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FIXED POINTS OF HEMI-CONVEX MULTIFUNCTIONS

Seyed M. A. Aleomraninejad — Shahram Rezapour

Naseer Shahzad

Abstract. The notion of hemi-convex multifunctions is introduced. It is

shown that each convex multifunction is hemi-convex, but the converse is
not true. Some fixed point results for hemi-convex multifunctions are also

proved.

1. Introduction

Throughout this paper we suppose that X and Y are Banach spaces and M

is a nonempty convex subset of X. We denote the family of all nonempty subsets
of X by 2X and the family of all nonempty closed and bounded subsets of X by
CB(X). Also, we denote the Hausdorff metric on CB(X) by H, i.e.

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(X), where d(x,A) = infa∈A ‖x− a‖.
Let T :X → 2Y be a multifunction. The graph of T is defined by

Gr(T ) = {(x, y) : x ∈ X, y ∈ T (x)}.

The multifunction T is called closed (resp. convex) whenever GrT is closed (resp.
convex). Also, T is called upper semi-continuous (resp. lower semi-continuous)
whenever {x ∈ X : T (x) ⊂ A} (resp. {x ∈ X : T (x) ∩ A 6= ∅}) is open for
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all open subsets A of Y . Some authors work on convex multifunctions (see for
example; [4]–[6] and [10]), whereas some authors work on nonconvex multifunc-
tions (see for example [2]). In 1980, Yanagi defined the notion of semi-convex
multifunctions ([9]). Later on, Bae and Park reviewed some fixed point theorems
for multivalued mappings in Banach spaces by using the notion of semi-convex
type multifunctions ([3]). The aim of this paper is to give the notion of hemi-
convexity of multifunctions which is weaker than convexity of multifunctions. We
show that this notion is independent of the notion of semi-convex multifunctions.
We also prove some fixed point results for hemi-convex multifunctions.

2. Main results

Definition 2.1. Let M be a convex subset of a Banach space X and r > 0.
We say that the multifunction T :M → 2M is r-hemi-convex whenever

d(λx + (1− λ)y, T (λx + (1− λ)y)) ≤ r

for all λ ∈ [0, 1] and x, y ∈ M with d(x, T (x)) < r and d(y, T (y)) < r. We say
that T is hemi-convex whenever T is r-hemi-convex for all r > 0.

It is clear that each convex multifunction on a Banach space is a hemi-
convex multifunction. Now, by providing the following example we show that
the converse is not true.

Example 2.2. Define the multifunction T : R → 2R by T (x) = [2x, 3x] if
x ≥ 0 and T (x) = [3x, 2x] if x < 0. Then T is not convex whereas T is hemi-
convex. In fact, (1, 2), (−1,−3) ∈ Gr(T ), but for λ = 1/2 we have

λ(1, 2) + (1− λ)(−1,−3) /∈ Gr(T ).

Since d(x, T (x)) = |x| for all x ∈ R, T is a hemi-convex multifunction.

Let M be a convex subset of a Banach space X. We say that the mul-
tifunction T :M → CB(X) is semi-convex whenever for each x, y ∈ M , z =
λx + (1 − λ)y, where λ ∈ [0, 1], and any x1 ∈ T (x), y1 ∈ T (y), there exists
z1 ∈ T (z) such that ‖z1‖ ≤ max{‖x1‖, ‖y1‖} (see [9]). Now, by providing next
examples, we show that the notions semi-convexity and hemi-convexity are in-
dependent, although both extend the notion of convexity of multifunctions.

Example 2.3. Define the multifunction T : R → 2R by T (x) = {−x + 1} if
x ≥ 0 and T (x) = [x + 1, x + 2] if x < 0. Then T is hemi-convex whereas T is
not semi-convex.

In fact, let x = −1, y = 1, z = x/2 + y/2 = 0, x1 = 0, y1 = 0 ∈ T (y) = {0}
and z1 = 1 ∈ T (z) = {1}. Then, the relation ‖z1‖ ≤ max{‖x1‖, ‖y1‖} does not
hold. Hence, T is not semi-convex.
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On the other hand, d(x, T (x)) = |2x−1| if x ≥ 0 and d(x, T (x)) = 1 if x < 0.
Without loss of generality, suppose that x < y and r > 0.

If x, y ≥ 0, d(x, T (x)) < r and d(y, T (y)) < r, then d(λx + (1− λ)y, T (λx +
(1− λ)y)) ≤ r.

