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EXISTENCE AND NONEXISTENCE
OF POSITIVE PERIODIC SOLUTIONS

TO A DIFFERENTIAL INCLUSION

Yuqiang Feng — Ping Tong

Abstract. In this paper, the existence and nonexistence of positive peri-

odic solutions for a second-order differential inclusion are considered. Some

existence and nonexistence results are established by the use of Bohnen-
blust–Karlin’s fixed-point theorem for multivalued operators and Sobolev

constant.

1. Introduction

Differential inclusions arise in many situations including differential variatio-
nal inequalities, projected dynamical systems, dynamic Coulomb friction prob-
lems and fuzzy set arithmetic.

For example, the basic rule for Coulomb friction is that the friction force has
magnitude N in the direction opposite to the direction of slip, where N denotes
the normal force and N is a constant (the friction coefficient). However, if the slip
is zero, the friction force can be any force in the correct plane with magnitude
smaller than or equal to N. Thus, writing the friction force as a function of
position and velocity leads to a set-valued function.

Differential inclusions have been widely investigated because of theirs impor-
tance in these fields. In the past several decades, there arose many beautiful
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methods and results concerning the solvability of differential inclusions. For
example, in [4], M. Benchohora and S.K. Ntouyas discussed the solvability of
first order differential inclusions with periodic boundary conditions. Recently
in [7], Y. Chang and J.J. Nieto extended the study to the fractional differential
inclusions with boundary conditions. By using Bohnenblust–Karlin’s fixed point
theorem, existence theorem is obtained. While in [9], G. Grammel considered
the boundary value problems for semi-continuous delayed differential inclusions
on Riemannian manifolds. B.C. Dhage proved some existence theorems for hy-
perbolic differential inclusions in Banach algebras in [8]; N.S. Papageorgiou and
V. Staicu established the upper-lower solutions method for nonlinear second or-
der differential inclusions in [12]. All these results show the existence of solutions
for differential inclusions. For details, see [1]–[4], [7]–[10], [12], [13] and references
therein.

In this paper, we aim to give some existence and nonexistence results of
positive solutions for a differential inclusion as follows

(P)

{
u′′(t) + a(t)u(t) ∈ F (t, u(t)),

u(0) = u(T ), u′(0) = u′(T ),

where F : [0, T ]×R → 2R\∅ is a multi-valued mapping. Sobolev constant and fixed
point theorem for multi-valued operators are crucial in our proof. Differential
inclusions(equations) with periodical boundary conditions are of importance in
dynamic system study, see [6] and references therein.

In Section 2, some basic definitions and facts from multi-valued analysis and
differential equations are introduced. Then the existence of positive solutions are
established by the use of Sobolev constant and fixed point theorem in Section 3.
The nonexistence results are presented in the last section.

2. Preliminaries

Let (X, ‖ · ‖) be a Banach space. A multi-valued mapping H:X → 2X \ ∅ is
convex (closed) valued if H(x) is convex (closed) for each x ∈ X. H is bounded
on bounded sets if H(B) =

⋃
x∈B

H(x) is bounded in X for any bounded set B

of X.
H is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set

H(x0) is nonempty closed subset of X, and if for each open subset B of X con-
taining H(x0), there exists an open neighbourhood N of x0 such that H(N)⊂B.
H is said to be completely continuous if H(B) is relatively compact for every
bounded subset B of X.

If the multi-valued mapping H is completely continuous with nonempty com-
pact values, then H is u.s.c. if and only if H has a closed graph, i.e. xn → x,
yn → y, yn ∈ H(xn) imply y ∈ H(x).
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In the following, BCC(X) denotes the set of all nonempty bounded, closed
and convex subset ofX. H has a fixed point if there is x ∈ X such that x ∈ H(x).
For more details on multi-valued mapping see the books of Aubin [2] and Hu
and Papageorgious [10].

The following lemmas are crucial in this paper.

Lemma 2.1 ([5]). Let X be a Banach space, D a nonempty subset of X,
which is bounded, closed and convex. Suppose H:D → BCC(X) such that
H(D) ⊂ D and H(D) is compact. Then H has a fixed point.

Lemma 2.2 ([11]). Let H: [0, T ]×R → BCC(R), (t, x) → H(t, x) is measur-
able with respect to t for each x ∈ R, u.s.c. with respect to x for almost every
t ∈ [0, T ], and for each fixed x ∈ R the set

SH,x := {h(t) ∈ L1[0, T ] : h(t) ∈ H(t, x) for a.e. t ∈ [0, T ]}

is nonempty. Let Γ be a linear continuous operator from L1[0, T ] to C[0, T ], then
the operator

Γ ◦ SH :C[0, T ] → BCC(C[0, T ]), y → (Γ ◦ SH)(y) = Γ(SH,y)

is a closed graph operator in C[0, T ]× C[0, T ].

