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INFINITE MANY POSITIVE SOLUTIONS
FOR NONLINEAR FIRST-ORDER BVPS

WITH INTEGRAL BOUNDARY CONDITIONS
ON TIME SCALES

Yongkun Li — Lijuan Sun

Abstract. In this paper, we investigate the existence of infinite many
positive solutions for the nonlinear first-order BVP with integral boundary

conditions

8><
>:

x∆(t) + p(t)xσ(t) = f(t, xσ(t)), t ∈ (0, T )T,

x(0)− βxσ(T ) = α

Z σ(T )

0
xσ(s)∆g(s),

where xσ = x ◦ σ, f : [0, T ]T × R+ → R+ is continuous, p is regressive and

rd-continuous, α, β ≥ 0, g: [0, T ]T → R is a nondecreasing function. By
using the fixed-point index theory and a new fixed point theorem in a cone,

we provide sufficient conditions for the existence of infinite many positive

solutions to the above boundary value problem on time scale T.

1. Introduction

In recent years, boundary value problems with integral boundary conditions
constitute a very interesting and important class of problems and have attracted
the attention of Khan [7], Gallardo [4], Karakostas and Tsamatos [6], Lomtatidze
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and Malaguti [16] and the references therein. Also, more and more attentions
have paid on discussing the solutions for boundary value problems on time scales
and have obtained many good results of the existence of solutions for two-, three-
and multi-point boundary value problems. To mention a few, we refer the reader
to some recent contributions [1], [3], [5], [8], [9], [12]–[15], [17], [21]–[27] and
references therein. For example:

In [22], [3], the authors studied the following first-order BVP on time scales:

(1.1)

{
x∆(t) = f(xσ(t)), t ∈ [0, T ]T,

x(0) = βxσ(T ),

where xσ = x ◦ σ. By using the twin-fixed-point theorem due to Avery and
Henderson, Sun [22] investigated the existence of at least two positive solutions
for BVP (1.1) when 0 < β < 1. Cabada [3] developed the method of lower and
upper solutions coupled with the monotone iterative techniques to obtain the
existence of extremal solutions for BVP (1.1) when β = 1.

Sun and Li [23] studied the following BVP on time scales:

(1.2)

{
x∆(t) + p(t)xσ(t) = g(t, xσ(t)), t ∈ [0, T ]T,

x(0) = xσ(T ).

By applying novel inequalities and the Schaefer fixed point theorem, the existence
of at least one solution for BVP (1.2) is obtained.

In [24], Ge and Tian studied the following first-order three-point BVP on
time scales:

(1.3)

{
x∆(t) + p(t)xσ(t) = f(t, xσ(t)), t ∈ [0, T ]T,

x(0)− ax(ξ) = βxσ(T ),

where α, β ≥ 0 with α/ep(ξ, 0)+β/ep(σ(T ), 0) < 1. By using several fixed point
theorems, the existence of at least one positive solution and multiple positive
solutions for BVP (1.3) are obtained.

In [1], Anderson interested in the following first-order (n + 2)-point BVP on
time scales:

(1.4)

 y∆(t) + p(t)yσ(t) = λf(t, yσ(t)), t ∈ (0, T )T,

y(0) = yσ(T ) +
n∑

i=1

γiy(ti).

In the study, conditions for the existence of at least one positive solution for
BVP (1.4) is discussed by using the Guo–Krasnosel’skĭı fixed point theorem.

To the best of our knowledge, up to the present, few papers have been pub-
lished on the existence of solutions of BVPs with integral boundary conditions
on time scales (see [11]).
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In this paper, we are concerned with the following nonlinear first-order BVP
with integral boundary conditions on time scale T:

(1.5)


x∆(t) + p(t)xσ(t) = f(t, xσ(t)), t ∈ (0, T )T,

x(0)− βxσ(T ) = α

∫ σ(T )

0

xσ(s)∆g(s),

where f : [0, T ]T×R+ → R+ is continuous, p: [0, T ]T×R+ → R+ is regressive and
rd-continuous, α, β ≥ 0, g: [0, T ]T → R is an increasing function. The integral
in (1.5) is a Riemann–Stieltjes one on time scales, which is introduced in [18].

For convenience, we introduce the following notation:

Γ =
[
1− α

∫ σ(T )

0

ep(0, σ(s))∆g(s)− βep(0, σ(T ))
]−1

, γ =
m

M
,

m = Γβe2
p(0, σ(T )),

M = Γep(σ(T ), 0)
(

1 + βep(0, σ(T )) + α

∫ σ(T )

0

g∆(s)ep(0, σ(s))∆s

)
.

Throughout this paper, we always assume that Γ > 0.
The main purpose of this paper is to establish some criteria for the existence

of infinite many solutions for BVP (1.5) by using the fixed-point index theory
and a new fixed-point theorem in a cone.