If x, y < 0, then d(x, T (x)) = 1, d(y, T (y)) = 1 and d(λx + (1− λ)y, T (λx +
(1− λ)y)) = 1.

If x < 0, y ≥ 0 and λx + (1− λ)y < 0, then d(x, T (x)) = 1 and d(λx + (1−
λ)y, T (λx + (1− λ)y)) = 1.

If d(y, T (y)) < r and r ≥ 1, then d(λx+(1−λ)y, T (λx+(1−λ)y)) ≤ min{1, r}.
If x < 0, y ≥ 0 and λx+(1−λ)y ≥ 0, then d(x, T (x)) = 1, d(y, T (y)) = |2y−1|

and −1 ≤ 2(λx + (1− λ)y)− 1 ≤ 2y − 1. Thus, the relation

d(λx + (1− λ)y, T (λx + (1− λ)y)) = |2(λx + (1− λ)y)− 1| ≤ max{1, |2y − 1|}

implies that T is hemi-convex.

Example 2.4. Define the multifunction T : R → 2R by T (x) = [x, x + 1] if
x > 0 and T (x) = { 3

√
x} if x ≤ 0. Then T is semi-convex whereas T is not

hemi-convex.
In fact, let x = 1, y = −1 and z = x/4 + 3y/4 = −1/2. Then, d(x, T (x)) =

d(y, T (y)) = 0 while d(z, T (z)) = d(−1/2,− 3
√

1/2) > 0. Hence, T is not hemi-
convex.

Now, without loss of generality suppose that x < y.
If x, y > 0 or x, y < 0 and z = (λx + (1 − λ)y), it is easy to see that

for each x1 ∈ T (x) and y1 ∈ T (y), there exists z1 ∈ T (z) such that ‖z1‖ ≤
max{‖x1‖, ‖y1‖}.

If x ≤ 0, y > 0 and z = λx + (1 − λ)y ≤ 0, then for each x1 = 3
√

x ∈ T (x)
and y1 ∈ T (y) we have 3

√
x = x1 ≤ z1 = { 3

√
λx + (1− λ)y} ≤ 0 < y1. Hence,

‖z1‖ ≤ max{‖x1‖, ‖y1‖}.
If x ≤ 0, y > 0 and z = λx + (1 − λ)y > 0, then for each x1 = 3

√
x ∈ T (x)

and y1 ∈ T (y), there exists z1 ∈ T (z) such that 3
√

x = x1 ≤ 0 < z1 ≤ y1. Hence,
‖z1‖ ≤ max{‖x1‖, ‖y1‖}. Therefore, T is semi-convex.

Theorem 2.5. Let T, Tn:M → CB(M) be given. If Tn is a hemi-convex
multifunction for all n ≥ 1 and H(Tn(x), T (x)) → 0 for all x ∈ M , then T is
a hemi-convex multifunction.

Proof. Fix ε > 0, r > 0, 0 ≤ λ ≤ 1 and x, y ∈ M with d(x, T (x)) < r,
d(y, T (y)) < r. Choose a natural number N such that

H(Tn(x), T (x)) < ε, H(Tn(y), T (y)) < ε,

H(Tn(λx + (1− λ)y), T (λx + (1− λ)y)) < ε
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for all n ≥ N . Then, for each n ≥ N we have

d(x, Tn(x)) ≤ d(x, T (x)) + H(Tn(x), T (x)) < r + ε

d(y, Tn(y)) ≤ d(y, T (y)) + H(Tn(y), T (y)) < r + ε.

Thus, d(λx + (1 − λ)y, Tn(λx + (1 − λ)y)) ≤ r + ε. Hence, for each n ≥ N we
have

d(λx + (1− λ)y, T (λx + (1− λ)y)) ≤ d(λx + (1− λ)y, Tn(λx + (1− λ)y))

+ H(Tn(λx + (1− λ)y), T (λx + (1− λ)y)) < r + 2ε.

Since ε was arbitrary, we obtain d(λx+(1−λ)y, T (λx+(1−λ)y)) ≤ r. Therefore,
T is a hemi-convex multifunction. �

Theorem 2.6. Let T :M → CB(M) be an upper semi-continuous hemi-
convex multifunction. Then the set of fixed points of T is convex and closed.

