument as (4.5) to deduce

uτ1 ∈ L1(RN ) where τ1 =
N

N − p
(j1 + p− 1).

By iteration, we get

uτm ∈ L1(RN ) where τm =
N

N − p
(jm + p− 1),

with

jm = 1 + p∗
δ

ω
+

N

N − p
p∗

δ

ω
+ . . . +

(
N

N − p

)m

p∗
δ

ω
.

Hence, it follows that

uκ ∈ L1(RN ) for all
Np

N − p
≤ κ < ∞. �

This concludes the proof of Theorem 2.3.

Remark 4.3. We mention that a similar result for (1.1) can be obtained for
the boundary value problem

−
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)
+

N∑
i=1

β(x)|u|pi−2u = f(x)|u|s−1u in Ω

where Ω is an exterior domain with C1,η boundary, 0 < η < 1.
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5. Proof of Theorem 2.7

For any R > 0, let BR = {x ∈ RN : |x| < R}. In what follows, it is always
understood that ε takes values in a sequence tending to zero. Let (gε)0<ε<1 ⊂
C∞

c (Ω) be a sequence of smooth approximations of g such that

{
|gε| ≤

1
ε

and |gε| ≤ |g|;

gε → g in L1
loc(RN ) as ε → 0.

From classical results, see, e.g. [20], [18], [15], we can produce sequences

(uε)0<ε≤1 ⊂ W 1,−→p
0 (B1/ε) ∩

N⋂
i=1

Lri(B1/ε),

satisfying the weak formulation

(5.1)
N∑

i=1

∫
B1/ε

(∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi

∂ϕ

∂xi
+ β(x)|uε|ri−1uεϕ

)
dx

=
∫

B1/ε

f(x)|uε|s−1uεϕ +
∫

B1/ε

gεϕ dx,

for all ϕ ∈ W 1,−→p
0 (B1/ε) ∩ L∞(B1/ε), where W 1,−→p

0 (B1/ε) = {u ∈ W 1,−→p (B1/ε) :
u = 0 on ∂B1/ε}.

Let us indicate the main steps of the proof of Theorem 2.7: First, we prove
ε-uniform local a priori estimates for uε, which imply almost every convergence
of uε. Second, we prove strong L1

loc convergence of the nonlinear terms in (5.1).
Finally, we complete the proof of Theorem 2.7 by passing to the limit in (5.1) as
ε → 0.

Later we will use C, C1, C2, etc. to denote constants that are independent
of ε.

5.1. A priori estimates. In this subsection we set R := 1/ε and let ρ be
any number such that 0 < ρ < R/2.

Proposition 5.1. Assume that (1.2), (1.6) hold and the exponents p1, . . . ,

pN and r1, . . . , rN are restricted as in (1.7). Then, there exist a constant C, not
depending on ε, such that

‖uε‖Lri (Bρ) ≤ C, i = 1, . . . , N,(5.2)

‖f(x)|uε|s−1uε‖L1(Bρ) ≤ C.(5.3)
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Moreover, for every 1 ≤ qi < N(p − 1)pi/(p(N − 1)) there exists a constant C,
depending on Bρ, N , p1, . . . , pN , q1, . . . , qN , ‖g‖L1(B2ρ) but not ε, such that∥∥∥∥∂uε

∂xi

∥∥∥∥
Lqi (Bρ′ )

≤ C, i = 1, . . . , N,(5.4)

‖uε‖Lq(Bρ′ )
≤ C,

1
q

:=
1
N

N∑
i=1

1
qi

,(5.5)

for any ρ′ such that 0 < ρ′ < ρ.

Proof. The proof borrows ideas from [4], [7]. We introduce for γ > 1 the
function

(5.6) ϕγ(σ) =

 (γ − 1)
∫ σ

0

1
(1 + t)γ

dt = 1− 1
(1 + σ)γ−1

for σ ≥ 0,

−ϕγ(−σ) for σ < 0,

and a smooth cut-off function θ = θ(x) that is supported in the ball B2ρ such
that

0 ≤ θ ≤ 1 (recall 0 < ρ < R/2),

θ(x) = 1 for |x| ≤ ρ and |∇θ| ≤ 2/ρ.

Note that |ϕγ | ≤ 1 and, by assuming ρ ≥ 2, there holds |∇θ| ≤ 1.
Let α > 1. We take ϕ = ϕγ(uε)θα in (5.1), we get

(5.7)
∫

BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα dx +
∫

BR

N∑
i=1

β(x)|uε|ri−1uεϕγ(uε)θα dx

+ α

∫
BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi

∂θ

∂xi
ϕγ(uε)θα−1 dx

=
∫

BR

f(x)|uε|s−1uεϕγ(uε)θα dx +
∫

BR

gεϕγ(uε)θα dx.