Remark 1.1. Let {ti}n
i=1(n ∈ N) be a finite sequence of distinct points in

(0, T )T satisfying t1 < . . . < tn, tn+1 = T . In system (1.5), we set

g(s) =
n∑

i=1

aiχ(s− ti),

where a1, . . . , an are nonnegative constants, and χ(s) is a characteristic function,
that is,

χ(s) =

{
1 for s ≥ 0,

0 for s < 0,

which implies that g(0) = 0, g(T ) =
n∑

i=1

ai and

g(s) =
n∑

i=1

aiχ(s− ti) =


0 for s ∈ [0, t1)T,

l∑
i=1

ai for s ∈ [tl, tl+1)T, l = 1, . . . , n.

By some basic concepts and time-scale calculus formulae in [2], one can easily
obtain that ∫ T

0

xσ(s)∆g(s) =
n∑

i=1

aix(ti).
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Then system (1.5) reduces to the following (n + 2)-point BVP x∆(t) + p(t)xσ(t) = f(t, xσ(t)), t ∈ (0, T )T,

x(0)− βxσ(T ) = α
n∑

i=1

aix(ti).

Obviously, BVP (1.1)–(1.4) are special cases of BVP (1.5). Therefore, the BVPs
with integral boundary conditions on time scales include two-, three-, multi-point
and nonlocal boundary value problems as special cases.

The paper is organized as follows. In Section 2, some basic definitions and
lemmas on time scales are introduced. In Section 3, some useful lemmas and
theorems are established. In Section 4, by using the fixed point index theory and
a new fixed-point theorem in cones, some sufficient conditions for the existence
of infinite many positive solutions for BVP (1.5) are obtained.

2. Preliminaries

In this section, we shall first recall some basic definitions and lemmas which
are used in what follows.

Definition 2.1 ([2]). A time scale T is an arbitrary nonempty closed subset
of the real set R with the topology and ordering inherited from R. The forward
and backward jump operators σ, ρ: T → T and the graininess µ: T → R+ are
defined, respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, µ(t) := σ(t)− t.

In this definition we put inf ∅ = sup T (i.e. σ(t) = t if T has a maximum t) and
sup ∅ = inf T (i.e. ρ(t) = t if T has a minimum t). The point t ∈ T is called
left-dense, left-scattered, right-dense or right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t or σ(t) > t, respectively. Points that are right-dense and left-dense at
the same time are called dense. If T has a left-scattered maximum m1, defined
Tk = T− {m1}; otherwise, set Tk = T. If T has a right-scattered minimum m2,
defined Tk = T− {m2}; otherwise, set Tk = T.

Definition 2.2 ([2]). A function f is rd-continuous provided it is continuous
at each right-dense point in T and has a left-sided limit at each left-dense point
in T. The set of rd-continuous functions f will be denoted by Crd(T). A function
g is left-dense continuous (i.e. ld-continuous), if g is continuous at each left-dense
point in T and its right-sided limit exists (finite) at each right-dense point in T.
The set of left-dense continuous functions g will be denoted by Cld(T).

Definition 2.3 ([2]). A function p: T → R is said to be regressive provided
1 + µ(t)p(t) 6= 0 for all t ∈ Tk, where µ(t) = σ(t) − t is the graininess function.
The set of all regressive rd-continuous functions f : T → R is denoted by R while
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the set R+ is given by {f ∈ R: 1 + µ(t)f(t) > 0} for all t ∈ T. Let p ∈ R. The
exponential function is defined by

ep(t, s) = exp
( ∫ t

s

ξµ(τ)(p(τ))∆τ

)
,

where ξh(z) is the so-called cylinder transformation.

Definition 2.4 ([2]). If F∆(t) = f(t), then we define the delta integral by∫ t

a

f(s)∆s = F (t)− F (a).

Lemma 2.5 ([2]). Let p, q ∈ R. Then

(a) ep(t, s) = 1/ep(s, t);
(b) ep(t, s)ep(s, r) = ep(t, r);
(c) e∆

p ( · , s) = pep( · , s).

Lemma 2.6 ([2]). Let a ∈ Tk, b ∈ T and assume that f : T × Tk → R is
continuous at (t, t), where t ∈ Tk with t > a. Also assume that f∆(t, · ) is
rd-continuous on [a, σ(t)]. Suppose that for each ε > 0 there exists a neighbour-
hood U of t, independent of τ ∈ [a, σ(t)], such that

|f(σ(t), τ)− f(s, τ)− f∆(t, τ)(σ(t)− s)| ≤ ε|σ(t)− s|, for all s ∈ U,

where f∆ denotes the derivative of f with respect to the first variable. Then:

(a) g(t) :=
∫ t

a

f(t, τ)∆τ implies g∆(t) =
∫ t

a

f∆(t, τ)∆τ + f(σ(t), t);

(b) h(t) :=
∫ b

t

f(t, τ)∆τ implies h∆(t) =
∫ b

t

f∆(t, τ)∆τ − f(σ(t), t).

Lemma 2.7 ([2]). If a, b ∈ T, f, g ∈ Crd, then∫ b

a

f(σ(t))g∆(t)∆t = [fg]ba −
∫ b

a

f∆(t)g(t)∆t.