Proof. Set F = {x : x ∈ T (x)}. For each x, y ∈ F we have d(x, T (x)) = 0
and d(y, T (y)) = 0. Thus, d(T (λx + (1 − λ)y), λx + (1 − λ)y) = 0 and so
λx + (1− λ)y ∈ F for all λ ∈ [0, 1], because T is a closed-valued multifunction.
Since T is upper semi-continuous and closed-valued, Gr(T ) is closed.

Let {xn}n≥1 be a sequence in F with xn → x. Since xn ∈ T (xn), (xn, xn) ∈
Gr(T ). Hence, (x, x) ∈ Gr(T ) and so x ∈ F . �

Definition 2.7. Let M be a convex subset of a Banach space X and r > 0.
We say that the function f :X → R is r-hemi-convex on M whenever

f(λx + (1− λ)y) < r

for all λ ∈ [0, 1] and x, y ∈ M with f(x) < r and f(y) < r. We say that f is
hemi-convex on M whenever f is r-hemi-convex on M for all r > 0.

Lemma 2.8. Let M be a convex subset of a Banach space X, δ > 0, m ≥ 2
and f :X → R a hemi-convex function on M . If x1, . . . , xm ∈ M with f(xi) < δ

for i = 1, . . . , m and λ1, . . . , λm ∈ [0,∞) with
∑m

i=1 λi = 1, then

f

( m∑
i=1

λixi

)
< δ.

Proof. We prove this by induction. For m = 2 we have nothing to prove.
Suppose that this lemma holds for each 1 ≤ k ≤ m − 1. We have to prove it
for m. Note that, one can assume λ1 6= 0 and so

f

( m∑
i=1

λixi

)
= f

(
λ1x1 +

m∑
i=2

λixi

)
= f

(
λ1x1 + (1− λ1)

m∑
i=2

λi

(1− λ1)
xi

)
.

Put y =
∑m

i=2(λi/(1 − λ1))xi. Since
∑m

i=2 λi/(1− λ1) = 1, by assumption of
the induction, we have f(y) < δ.



Fixed Points of Hemi-Convex Multifunctions 387

Now, by the case of m = 2, we obtain

f

( m∑
i=1

λixi

)
= f

(
λ1x1 + (1− λ1)

m∑
i=2

λi

(1− λ1)
xi

)
= f(λ1x1 + (1− λ1)y) < δ.

This completes the proof. �

Theorem 2.9. Let M be a weakly compact subset of X, T :M → CB(X)
a multifunction and infx∈M d(x, T (x)) = 0. If the function f :M → [0,∞),
defined by f(x) = d(x, T (x)), is lower semi-continuous and hemi-convex on M ,
then T has a fixed point in M .

Proof. Choose a sequence {xn}n≥1 in M such that d(xn, T (xn)) → 0. Since
M is weakly compact, there exists a subsequence {zn}n≥1 of {xn}n≥1 such that
zn

w−→ x0 for some x0 ∈ M . Since f is a lower semi-continuous function, for
each ε > 0 choose δ > 0 such that f(x0) < f(y) + ε/2 for all y ∈ M with
‖y − x0‖ < δ ([7]). Since f(zn) → 0, there exists a natural number N such that
f(zn) < ε/2 for all n ≥ N .

We denote again the sequence {zn}n≥N by {zn}n≥1. Since zn
w−→ x0, there

exist a sequence {yi}i≥1 in M and a sequence {αin}i,n≥1 in [0,∞) such that
for each i we have yi =

∑∞
n=1 αinzn, where

∑∞
n=1 αin = 1 and only finitely

many {αin} are not zero, and yi → x0 originally ([8; Theorem 3.13]). But, by
Lemma 2.8, we have f(yi) < ε/2 for all i ≥ 1. Thus, for sufficiently large i, we
obtain

f(x0) < f(yi) +
ε

2
< ε.

Hence, f(x0) = 0 and so x0 ∈ T (x0). �

If T :M → CB(M) is an upper semi-continuous multifunction, then the func-
tion f(x) = d(x, T (x)) is lower semi-continuous ([1, Proposition 4.2.6]). Also,
note that the function f(x) = d(x, T (x)) is hemi-convex whenever T so is. We say
that the function f(x) = d(x, T (x)) has the property (B) whenever f(xn) →∞
for all sequences {xn} with ‖xn‖ → ∞. The following example shows that weak
compactness of M is a necessary condition in Theorem 2.9.

Example 2.10. Consider the multifunction T : (0,∞) → 2(0,∞) given by

T (x) =
{

x +
1
x

}
.