Now we choose γ and α so that

1 < γ <
ri

pi − 1
, α >

piri

ri − γ(pi − 1)
, for i = 1, . . . , N .

We use the definitions of θ and ϕγ along with (5.7). The result is

(5.8)
∫

BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα dx +
∫

BR

N∑
i=1

β(x)|uε|ri−1uεϕγ(uε)θα dx

≤
∫

BR

f(x)|uε|s−1uεϕγ(uε)θα dx

+
∫

B2ρ

|g| dx + C1

∫
BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi−1

θα−1 dx.
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Using Young’s inequality, we estimate as follows

(5.9)
∣∣∣∣∂uε

∂xi

∣∣∣∣pi−1

θα−1

=
∣∣∣∣∂uε

∂xi

∣∣∣∣pi−1

(ϕ′γ(uε))(pi−1)/piθα(pi−1)/pi(ϕ′γ(uε))(1−pi)/piθ(α−pi)/pi

≤ 1
2C1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα + C2
θα−pi

ϕ′γ(uε)pi−1

=
1

2C1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα + C3(1 + |uε|)γ(pi−1)θα−pi

=
1

2C1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα + C4|uε|γ(pi−1)θα−pi + C12θ
α−pi .

Similary, we can estimate the last term in (5.9):

C4|uε|γ(pi−1)θα−pi = C4|uε|γ(pi−1)θαγ(pi−1)/riθα(ri−γ(pi−1))/ri−pi

≤ ϕγ(1)
4

β0|uε|riθα + C5θ
α−piri/(ri−γ(pi−1)).

By another application of Young’s inequality, we deduce

(5.10)
∫

BR

f(x)|uε|s−1uεϕγ(uε)θα dx ≤ C(δ)
∫

BR

(f(x))w/(1−δ)ϕγ(uε)θα dx

+ C(δ)
∫

BR

|uε|σ/(s+δ(σ−s))ϕγ(uε)θα dx,

where w is defined in (1.6). Now we fixed arbitrary k = 1, . . . , N . Observe that

|t|s−1tϕγ(t) ≥ |t|sϕγ(1), for t ≥ 1 and a.e. x ∈ RN ,
σ

s + δ(σ − s)
= pmin < rk, k = 1, . . . , N.

Using Young’s inequality and (1.7), we deduce from (5.10)

(5.11)
∫

BR

f(x)|uε|s−1uεϕγ(uε)θα dx ≤ C6 +
β0

4

∫
BR

|uε|rkϕγ(uε)θα dx

≤ C6 +
β0

4

∫
BR

N∑
i=1

|uε|riϕγ(uε)θα dx.

Summarizing from (5.8) we get

(5.12)
1
2

∫
BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ(uε)θα dx +
ϕγ(1)

2
β0

∫
BR

N∑
i=1

|uε|riθα dx

≤
∫

B2ρ

|g| dx + C7meas(B2ρ).
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We then exploit the definitions of ϕγ and θ to obtain from (5.12) that

(5.13)
∫

Bρ

|uε|ri dx ≤ C8, i = 1, . . . , N,

which proves (5.2) and, via (5.11), also (5.3). Moreover, it follows that

(5.14)
N∑

i=1

∫
Bρ

|∂uε/∂xi|pi

(1 + |uε|)γ
dx ≤ C9.

We let now 0 < ρ′ < ρ. We cover Bρ′ with a finite number of cubes well contained
in Bρ with edges parallel to the coordinate axes, and let Q be any of them. From
(5.13) and (5.14) we deduce

(5.15)
∫

Q

|uε|ri dx ≤ C10, i = 1, . . . , N,

and

(5.16)
N∑

i=1

∫
Q

|∂uε/∂xi|pi

(1 + |uε|)γ
dx ≤ C11.

Finally, we remark that the estimates (5.4) and (5.5) are direct consequences of
(5.15), (5.16) and Lemma 3.4. �

5.2. Strong convergence. In this section, we let

(5.17) qmin := min
1≤l≤N

qi,

where q1, . . . , qN are restricted as in Proposition 5.1. We will denote Bρ′ by Bρ.
Given any ρ > 0, let ε be such that 1/ε > 2ρ. In view of Proposition 5.1, uε

is uniformly (in ε) bounded in W 1,qmin(Bρ). Without loss of generality, we can
therefore assume that

(5.18)


uε → u strongly in Lqmin(Bρ)

and a.e. in Bρ,

f(x)|uε|s−1uε → f(x)|u|s−1u a.e. in Bρ,

β(x)|uε|ri−2uε → β(x)|u|ri−2u a.e. in Bρ,

for i = 1, . . . , N . By a standard diagonal process, we can in fact assume that

uε → u in L1
loc(RN ) and a.e. in RN ,

uε → u weakly in W 1,qmin
loc (RN ),

and

f(x)|uε|s−1uε → f(x)|u|s−1u a.e. in RN ,

β(x)|uε|ri−1uε → β(x)|u|ri−1u a.e. in RN ,
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for i = 1, . . . , N . Now, we are interested in the strong convergence in L1(Bρ) of
the sequences (f(x)|uε|s−1uε)0<ε≤1,

( ∑N
i=1 β(x)|uε|ri−2uε

)
0<ε≤1

to respectively

f(x)|u|s−1u,
∑N

i=1 β(x)|u|ri−2u for i = 1, . . . , N .