Lemma 2.8 ([2]). If f, g: T → R are delta differentiable at t ∈ Tk, then

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

Lemma 2.9 ([18]). Let a, b, c ∈ T with a < b < c. If f is bounded on [a, c]T
and g is monotonically increasing on [a, c]T, then∫ c

a

f∆g =
∫ b

a

f∆g +
∫ c

b

f∆g.

The set of all functions that are ∆-integrable with respect to g in the Rie-
mann–Stietjes sense will be denoted by R∆(g, I).
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Lemma 2.10 ([18]). Let I = [a, b]T, a, b ∈ T. Then, the condition f ∈
R∆(g, I) is equivalent to each one of the following items:

(a) f is a monotonic function on I;
(b) f is a continuous function on I;
(c) f is regulated on I;
(d) f is a bounded and has a finite number of discontinuity points on I.

Lemma 2.11 ([18]). Let I = [a, b]T, a, b ∈ T. Suppose that g is an increasing
function such that g∆ is continuous on (a, b)T and fσ is a real bounded function
on I. Then fσ ∈ R∆(g, I) if and only if fσg∆ ∈ R∆(g, I). Moreover,∫ b

a

fσ(t)∆g(t) =
∫ b

a

fσ(t)g∆(t)∆t.

Lemma 2.12 ([18]). Let I = [a, b]T, a, b ∈ T, suppose that g is an increasing
function such that g∆ is continuous on (a, b)T and fσ is a real bounded function
on I. Then ∫ b

a

fσ∆g = [fg]ba −
∫ b

a

g∆f.

3. Foundational lemmas

In this section, we first introduce some background definitions, the fixed-
point index theorem and a new fixed point theorem in a cone. Then present
basic lemmas that are very crucial in the proof of the main results.

Definition 3.1. Let (E, ‖ · ‖) be a real Banach space. A nonempty, closed,
convex set P ⊂ E is said to be a cone provided the following are satisfied:

(a) if y ∈ P and λ ≥ 0, then λy ∈ P ;
(b) if y ∈ P and −y ∈ P , then y = 0.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y

if and only if y − x ∈ P .

Theorem 3.2 ([10]). Let E be a Banach space and P ⊂ E be a cone in E.
Let r > 0 and define Ωr = {x ∈ P : ‖x‖ < r}. Assume that T :P

⋂
Ωr → P is

completely continuous operator such that Tx 6= x for x ∈ ∂Ω.

(a) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Ωr, then i(T,Ωr, P ) = 1.
(b) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Ωr, then i(T,Ωr, P ) = 0.

Here i(T,Ωr, P ) is the index of operator T with respect to Ωr in P , which can be
found in [10].
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Theorem 3.3 ([19]). Let P be a cone in a Banach space E. Let α, β and γ

be three increasing, nonnegative and continuous functionals on P satisfying, for
some c and M > 0,

γ(x) ≤ β(x) ≤ α(x), ‖x‖ ≤ Mγ(x) for all x ∈ P (γ, c),

where P (γ, c) = {x ∈ P : γ(x) < c} (P (β, b) and P (α, a) are similarly defined).
Suppose that there exists a completely continuous operator T :P (γ, c) → P and
0 < a < b < c such that:

(a) γ(Tx) < c, for all x ∈ ∂P (γ, c);
(b) β(Tx) > b, for all x ∈ ∂P (β, b);
(c) P (α, a) 6= ∅, and α(Tx) < a, for all x ∈ P (α, a).

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

0 ≤ α(x1) < a < α(x2), β(x2) < b < β(x3), γ(x3) < c.

Let E = C([0, σ(T )]T, R) with the norm ‖x‖ = sup
t∈[0,σ(T )]T

|x(t)|. Then it is

a Banach space.
For h ∈ E, we consider the following linear BVP:

x∆(t) + p(t)xσ(t) = h(t), t ∈ (0, T )T,

x(0)− βxσ(T ) = α

∫ σ(T )

0

xσ(s)∆g(s).

Lemma 3.4. Suppose h ∈ E, then x is a solution of

x(t) =
∫ σ(T )

0

G(t, s)h(s)∆s, t ∈ [0, σ(T )]T,

where

G(t, s) =


Γep(s, t)

[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
, 0 ≤ s ≤ t ≤ σ(T ),

Γep(s, t)
[
βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

]
,

0 ≤ t ≤ s ≤ σ(T ),

if and only if x is a solution of BVP (3.1).

Proof. Assume that x(t) is a solution of (3.1). By the first equation in
(3.1), we have

[x(t)ep(t, 0)]∆ = ep(t, 0)h(t).

Integrating the above equation from 0 to t leads to

x(t)ep(t, 0) = x(0) +
∫ t

0

ep(s, 0)h(s)∆s,
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and so

x(t) = ep(0, t)
[
x(0) +

∫ t

0

ep(s, 0)h(s)∆s

]
.