Definition 2.3. A function u ∈ C[0, T ] is called a solution of problem (P)
if there exists a function v ∈ L1[0, T ] such that v(t) ∈ F (t, u(t)) for almost every
t ∈ [0, 1] and

u(t) =
∫ 1

0

G(t, s)v(s) ds,

where G(t, s) denotes the Green function associated with problem (Q). In addi-
tion, if u(t) > 0, t ∈ [0, T ], u(t) is called a positive solution.

Throughout this paper, we assume the following condition holds:

(C) The Green function G(t, s), associated with the following problem

(Q)

{
u′′(t) + a(t)u(t) = h(t),

u(0) = u(T ), u′(0) = u′(T ),

has a definite sign on [0, T ]2.

In other words, the (strict) maximum principle or the (strict) anti-maximum
principle holds for (Q). In this case, the solution of problem (Q) is given by:

u(t) = (Lh)(t) =
∫ T

0

G(t, s)h(s) ds.
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Some classes of potentials a(t) for (C) to hold have been found recently
in [13]. When a ∈ Λ+

⋃
Λ−, where

Λ+ = {α ∈ L1(0, T ) : α � 0, ‖α‖p ≤ K(2p∗), 1 ≤ p ≤ +∞},
Λ− = {α ∈ L1(0, T ) : α ≺ 0},

G(t, s) is positive for a ∈ Λ+, G(t, s) < 0 for a ∈ Λ−.
Given a ∈ Lp[0, T ], a � 0 means a(t) ≥ 0 for almost every t ∈ [0, T ] and it

is positive in a set of positive measure. Similarly, a ≺ 0 implies −a � 0. ‖a‖p

denotes the usual Lp norm over [0, T ] for any given component p ∈ [1,+∞], the
conjugate exponent of p is p∗ = p/(1− p) if 1 < p < +∞ and p∗ = 1 if p = ∞.
K(p) denotes the best Sobolev constant in the following inequality:

C‖u‖2
p ≤ ‖u′‖2

2

for all u ∈ H0
1 (0, T ). The explicit formula of K(p) is:

K(p) =


2π

pT 1−2/p

(
2

2 + p

)1−2/p( Γ(1/p)
Γ(1/2 + 1/p)

)2

, 1 ≤ p < +∞,

4
T

p = +∞.

3. Existence of positive periodic solutions

In this section, the existence results of positive solutions to problem (P) are
established.

We give the following assumptions:

(A1) a ∈ Λ+.
(A2) F : [0, T ] × R → BCC(R+); (t, x) → F (t, x) is measurable with respect

to t for each x ∈ R, u.s.c. with respect to x for almost every t ∈ [0, T ].
(A3) For each l > 0, there exists a function ml ∈ L1([0, T ],R+) such that

‖F (t, y)‖ = sup{|v| : v(t) ∈ F (t, y)} ≤ ml(t)

for each (t, y) ∈ [0, T ]× R with |y| ≤ l and

inf
l>0

1
l

∫ T

0

ml(t) dt = λ <∞.

(A4) λB < 1, where B = max0≤t, s≤T G(t, s) and G(t, s) is the Green func-
tion associated with problem (Q).

(A5) For almost every t ∈ [0, T ],

〈F (t, 0)〉 = inf{|v| : v(t) ∈ F (t, 0)} > 0.

The main results in this paper are presented as follows:
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Theorem 3.1. Assume conditions (A1)–(A5) hold, then problem (P) has at
least one positive solution on [0, T ].

Proof. Let ‖u‖ denote the maximum norm for u ∈ C[0, T ], then (C[0, T ],
‖ · ‖) is Banach space. Let C+[0, T ] = {u ∈ C[0, T ] | u(t) ≥ 0, t ∈ [0, T ]}.
Since a ∈ Λ+, the Green function G(t, s) associated with problem (Q) is positive
on [0, T ]2.