Proposition 5.2. Assume (1.2) and (1.6) hold and that the corresponding
exponents p1, . . . , pN and r1, . . . , rN are restricted as in (1.7). Then the sequences( ∑N

i=1 β(x)|uε|ri−1uε

)
0<ε≤1

and (f(x)|uε|s−1uε)0<ε≤1 converge to respectively∑N
i=1 β(x)|u|ri−1u and f(x)|u|s−1u almost everywhere in RN and strongly in

L1(Bρ) for any ρ > 0.

Proof. By exploiting (1.6), Young inequality and the convergence proof
just given, we deduce easily that f(x)|uε|s−1uε converges to f(x)|u|s−1u almost
everywhere in RN and strongly in L1(Bρ) for any ρ > 0. In view of (5.18)
and a theorem of Vitali (see, e.g. [11]), it is sufficient to establish the equi-
integrability of

( ∑N
i=1 β(x)|uε|ri−1uε

)
0<ε≤1

on Bρ. To this end, we follow [4],
[7] and introduce for γ, l > 1 the test function ϕγ,l defined by

(5.19) ϕγ,l(t) =


ϕγ(t− l) if t ≥ l,

0 if |t| < l,

−ϕγ,l(−t) if t ≤ −l,

where ϕγ is defined in (5.6). Let α > 1. Inserting ϕ = ϕγ,l(uε)θα into (5.1) and
proceeding more or less as we did up to (5.12), we deduce

(5.20)
1
2

∫
BR

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi

ϕ′γ,l(uε)θα dx +
1
2

∫
BR

N∑
i=1

β(x)|uε|ri−1uεϕγ,l(uε)θα dx

≤
∫

B2ρ∩{|uε|≥l}
|g| dx + C1meas(B2ρ ∩ {|uε| ≥ l}).

Next, since g ∈ L1(B2ρ) and uε is bounded in L1(B2ρ) uniformly with respect
to ε,

(5.21)
∫

B2ρ∩{|uε|≥l}
|g| dx + meas(B2ρ ∩ {|uε| ≥ l}) → 0, as l →∞.

We finally obtain from (5.19)–(5.21)∫
Bρ∩{|uε|≥l+1}

∣∣∣∣ N∑
i=1

β(x)|uε|ri−1uε

∣∣∣∣ dx

≤ C

∫
BR

N∑
i=1

β(x)|uε|ri−1uεϕγ,l(uε)θα dx
l→∞−→ 0 (uniformly in ε).

This implies the desired equi-integrability of
( ∑N

i=1 β(x)|uε|ri−1uε

)
0<ε≤1

. �
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Proposition 5.3. Assume (1.2) and (1.6) hold and that the corresponding
exponents p1, . . . , pN and r1, . . . , rN are restricted as in (1.7). Then the sequence( N∑

i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi

)
0<ε≤1

converges to
N∑

i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi
a.e. in RN

and strongly in L1(Bρ) for any ρ > 0.

Proof. The proof of Proposition 5.3 is more or less similar to the proof
found in [4], but we conclude it for the convenience of the reader. It suffices to
show that (∇uε)0<ε≤1 is a Cauchy sequence in measure on Bρ, i.e. for any µ > 0,

meas({x ∈ Bρ : |(∇uε′ −∇uε)(x)| ≥ µ}) → 0, as ε, ε′ → 0.

For any γ, λ > 0, we have

{x ∈ Bρ : |(∇uε′ −∇uε)(x)| ≥ µ} ⊂ L1 ∪ L2 ∪ L3 ∪ L4,

where L1 = {x ∈ Bρ : |∇uε(x)| ≥ γ}, L2 = {x ∈ Bρ : |∇uε′(x)| ≥ γ},

L3 = {x ∈ Bρ : |(uε − uε′)(x)| ≥ λ},

and

L4 = {x ∈ Bρ : |(∇uε −∇uε′)(x)| ≥ µ, |∇uε(x)| ≤ γ,

|∇uε′(x)| ≤ γ, |(uε − uε′)(x)| ≤ λ}.