By the boundary condition in BVP (3.1), one has

x(0) = Γ
{

α

∫ σ(T )

0

∆g(s)
∫ σ(s)

0

ep(r, σ(s))h(r)∆r+β

∫ σ(T )

0

ep(s, σ(T ))h(s)∆s

}
.

Then

x(t) = ep(0, t)Γ
{

β

∫ σ(T )

0

ep(s, σ(T ))h(s)∆s + α

∫ σ(T )

0

∫ σ(T )

0

g∆(r)ep(s, σ(r))

− α

∫ σ(T )

0

∫ σ(s)

0

g∆(r)ep(s, σ(r))∆rh(s)∆s

}
+

∫ t

0

ep(s, t)h(s)∆s

=
∫ σ(T )

0

G(t, s)h(s)∆s.

This means that if x is a solution of (3.1) then x satisfies (3.2).
On the other hand, if x satisfies (3.2), we have

x(t) =
∫ σ(T )

0

G(t, s)h(s)∆s, t ∈ [0, σ(T )]T.

Then

x(t)ep(t, 0) =
∫ σ(T )

0

H(t, s)h(s)∆s, t ∈ [0, σ(T )]T,

where

H(t, s) =


Γep(s, 0)

[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
, 0 ≤ s ≤ t ≤ σ(T ),

Γep(s, 0)
[
βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

]
,

0 ≤ t ≤ s ≤ σ(T ).

Notice that[ ∫ σ(T )

0

H(t, s)h(s)∆s

]∆

= Γ
[ ∫ t

0

ep(s, 0)
(

1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

)
h(s)∆s

]∆

+ Γ
[ ∫ σ(T )

t

ep(s, 0)
(

βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

)
h(s)∆s

]∆

= Γ
[
ep(t, 0)

(
1− α

∫ σ(t)

0

g∆(r)ep(0, σ(r))∆r

)
h(t)

]
− Γ

[
ep(t, 0)

(
βep(0, σ(T )) + α

∫ σ(T )

σ(t)

g∆(r)ep(0, σ(r))∆r

)
h(t)

]
= ep(t, 0)h(t).
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Hence, we get from (3.3) that

(x(t)ep(t, 0))∆ = h(t)ep(t, 0),

that is
x∆(t) + p(t)xσ(t) = h(t), t ∈ (0, T )T.

Finally, we can obtain from (3.2) that

x(0)− βxσ(T )

=
∫ σ(T )

0

G(0, s)h(s)∆s− β

∫ σ(T )

0

G(σ(T ), s)h(s)∆s

=
∫ t

0

Γep(s, 0)
[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
h(s)∆s

+
∫ σ(T )

t

Γep(s, 0)
[
βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

]
h(s)∆s

− β

∫ t

0

Γep(s, σ(T ))
[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
h(s)∆s

− β

{∫ σ(T )

t

Γep(s, σ(T ))
[
βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

]
h(s)∆s

}
= α

∫ σ(T )

0

g∆(s)
[ ∫ σ(T )

0

G(xσ(s), r)h(r)∆r

]
∆s

= α

∫ σ(T )

0

g∆(s)xσ(s)∆s = α

∫ σ(T )

0

xσ(s)∆g(s).

So the proof of this lemma is complete. �

Lemma 3.5. Let G(t, s) be defined in Lemma 3.1, then:

(a) G(t, s) ≥ 0 for all t, s ∈ [0, σ(T )]T;
(b) m ≤ G(t, s) ≤ M for all t, s ∈ [0, σ(T )]T;
(c) G(t, s) ≥ γ sup

(t,s)∈[0,σ(T )]T×[0,σ(T )]T

G(t, s) for all t, s ∈ [0, σ(T )]T.

Proof. Since[
1− α

∫ σ(T )

0

ep(0, σ(s))∆g(s)− βep(0, σ(T ))
]−1

> 0,

then it is clear that (1) holds. Now we will show that (b) holds.

G(t, s) =


Γep(s, t)

[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
, 0 ≤ s ≤ t ≤ σ(T ),

Γep(s, t)
[
βep(0, σ(T )) + α

∫ σ(T )

σ(s)

g∆(r)ep(0, σ(r))∆r

]
,

0 ≤ t ≤ s ≤ σ(T ),
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≥


Γep(s, 0)ep(0, t)

[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r

]
,

0 ≤ s ≤ t ≤ σ(T ),

Γep(s, 0)ep(0, t)βep(0, σ(T )), 0 ≤ t ≤ s ≤ σ(T ),

≥

 Γep(0, σ(T ))
[
1− α

∫ σ(s)

0

g∆(r)ep(0, σ(r))∆r], 0 ≤ s ≤ t ≤ σ(T ),

Γβe2
p(0, σ(T )), 0 ≤ t ≤ s ≤ σ(T ),

≥Γβe2
p(0, σ(T )) = m.

Hence, the left-hand side of (b) holds. And it is easy to show that the right-hand
side of (b) also holds.