Now, let us transform the differential inclusion problem (P) into a fixed point
problem. By (A2) and (A3), for each fixed x ∈ R the set

SF,x := {f(t) ∈ L1[0, T ] : f(t) ∈ F (t, x) for a.e. t ∈ [0, T ]}

is nonempty. Define a multi-valued operator N :C[0, T ] → 2C[0,T ] \ ∅ as follows:

N(u) =
{
h ∈ C[0, T ]

∣∣∣∣ h(t) =
∫ T

0

G(t, s)v(s) ds, v ∈ SF,u

}
,

where v ∈ SF,u = {w ∈ L1[0, T ] | w(t) ∈ F (t, u(t)) for a.e. t ∈ [0, T ]}. Then the
fixed-point of N is a solution of problem (P).

The existence of fixed point is verified by several steps:

Step 1. For every u ∈ C[0, T ], the multi-valued operator N(u) is convex.
In fact, let h1, h2 ∈ N(u), then there exist v1, v2 ∈ SF,u such that for arbi-

trary t ∈ [0, T ],

h1(t) =
∫ T

0

G(t, s)v1(s) ds, h2(t) =
∫ T

0

G(t, s)v2(s) ds.

For each α ∈ (0, 1),

αh1(t) + (1− α)h2(t) =
∫ T

0

G(t, s)(αv1(s) + (1− α)v2(s)) ds,

Since F has convex values, SF,u is convex, αv1 + (1 − α)v2 ∈ SF,u and αh1 +
(1− α)h2 ∈ N(u).

Step 2. There exists a positive number l such that N maps Bl into Bl, where
B = {x ∈ C[0, T ] | ‖x‖ ≤ l}.

Otherwise, suppose for each l > 0, there exists a function ul ∈ Bl, hl ∈
N(ul), such that ‖hl‖ > l. Then there exists vl ∈ SF,ul

such that h1(t) =∫ T

0
G(t, s)v1(s) ds, then

l < ‖hl‖ = max
t∈[0,T ]

|hl(t)| = max
t∈[0,T ]

∣∣∣∣ ∫ T

0

G(t, s)vl(s) ds
∣∣∣∣

≤ max
t∈[0,T ]

∫ T

0

G(t, s)|vl(s)| ds ≤ B

∫ T

0

ml(s) ds.

Hence, we have
B

l

∫ T

0

ml(s) ds > 1 for every l > 0,
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which implies λB ≥ 1. This contradicts assumption (A4). Then there exists
a positive number l such that N maps Bl into Bl.

Step 3. N(Bl) is compact.
In fact, by step 2, we know that N(Bl) is bounded. In what follows, we only

need to show that N(Bl) is equi-continuous.
Let u ∈ Bl, h ∈ N(u), then there exists v ∈ SF,u such that

h(t) =
∫ T

0

G(t, s)v(s) ds.

For any t1, t2 ∈ [0, T ], t1 < t2,

|h(t1)− h(t2)| =
∣∣∣∣ ∫ T

0

G(t1, s)v(s) ds−
∫ T

0

G(t2, s)v(s) ds
∣∣∣∣

≤
∫ T

0

|G(t1, s)−G(t2, s)|ml(s) ds.

Since G(t, s) is equi-continuous on [0, T ]2 and ml∈L[0, T ], then for every ε>0,
there exists δ > 0, such that |t1 − t2| < δ implies |h(t1) − h(t2)| < ε for any
t1, t2 ∈ [0, T ]. Hence, N(Bl) is equi-continuous.

Step 4. N has closed graph.
Let un → u, hn ∈ N(un) and hn → h. In what follows, we need to show that

h ∈ N(u).
Since hn ∈ N(un), there exists vn ∈ SF,un

such that

hn(t) =
∫ T

0

G(t, s)vn(s) ds, n = 1, 2, . . . , for t ∈ [0, T ].

We should verify that there exists v ∈ SF,u such that h(t) =
∫ T

0
G(t, s)v(s) ds,

n = 1, 2, . . . , for t ∈ [0, T ]. Define a linear operator Γ:L[0, T ] → C[0, T ] as
follows:

(Γv)(t) =
∫ T

0

G(t, s)v(s) ds, for all v ∈ L[0, T ]

Then Γ is continuous and, by Lemma 2.2,

Γ ◦ SF :C[0, T ] → BCC(C[0, T ]), u→ (Γ ◦ SF )(u) = Γ(SF,u)

is a closed graph operator in C[0, T ]× C[0, T ].
Note that hn ∈ Γ(SF,un

), Γ◦SF is a closed graph operator and hn → h, there
exists v ∈ SF,u such that h(t) =

∫ T

0
G(t, s)v(s) ds, n = 1, 2, . . . for t ∈ [0, T ].

Therefore, N is a compact multi-valued mapping and u.s.c. with convex
closed values. As a consequence of Lemma 2.1, we know that N has a fixed
point y which is a solution of the problem (P). Since F : [0, T ]×R → BCC(R+),
y(t) ≥ 0 for every t ∈ [0, T ].