In view of Proposition 5.1, by choosing γ large we can make meas(L1) and
meas(L2) arbitrarily small. Since (uε)0<ε≤1 is a Cauchy sequence in L1(Bρ),
then, for λ > 0 fixed, meas(L3) tends to 0 as ε, ε′ → 0. It remains to control
meas(L4). Since the set of (ξ1, ξ2) such that |ξ1| ≤ γ, |ξ2| ≤ γ, and |ξ1 − ξ2| ≤ µ

is a compact set and ξ 7→ A(x, ξ) is continuous for almost every x ∈ Bρ, the
quantity

N∑
i=1

[|ξ1|pi−2ξ1 − |ξ2|pi−2ξ2][ξ1 − ξ2]

reaches its minimum value on this compact set, and we will denote it by q(x).
It is not hard to verify that q(x) > 0 almost everywhere in Bρ. Consequently,
for any η > 0 there exists η′ > 0 such that

(5.22)
∫

L4

q(x) dx < η′ ⇒ meas(L4) ≤ η.
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Hence, it is sufficient to show that for any given β′ > 0, one can produce a small
enough λ > 0 such that

(5.23)
∫

L4

q(x) dx < β′.

For any λ > 0, define Tλ(z) = min(λ, max(z,−λ)). Note that Tλ is a Lipschitz
continuous function satisfying 0 ≤ |Tλ(z)| ≤ λ. By the definitions of q(x) and
L4, we have

(5.24)
∫

L4

q(x) dx ≤
∫

L4

N∑
i=1

[∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi
−

∣∣∣∣∂uε′

∂xi

∣∣∣∣pi−2
∂uε′

∂xi

]
×

[
∂uε

∂xi
− ∂uε′

∂xi

]
× 1{|uε−uε′ |≤λ} dx

=
∫

L4

N∑
i=1

[∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi
−

∣∣∣∣∂uε′

∂xi

∣∣∣∣pi−2
∂uε′

∂xi

]
∂Tλ(uε − uε′)

∂xi

dx.

Let θ be the cut-off function used in the proof of Proposition 5.1 and let qmin

be the number defined in (5.17). Thanks to Proposition 5.1, we can find a q ∈
[pmin− 1, qmin) such that ‖∂uε/∂xi‖Lq(B2ρ) is bounded independently of ε for all
i = 1, . . . , N . Specifying Tλ(uε − uε′)θ as test function in the weak formulations
for uε and uε′ and then subtracting the results, we find

(5.25)
∫

Bρ

N∑
i=1

[∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi
−

∣∣∣∣∂uε′

∂xi

∣∣∣∣pi−2
∂uε′

∂xi

]
∂Tλ(uε − uε′)

∂xi

dx

≤ 2λ

[
C1 + C2

∫
B2ρ

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi−1

dx + C3‖uε‖Ls(B2ρ) + ‖g‖L1(B2ρ)

]
≤ 2λ

[
C1 + C4

∫
B2ρ

∣∣∣∣∂uε

∂xi

∣∣∣∣q dx + C3‖uε‖Ls(B2ρ) + ‖g‖L1(B2ρ)

]
λ→0−→ 0

(uniformly in ε and ε′). For λ small enough, we have from (5.24) and (5.25)
that (5.23) holds, and, by (5.22), also that meas(L4) ≤ β. Thus, we have the
convergence of (∇uε)0<ε≤1 to ∇u in measure. Then we can finally conclude that
along a subsequence

N∑
i=1

∣∣∣∣∂uε

∂xi

∣∣∣∣pi−2
∂uε

∂xi
→

N∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi
strongly in L1(Bρ). �

In view of the previous results, we can indeed send ε → 0 in the weak formu-
lation (5.1) with ϕ ∈ C1

c (RN ), thereby obtaining the existence of a distributional
solution (in the sense of Definition 2.5) to (1.5). The L∞loc-bound for uε is proved
by replacing q∗ in the proof Lemma 3.4 by any number r ∈ [1,∞) and using (3.1).



150 M. Bendahmane — S. El Manouni

Remark 5.4. The existence result obtained in the present section also ap-
plies to the following Dirichlet problem on a open bounded domain in RN

−
N∑

i=1

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣pi−2
∂u

∂xi

)

+
N∑

i=1

β(x)|u|ri−1u = f(x)|u|s−1u + g(x) in Ω,

u = 0 on ∂Ω.

where β, f satisfy the conditions stated in (1.2) and (1.6).
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715–734.

[14] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasi-

linear equations of parabolic type (1967), Amer. Math. Soc., Providence, R.I..

[15] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equa-

tions, Academic Press, New York, 1968.

[16] Lao Sen Yu, Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer.

Math. Soc., vol. 115, 1992, pp. 1037–1045.



Anisotropic Elliptic Equations in RN 151

[17] F. Li and H. Zhao, Anisotropic parabolic equations with measure data, J. Partial Dif-

ferential Equations 14 (2001), 21–30.
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