Now we will show that (c) holds. For all t, s ∈ [0, σ(T )]T, it follows that

G(t, s) ≥ m =
m

M
×M ≥ m

M
sup

(t,s)∈[0,σ(T )]T×[0,σ(T )]T

G(t, s),

which implies that (c) holds. This completes the proof of Lemma 3.2. �

Define a cone P ⊂ E by

P = {x ∈ E : x(t) ≥ 0, x(t) ≥ γ‖x‖, t ∈ [0, σ(T )]T}

and an operator A:P → P by

(Ax)(t) =
∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s,

where G is defined the same as that in Lemma 3.1.

Lemma 3.6. If x ∈ P , then Ax ∈ P .

Proof. Clearly, (Ax)(t) ≥ 0, for all t ∈ [0, σ(T )]T. On the other hand, we
have

(Ax)(t) =
∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s

≥m

∫ σ(T )

0

f(s, xσ(s))∆s = γM

∫ σ(T )

0

f(s, xσ(s))∆s

≥ γ sup
(t,s)∈[0,σ(T )]T×[0,σ(T )]T

G(t, s)
∫ σ(T )

0

f(s, xσ(s))∆s

≥ γ sup
t∈[0,σ(T )]T

∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s = γ‖Ax‖.

So it is easy to see Ax ∈ P . The proof is complete. �

Clearly, the fixed points of the operator A are the solutions of BVP (1.5).
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Lemma 3.7. A:P → P is completely continuous.

Proof. Firstly, we will show that A is continuous. Let xn, x ∈ A and
lim

n→∞
xn = x. For t ∈ [0, σ(T )]T, we have

|(Axn)(t)− (Ax)(t)| ≤
∫ σ(T )

0

G(t, s)|f(s, xσ
n(s))− f(s, xσ(s))|∆s

≤M

∫ σ(T )

0

|f(s, xσ
n(s))− f(s, xσ(s))|∆s.

Since f : [0, T ]T × R+ → R+ is continuous, we have ‖Axn −Ax‖ → 0 as n →∞.
That is, A is continuous.

Secondly, we will show that A is compact. Let Ω ⊂ P be a bounded set,
that is, there exists an L > 0 such that for any x ∈ Ω, ‖x(t)‖ ≤ L, for all
t ∈ [0, σ(T )]T. Then, for x ∈ Ω, we have

|(Ax)(t)| ≤
∣∣∣∣ ∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s

∣∣∣∣ ≤ Mσ(T ) sup
s∈[0,σ(T )]T,‖x‖<L

f(s, xσ(s)),

which shows that A(Ω) is bounded. Finally, we will show that A is equi-
continuous. Let x ∈ Ω, t1, t2 ∈ [0, σ(T )]T. It follows that

|(Ax)(t2) − (Ax)(t1)|

=
1

ep(t1, 0)

{
Γ
[
α

∫ σ(T )

0

∫ σ(s)

0

ep(s, σ(r))f(s, xσ(s))∆s∆g(s)

+ β

∫ σ(T )

0

ep(s, σ(T ))f(s, xσ(s))∆s

]
+

∫ t2

0

ep(s, 0)f(s, xσ(s))∆s

}
−

∣∣∣∣ 1
ep(t1, 0)

{
Γ
[
α

∫ σ(T )

0

∫ σ(s)

0

ep(s, σ(r))f(s, xσ(s))∆s∆g(s)

+ β

∫ σ(T )

0

ep(s, σ(T ))f(s, xσ(s))∆s

]
+

∫ t1

0

ep(s, 0)f(s, xσ(s))∆s

}∣∣∣∣
≤

∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣Γ[
α

∫ σ(T )

0

∫ σ(s)

0

ep(s, σ(r))f(s, xσ(s))∆s∆g(s)

+ β

∫ σ(T )

0

ep(s, σ(T ))f(s, xσ(s))∆s

]
+

∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣ ∫ t2

0

ep(s, 0)f(s, xσ(s))∆s

+
1

ep(t1, 0)

∣∣∣∣ ∫ t2

t1

ep(s, 0)f(s, xσ(s))∆s

∣∣∣∣
≤

∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣Γ[
α

∫ σ(T )

0

∫ σ(s)

0

ep(s, σ(r))f(s, xσ(s))∆s∆g(s)
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+ β

∫ σ(T )

0

ep(s, σ(T ))f(s, xσ(s))∆s

]
+

∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣Γ ∫ t2

0

ep(s, 0)f(s, xσ(s))∆s

+
|t2 − t1|
ep(t1, 0)

ep(t2, 0) sup
s∈[0,σ(T )]T,‖x‖≤L

f(s, x)

=
∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣M1 +
∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣M2

+ |t2 − t1|ep(t2, t1)M3

=
∣∣∣∣ 1
ep(t2, 0)

− 1
ep(t1, 0)

∣∣∣∣(M1 + M2) + |t2 − t1|ep(t2, t1)M3

≤ 1
ep(t1, 0)ep(t2, 0)

sup
t∈[0,σ(T )]T

pep(t, 0)|t2 − t1|(M1 + M2)

+ |t2 − t1|ep(t2, t1)M3,

which shows that |(Ax)(t2)−(Ax)(t1)| tends uniformly to 0 as |t2−t1| → 0. Using
the Mean Value Theorem [2] and Arzela–Ascoli Theorem [20], so the operator
A:P → P is completely continuous. This completes the proof. �

4. Main results

The first main result of this paper is the following Theorem 4.1, which pro-
vides sufficient conditions for BVP (1.5) to have infinite many positive solutions.