Step 5. y is positive solution.
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In fact, let v ∈ L1[0, T ], v(t) ∈ F (t, y(t)) satisfies

y(t) =
∫ T

0

G(t, s)v(s) ds.

Since v(t) ≥ 0, and if v(t) = 0 almost everywhere on [0, T ], then

y(t) =
∫ T

0

G(t, s)v(s) ds = 0, a.e. on [0, T ].

Hence, d(0, f(t, 0)) = 0 almost everywhere on [0, T ], which contradicts assump-
tion (A5).

Therefore, there exists a subset D of [0, T ] with positive measure such that
v(t) > 0 for t ∈ D. Thanks to the positivity of G(t, s), it is obvious that
y(t) =

∫ T

0
G(t, s)v(s) ds > 0 on [0, T ]. �

In what follows, some concrete cases are discussed to describe the existence
and properties of the function ml.

Corollary 3.2 (Sub-linear Growth). Suppose (A1), (A2), (A5) and the
following condition hold:

(H1) There exist functions φ(t), ψ(t) ∈ L1([0, T ],R+), 0< δ < 1 such that

‖F (t, y)‖ ≤ φ(t)|y|δ + ψ(t), for (t, y) ∈ [0, T ]× R.

Then problem (P) has at least one positive solution on [0, T ].

Proof. In this case, let ml(t) = φ(t)lδ + ψ(t). Then

λ = inf
l>0

1
l

∫ T

0

ml(t) dt = 0 and λB = 0,

where λ is defined in (A3). Hence an application of Theorem 3.1 asserts the
conclusion. �

Corollary 3.3 (Quadratic Controlled Growth). Suppose (A1), (A2), (A5)
and the following condition hold:

(H2) There exist functions φ(t), ψ(t) ∈ L1([0, T ],R+) such that

‖F (t, y)‖ ≤ φ(t)|y|2 + ψ(t), for (t, y) ∈ [0, T ]× R.

Then problem (P) has at least one positive solution on [0, T ] provided

4‖φ‖L1‖ψ‖L1B
2 < 1.

Proof. In this case, let ml(t) = φ(t)l2 + ψ(t). Then

λ = inf
l>0

1
l

∫ T

0

ml(t) dt = 2
√
‖φ‖L1‖ψ‖L1 .
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Theorem 3.1 claims that problem (P) has at least one positive solution provided

2B
√
‖φ‖L1‖ψ‖L1 < 1. �

Corollary 3.4 (Linear Growth). Suppose (A1), (A2), (A5) and the fol-
lowing condition hold:

(H3) There exist functions φ(t), ψ(t) ∈ L1([0, T ],R+), 0 < δ < 1 such that

‖F (t, y)‖ ≤ φ(t)|y|+ ψ(t), for (t, y) ∈ [0, T ]× R.

Then (P) has at least one positive solution on [0, T ] provided ‖φ‖L1 < 1/B.

Proof. In this case, let ml(t) = φ(t)l + ψ(t). Then

λ = inf
l>0

1
l

∫ T

0

ml(t) dt = ‖φ‖L1 . �

Analogously, we give the following hypothesizes:

(A1’) a ∈ Λ−.
(A2’) F : [0, T ] × R → BCC(R−); (t, x) → F (t, x) is measurable with respect

to t for each x ∈ R, u.s.c. with respect to x for almost every t ∈ [0, T ].
(A4’) λB < 1, where B = − min

0≤t, s≤T
G(t, s) and G(t, s) is the Green function

associated with the problem (Q).

Theorem 3.5. Assume conditions (A1’), (A2’), (A3), (A4’), (A5) hold, then
problem (P) has at least one positive solution on [0, T ].

Proof. Due to (A2’) and (A3), we know that:
(a) for each fixed x ∈ R the set

SF,x := {f(t) ∈ L1[0, T ] : f(t) ∈ F (t, x) for a.e. t ∈ [0, T ]}

is nonempty,
(b) the multi-valued operator

N(u) =
{
h ∈ C[0, T ]

∣∣∣∣ h(t) =
∫ T

0

G(t, s)v(s) ds, v ∈ Sf,u

}
maps C+[0, T ] to C+[0, T ], where

v ∈ SF,u = {w ∈ L1[0, T ] | w(t) ∈ F (t, u(t)) for a.e. t ∈ [0, T ]}.