It is clear that T is a hemi-convex multifunction, infx∈(0,∞) d(x, T (x)) = 0 and
the function f(x) = d(x, T (x)) is lower semi-continuous and hemi-convex. But
it is clear that T has no fixed point.

The following example shows that there are many multifunctions which sat-
isfy the condition infx∈M d(x, T (x)) = 0.
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Example 2.11. Let M be a convex and bounded subset of a Banach space
X, u ∈ M a fixed element and T :M → CB(M) a nonexpansive multifunction.
For each n ≥ 2 define Tn:M → CB(M) by Tn(x) = u/n + (1− 1/n)T (x). Since
H(Tn(x), Tn(y)) ≤ (1−1/n)‖x−y‖ for all x, y ∈ M and n ≥ 2, Tn is a contraction
multifunction and so for each n ≥ 2 there exists xn ∈ M such that xn ∈ Tn(xn).
Note that d(xn, T (xn)) → 0 and so infx∈M d(x, T (x)) = 0.

Definition 2.12. Let M be a convex subset of a Banach space X and
Tn, T :M → CB(M) a sequence of multifunctions. We say that {Tn} strongly
converges to T whenever for each ε > 0 there exists a natural number n0 such
that H(Tn(x), T (x)) < ε for all n ≥ n0 and x ∈ M . In this case, we write
Tn � T .

Theorem 2.13. Let M be a weakly compact subset of X, T :M → CB(M)
a multifunction and Tn:M → CB(M) an upper semi-continuous hemi-convex
multifunction for all n ≥ 1. If each Tn has at least one fixed point in M and
Tn � T , then T has a fixed point.

Proof. Since each Tn has at least one fixed point in M , infx∈M d(x, Tn(x))
= 0 for all n ≥ 1. Let ε > 0 be given. Choose a natural number n0 such that
H(Tn(x), T (x)) < ε for all n ≥ n0. Since

d(x, T (x)) ≤ d(x, Tn(x)) + H(Tn(x), T (x)) ≤ d(x, Tn(x)) + ε,

for all n ≥ n0, infx∈M d(x, T (x)) ≤ ε. Hence, infx∈M d(x, T (x)) = 0. By Theo-
rem 2.5, T is hemi-convex and so is the function f(x) = d(x, T (x)). Since T is
upper semi-continuous, the function f(x) = d(x, T (x)) is lower semi-continuous.
Now by using Theorem 2.9, T has a fixed point. �

The next example shows that strong convergence of the sequence {Tn}n≥1 is
a necessary condition in Theorem 2.13.

Example 2.14. Let X = R and M = [0, 2]. Define T :M → CB(M) by
T (x) = {x + 1} if x < 1, T (x) = {x − 1} if x > 1 and T (x) = {0, 2} if x = 1.
Moreover, for each n ≥ 2, let Tn:M → CB(M) be defined by Tn(x) = T (x)
if x 6= 1/n and Tn(x) = [0, 2] if x = 1/n. It is easily seen that Tn is upper
semi-continuous, d(x, Tn(x)) = 1 if x 6= 1/n, d(x, Tn(x)) = 0 if x = 1/n and Tn

has a fixed point for each n ≥ 2. This implies that Tn is hemi-convex. Evidently
H(Tn(x), T (x)) → 0 for all x ∈ M , but T has no fixed point.

Theorem 2.15. Let X be an uniformly convex Banach space, T :X →
CB(X) an upper semi-continuous hemi-convex multifunction, infx∈M d(x, T (x))
= 0. If the function f(x) = d(x, T (x)) has the property (B), then T has a fixed
point.
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Proof. Choose a sequence {xn} in X such that f(xn+1) ≤ f(xn) and
f(xn) → 0. Now, for each n ≥ 1 define Fn = {x ∈ X : f(x) ≤ f(xn)}. Since the
function f(x) = d(x, T (x)) has the property (B), each Fn is a nonempty bounded
subset of X. Since T is upper semi-continuous, the function f(x) = d(x, T (x))
is lower semi-continuous and so each Fn is a closed subset of X. Also, each Fn

is convex because T is a hemi-convex multifunction. Now by using [1, Theo-
rem 2.3.14], there exists x0 ∈ X such that x0 ∈

⋂∞
n=1 Fn. Thus, f(x0) ≤ f(xn)

for all n ≥ 1. Hence, f(x0) = 0 and so x0 ∈ T (x0). �
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