The following conditions will be used in later statements.

(H1) f ∈ C([0, T ]T ×R+, R+) and f(t, x) is bounded on [0, σ(T )]T when x is
bounded.

(H2) There exists a sequence {ti}∞i=1 such that 1 < ti < ti+1 < T/2, lim
i→∞

ti =

t0 < T/2 and t0 ∈ [0, σ(T )]T.

Theorem 4.1. Assume that (H1)–(H2) hold. Let {θk}∞k=1 be such that θk ∈
(tk, tk+1), k = 1, 2, . . . Let {rk}∞k=1 and {Rk}∞k=1 be positive numbers such that

Rk−1 < γrk < rk <
rk

mσ(T )
< Rk, k = 2, 3, . . .

Furthermore, for each k, we assume that f satisfies:

(H3) f(t, x) ≥ rk/(mσ(T )) for all 1/θk ≤ t ≤ θk, γrk ≤ x ≤ rk;
(H4) f(t, x) ≤ Rk/Mσ(T ) for all 0 ≤ t ≤ T , 0 ≤ x ≤ Rk.

Then BVP (1.5) has infinite many solutions {x[k]}∞k=1 such that

rk ≤ ‖x[k]‖ ≤ Rk, k = 1, 2, . . .
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Proof. Since 1 < tk < θk < tk+1 ≤ t0 < T , k = 1, 2, . . . , then for for all
k ∈ N+ and x ∈ P , by the definition of cone we have

x(t) ≥ γ‖x‖, t ∈
[

1
θk

, θk

]
.

Consider the sequence {Ω1,k}∞k=1 and {Ω2,k}∞k=1 of open subsets of E defined by

Ω1,k = {x ∈ P : ‖x‖ < rk}, k = 1, 2, . . . ,

Ω2,k = {x ∈ P : ‖x‖ < Rk}, k = 1, 2, . . .

For a fixed k and x ∈ ∂Ω1,k, from (4.1) we have

rk = ‖x‖ = sup
t∈[0,σ(T )]

|x(t)| ≥ sup
t∈[1/θk,θk]

x(t) ≥ γ‖x‖ = γrk.

By (H3), we have

f(t, x) ≥ rk

mσ(T )
for all t ∈

[
1
θk

, θk

]
and

‖A(x)(t)‖ =
∣∣∣∣ ∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s

∣∣∣∣
≥m

∫ σ(T )

0

f(s, xσ(s))∆s ≥ mσ(T ) · rk

mσ(T )
= rk = ‖x‖.

Thus, an application of Theorem 3.1 implies that i(A,Ω1,k, P ) = 0.
On the other hand, let x ∈ ∂Ω2,k, we have

x(t) ≤ sup
t∈[0,σ(T )]

|x(t)| = ‖x‖ = Rk.

By (H4), we have

f(t, x) ≤ Rk

Mσ(T )
for all t ∈ [0, T ].

So

‖A(x)(t)‖ =
∣∣∣∣ ∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s

∣∣∣∣
≤M

∫ σ(T )

0

f(s, xσ(s))∆s ≤ Mσ(T ) · Rk

Mσ(T )
= Rk = ‖x‖.

Thus Theorem 3.1 implies that i(A,Ω1,k, P ) = 1. Hence, since rk < Rk for
k ∈ N+, it follows from additivity of the fixed-point index that

i(A,Ω2,k \ Ω1,k, P ) = 1, k ∈ N+.



318 Y. Li — L. Sun

Thus A has a fixed point x[k] in Ω2,k \ Ω1,k such that rk ≤ ‖xk‖ ≤ Rk with
Ax[k] = xk, i.e.

x[k](t) =
∫ σ(T )

0

G(t, s)f(s, xσ(s))∆s, t ∈ [0, σ(T )]T.

Since k ∈ N is arbitrary, x[k] are positive solutions of BVP (1.5). The proof is
complete. �

Our next result uses Theorem 3.2. Let rk ∈ (1/θk, θk) where θk ∈ (tk, tk+1),
k = 1, 2 . . .

We define the following nonnegative increasing continuous functions αk, βk

and µk by

αk(x) = max
t∈[1/θk,θk]T

x(t) = x(θk),

βk(x) = min
t∈[rk,θk]T

x(t) = x(rk),

µk(x) = max
t∈[1/θk,rk]T

x(t) = x(rk).

It is obvious that, for each x ∈ P , µk(x) ≤ βk(x) ≤ αk(x). In addition, for each
x ∈ P , µk(x) = x(rk) ≥ γ‖x‖. Thus

‖x‖ ≤ µk(x)
γ

, for all x ∈ P.