Since the rest of the proof follows the same manner as Theorem 3.1, we omit it.�
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4. Nonexistence of positive periodic solutions

Given the following assumptions:

(A6) For each l > 0, there exists a function ml ∈ L([0, T ],R+) such that

‖F (t, y)‖ = sup{|v| : v(t) ∈ F (t, y)} ≤ ml(t)

for each (t, y) ∈ [0, T ]× R with |y| ≤ l and

sup
l>0

1
l

∫ T

0

ml(t) dt = ω <∞.

(A7) For each l > 0, there exists a function cl ∈ L([0, T ],R+) such that

〈F (t, y)〉 = inf{|v| : v(t) ∈ F (t, y)} ≥ cl(t)

for t ∈ [0, T ], bl/B ≤ |y| ≤ l and

inf
l>0

1
l

∫ T

0

cl(t) dt = ∆ <∞,

where B = max
0≤t,s≤T

G(t, s), b = min
0≤t,s≤T

G(t, s) and G(t, s) is the Green

function associated with problem (Q).

The nonexistence results are as follows:

Theorem 4.1. Assume conditions (A1), (A2), (A6) hold, then problem (P)
has no positive solution on [0, T ] provided ω < b/B2, where B = max

0≤t,s≤T
G(t, s),

b = min
0≤t,s≤T

G(t, s) and G(t, s) is the Green function associated with problem (Q).

Proof. Suppose that y is a positive solution to problem (P). Let l = ‖y‖,
then l > 0. There exists v ∈ SF,y, v(t) ≥ 0 such that

y(t) =
∫ T

0

G(t, s)v(s) ds.

Since B = max
0≤t,s≤T

G(t, s), b = min
0≤t,s≤T

G(t, s),

y(t) =
∫ T

0

G(t, s)v(s) ds =
1
B

∫ T

0

BG(t, s)v(s) ds

≥ b

B

∫ T

0

Bv(s) ds ≥ b

B
max

t∈[0,T ]

∫ T

0

G(t, s)v(s) ds =
b

B
‖y‖.

Hence we have

b

B
l ≤ y(t) =

∫ T

0

G(t, s)v(s) ds ≤
∫ T

0

G(t, s)|ml(s)| ds ≤ B

∫ T

0

ml(s) ds.

Then
1
l

∫ T

0

ml(t) dt ≥
b

B2
,

which contradicts the assumption ω < b/B2. �
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Corollary 4.2. Suppose (A1), (A2) and the following condition hold:

(H4) There exists a function φ(t) ∈ L1([0, T ],R+) such that

‖F (t, y)‖ ≤ φ(t)|y|, for (t, y) ∈ [0, T ]× R.

Then problem (P) has no positive solution provided ‖φ‖L1 < b/B2.

Proof. In this case, let ml(t) = φ(t)l, then

ω = sup
l>0

1
l

∫ T

0

ml(t) dt = ‖φ‖L1 .

When ‖φ‖L1 < b/B2, Theorem 4.1 asserts that problem (P) has no positive
solution. �

Theorem 4.3. Assume conditions (A1), (A2), (A7) hold, then problem (P)
has no positive solution on [0, T ] provided ∆ > 1/b.

Proof. Suppose that y is a positive solution to problem (P). Let l = ‖y‖.
By the proof of Theorem 4.1, we have bl/B ≤ y(t) ≤ l for t ∈ [0, 1]. There exists
v ∈ SF,y, v(t) ≥ 0 such that

y(t) =
∫ T

0

G(t, s)v(s) ds.

Then

l ≥ y(t) =
∫ T

0

G(t, s)v(s) ds ≥
∫ T

0

G(t, s)cl(s) ds ≥ b

∫ T

0

cl(s) ds.

Hence we have
1
l

∫ T

0

cl(t) dt ≤
1
b
,

which contradicts the assumption ∆ > 1/b. �

Corollary 4.4. Suppose (A1), (A2) and the following condition hold:

(H4) There exists a function φ(t) ∈ L1([0, T ],R+) such that

〈F (t, y)〉 ≥ eky, t ∈ [0, T ],
bl

B
≤ |y| ≤ l.

Then problem (P) has no positive solution provided k > B/b2eT .

Proof. In this case, let cl(t) = ekbl/B , then

〈F (t, y)〉 ≥ cl(t), t ∈ [0, T ],
bl

B
≤ |y| ≤ l.

∆ = inf
l>0

1
l

∫ T

0

cl(t) dt =
kbTe

B
.

When kbTe/B > 1/b, i.e. k > B/b2eT , Theorem 4.2 asserts that problem (P)
has no positive solution. �
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