In the next result, we let ρk = Mθk, ηk = mrk.

Theorem 4.2. Suppose that conditions (H1) and (H2) hold. Let {θk}∞k=1

be such that θk ∈ (tk, tk+1), k = 1, 2 . . . Let {ak}∞k=1, {bk}∞k=1 and {ck}∞k=1 be
positive numbers such that

ck−1 < ak < γbk < bk <
ck

γ
, ρkbk < ηkck, k = 2, 3 . . .

Furthermore for each natural number k we assume that f satisfies:

(H5) f(t, x) < ck/ρk for all 1/θk ≤ t ≤ θk, 0 ≤ x ≤ ck/γ;
(H6) f(t, x) ≥ bk/ηk for all 0 ≤ t < T , bk ≤ x ≤ bk/γ;
(H7) f(t, x) < ak/ρk for all 0 ≤ t < T , 0 ≤ x ≤ ak/γ.

Then BVP (1.5) has three infinite families of solutions {x[1k]}∞k=1, {x[2k]}∞k=1,
{x[3k]}∞k=1, for k = 1, 2 . . . satisfying:

0 ≤ α(x[1k]) ≤ ak ≤ α(x[2k]), β(x[2k]) ≤ bk ≤ β(x[3k]), µ(x[3k]) < ck.

Proof. We define the completely continuous operator A by (3.4). It is easy
to check that A:P (µk, ck) → P for k ∈ N+.

We shall show that all the conditions of Theorem 3.2 are satisfied. To make
use of condition (a) of Theorem 3.2, we choose x ∈ ∂P (µk, ck). Then µk(x) =
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max
1/θk≤t≤rk

x(t) = x(rk) = ck, this implies that 0 ≤ x(t) ≤ ck, for t ∈ [0, rk]. Recall

that ‖x‖ ≤ µk(x)/γ = ck/γ. So we have 0 ≤ x(t) ≤ ck/γ, t ∈ [0, σ(T )]T. Then
assumption (H5) implies f(t, x) < ck/ρk, t ∈ [1/θk, θk]. Therefore

µk(Ax) = max
1/θk≤t≤rk

(Ax)(t) = (Ax)(rk) =
∫ rk

0

G(t, s)f(s, xσ(s))∆s

≤
∫ θk

0

G(t, s)f(s, xσ(s))∆s ≤ θk ·M · ck

ρk
= ck.

Hence condition (a) is satisfied.
Secondly, we shall show that condition (b) of Theorem 3.2 is fulfilled. For

this end, we select x ∈ ∂P (βk, bk), then βk(x) = min
rk≤t≤θk

x(t) = x(rk) = bk, this

means x(t) ≥ bk, for t ∈ [rk, θk]T. So we have ‖x‖ ≥ bk, t ∈ [rk, θk]T. Noting
that ‖x‖ ≤ µk/γ ≤ βk/γ = bk/γ, we have bk ≤ x(t) ≤ bk/γ, t ∈ [rk, θk]T.

By (H6), we have f(t, x) > bk/ηk, t ∈ [rk, θk]T. Therefore

βk(Ax) = min
rk≤t≤θk

(Ax)(t) = (Ax)(rk)

=
∫ rk

0

G(t, s)f(s, xσ(s))∆s ≥ bk

ηk
· rk ·m = bk,

and so the condition (b) is satisfied.
Finally, we verify that condition (c) of Theorem 3.2 is also met. We note

that x0(t) ≡ ak/2 is an element of P (αk, ak) and αk(x0) = ak/2 < ak. So
P (αk, ak) 6= ∅. Now let x ∈ ∂P (αk, ak), then αk(x) = max

t∈[1/θk,θk]
x(t) = ak. This

implies that 0 ≤ x(t) ≤ ak, for t ∈ [1/θk, θk]. Together with ‖x‖ ≤ µk(x)/γ ≤
αk(x)/γ = ak/γ. Then we get 0 ≤ x(t) ≤ ak/γ, t ∈ [0, T ].

By (H7), we have f(t, x) < ak/ρk, t ∈ [0, T ]. As before, we get

αk(Ax) = max
1/θk≤t≤θk

(Ax)(t) = (Ax)(θk)

=
∫ θk

0

G(t, s)f(s, xσ(s))∆s ≤ θk ·
ak

ρk
·M = ak.

Thus condition (c) of Theorem 3.2 is satisfied. Since all the hypotheses of The-
orem 3.2 are satisfied, A has three families of solutions {x[1k]}∞k=1, {x[2k]}∞k=1,
{x[3k]}∞k=1 satisfying

0 ≤ α(x[1k]) ≤ ak ≤ α(x[2k]), β(x[2k]) ≤ bk ≤ β(x[3k]), µ(x[3k]) < ck,

for k = 1, 2 . . . The proof is complete. �

References

[1] D.R. Anderson, Existence of solutions for first-order multi-point problems with chang-

ing-sign nonlinearity, J. Difference Equ. Appl. (2007), 657–666.



320 Y. Li — L. Sun

[2] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction

with Applications, Birkhäuser, Boston, 2001.

[3] A. Cabada, Extremal solutions and Green’s functions of higher order periodic boundary

value problems in yime scales, J. Math. Anal. Appl. 290 (2004), 35–54.

[4] J.M. Gallardo, Second order differential operators with integral boundary conditions

and generation of semigroups, Rocky Mountain J. Math. 30 (2000), 1265–1292.

[5] N.A. Hamal and F. Yoruk, Positive solutions of nonlinear m-point boundary value

problems on time scales, J. Comput. Appl. Math. 231 (2009), 92–105.

[6] G.L. Karakostas and P.Ch. Tsamatos, Multiple positive solutions of some Fredholm

integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential
Equations 30 (2002), 1–17.

[7] R.A. Khan, The generalized method of quasi-linearization and nonlinear boundary value
problems with integral boundary conditions, Electron. J. Qual. Theory Differential Equa-

tions 19 (2003), 1–15.

[8] N.Kosmatov,Multi-point boundary value problems on time scales at resonance, J. Math.

Anal. Appl. 323 (2006), 253–266.

[9] , Multi-point boundary value problems on an unbounded domain at resonance,

Nonlinear Anal. 68 (2008), 2158–2171.

[10] D. Guo and V. Lakshmikanthan, Nonlinear Problems in Abstract Cone, Academic

Press, Orlando, FL, 1988.

[11] Y.K. Li and J. Shu, Multiple positive solutions for first-order impulsive integral bound-
ary value problems on time scales, Bound. Value Probl. 12 (2011).

[12] Y. Li and T. Zhang, Multiple positive solutions for second-order p-Laplacian dynamic
equations with integral boundary conditions, Bound. Value Probl. 2011 (2011), Article

ID 867615, 17 pages.

[13] Y. Li and T. Zhang, On the Existence of solutions for impulsive duffing dynamic

equations on time scales with Dirichlet boundary conditions, Abstr. Appl. Anal. 2010

(2010), Article ID 152460, 27 pages.

[14] Y. Li and J. Zhou, Existence of solutions for a class of damped vibration problems on

time scales, Adv. Difference Equ. 2010 (2010), Article ID 727486, 27 pages.

[15] S. Liang, J. Zhang and Z. Wang, The Existence of three positive solutions of m-point

boundary value problems for some dynamic equations on time scales, Math. Comput.
Modelling 49 (2009), 1386–1393.

[16] A. Lomtatidze and L. Malaguti, On a nonlocal boundary-value problems for second

order nonlinear singular differential equations, Georgian Math. J. 7 (2000), 133–154.

[17] R. Ma and H. Luo, Existence of solutions for a two-point boundary value problem on

time scales, Appl. Math. Comput. 150 (2004), 139–149.

[18] D. Mozyrska, E. Pawluszewicz and D.F.M. Torres, The Riemann–Stietjes integral

on time scales, Aust. J. Math. Anal. Appl. 7 (2010), 1–14.

[19] J.L. Ren, W.G. Ge and B.X. Ren, Existence of positive solutions for quasilinear

boundary value problems, Acta Math. Appl. Sin. 21 (2005), 353–358. (in Chinese)

[20] W. Rudin, Principles of Mathematical Analysis, Mc Graw-Hill, New York, 1976.

[21] Y. Sang and H. Su, Several sufficient conditions of solvability for a nonlinear higher

order three-point boundary value problem on time scales, Appl. Math. Comput. 190

(2007), 566–575.

[22] J. Sun, Twin positive solutions of nonlinear first-order boundary value problem on time

scales, Nonlinear Anal. 68 (2008), 1754–1758.

[23] J. Sun and W. Li, Existence a solutions to nonlinear first-order PBVPs on time scales,

Nonlinear Anal. 67 (2007), 883–888.



Positive Solutions for Nonlinear First-Order BVPs 321

[24] Y. Tian and W. Ge, Existence and uniqueness results for nonlinear first-order three-

point boundary value problems on time scales, Nonliear Anal. 69 (2008), 2833–2842.

[25] Y. Zhang and L. Ma, Solvability of Sturm–Liouville problem on time scales at reso-

nance, J. Comput. Appl. Math. 233 (2010), 1785–1797.

[26] X. Zhang, M. Feng and W. Ge, Existence result of second-order differential equations

with integral boundary conditions at resonance, J. Math. Anal. Appl. 353 (2009), 311–

319.

[27] J. Zhou and Y. Li, Sobolev’s spaces on time scales and its applications to a class of

second order Hamiltonian systems on time scales, Nonlinear Anal. 73 (2010), 1375–1388.

Manuscript received October 23, 2011

Yongkun Li and Lijuan Sun
Department of Mathematics

Yunnan University

Kunming, Yunnan 650091, P.R. China

E-mail address: yklie@ynu.edu.cn

TMNA : Volume 41 – 2013 – No 2


