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FIXED POINTS OF HEMI-CONVEX MULTIFUNCTIONS

SEYED M. A. ALEOMRANINEJAD — SHAHRAM REZAPOUR
NASEER SHAHZAD

ABSTRACT. The notion of hemi-convex multifunctions is introduced. It is
shown that each convex multifunction is hemi-convex, but the converse is
not true. Some fixed point results for hemi-convex multifunctions are also
proved.

1. Introduction

Throughout this paper we suppose that X and Y are Banach spaces and M
is a nonempty convex subset of X. We denote the family of all nonempty subsets
of X by 2% and the family of all nonempty closed and bounded subsets of X by
CB(X). Also, we denote the Hausdorff metric on CB(X) by H, i.e.

H(A, B) = max { sup d(a, B), sup d(b, A)}
a€A beB

for all A, B € CB(X), where d(x, A) =inf,c4 ||z — a.
Let T: X — 2 be a multifunction. The graph of T is defined by

Gr(T)={(z,y):2 € X, yeT(x)}.

The multifunction 7T is called closed (resp. convex) whenever Gr T is closed (resp.
convex). Also, T is called upper semi-continuous (resp. lower semi-continuous)
whenever {z € X : T'(z) C A} (resp. {# € X : T'(x) N A # (}) is open for
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all open subsets A of Y. Some authors work on convex multifunctions (see for
example; [4]-[6] and [10]), whereas some authors work on nonconvex multifunc-
tions (see for example [2]). In 1980, Yanagi defined the notion of semi-convex
multifunctions ([9]). Later on, Bae and Park reviewed some fixed point theorems
for multivalued mappings in Banach spaces by using the notion of semi-convex
type multifunctions ([3]). The aim of this paper is to give the notion of hemi-
convexity of multifunctions which is weaker than convexity of multifunctions. We
show that this notion is independent of the notion of semi-convex multifunctions.
We also prove some fixed point results for hemi-convex multifunctions.

2. Main results

DEFINITION 2.1. Let M be a convex subset of a Banach space X and r > 0.
We say that the multifunction T: M — 2™ is r-hemi-convex whenever

ddz+ 1 -=Ny, T+ (1 -Ny)) <r

for all A € [0,1] and z,y € M with d(z,T(x)) < r and d(y,T(y)) < r. We say
that 7T is hemi-convex whenever T is r-hemi-convex for all r > 0.

It is clear that each convex multifunction on a Banach space is a hemi-
convex multifunction. Now, by providing the following example we show that
the converse is not true.

EXAMPLE 2.2. Define the multifunction T:R — 2% by T'(x) = [2z,3z] if
x > 0 and T(x) = [3z,22] if x < 0. Then T is not convex whereas T is hemi-
convex. In fact, (1,2),(—1,—3) € Gr(T'), but for A = 1/2 we have

A(1,2) + (1= A)(=1,-3) ¢ Gr(T).

Since d(z, T(x)) = |z| for all z € R, T is a hemi-convex multifunction.

Let M be a convex subset of a Banach space X. We say that the mul-
tifunction T: M — CB(X) is semi-convex whenever for each z,y € M, z =
Az + (1 — Ny, where A € [0,1], and any z; € T(z), y1 € T(y), there exists
z1 € T(z) such that ||z1]] < max{||z1]|, |ly1]|} (see [9]). Now, by providing next
examples, we show that the notions semi-convexity and hemi-convexity are in-
dependent, although both extend the notion of convexity of multifunctions.

EXAMPLE 2.3. Define the multifunction T:R — 2% by T'(z) = {—x + 1} if
x>0and T(z) =[x+ 1,2+ 2] if < 0. Then T is hemi-convex whereas T is
not semi-convex.

In fact, let z=-1, y=1,z=2/2+y/2=0,21 =0,y =0 € T(y) = {0}
and z; = 1 € T(z) = {1}. Then, the relation ||z1] < max{||z1]],||y1||} does not
hold. Hence, T is not semi-convex.
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On the other hand, d(z,T'(z)) = |20 —1| if > 0 and d(z, T(z)) = 1 if x < 0.
Without loss of generality, suppose that x < y and r > 0.

If 2,y > 0, d(z,T(z)) < r and d(y,T(y)) < r, then d(Az + (1 — Ny, T(A\x +
(1=XNy)) <r.

If x,y <0, then d(z,T(x)) =1, d(y, T(y)) =1 and d(Az + (1 — Ny, T(A\x +
(1=Xy) =1

Ifx<0,y>0and Az + (1 — Ay <0, then d(x,T(x)) =1 and d(Az + (1 —
Ny, T(Az+ (1 —Ny)) = 1.

Ifd(y,T(y)) < randr > 1, then d Az+(1-N)y, T(Az+(1-N)y)) < min{l,r}.

Ifz <0,y > 0and Ax+(1-N)y > 0, then d(z,T(z)) =1, d(y,T(y)) = |2y—1]
and —1 <2(Ax + (1 — N)y) — 1 < 2y — 1. Thus, the relation

ddz+ (1 =Ny, T(Azx + (1 = Ny)) = [2(Ax + (1 — Ny) — 1| < max{1, |2y — 1|}
implies that T is hemi-convex.

EXAMPLE 2.4. Define the multifunction T:R — 28 by T'(x) = [z,z + 1] if
x> 0and T(z) = {Jz} if # < 0. Then T is semi-convex whereas T is not
hemi-convex.

In fact, let x =1, y = —1 and z = z/4 + 3y/4 = —1/2. Then, d(z,T(z)) =
d(y, T(y)) = 0 while d(z,T(2)) = d(—1/2,—/1/2) > 0. Hence, T is not hemi-
convex.

Now, without loss of generality suppose that z < y.

If 2,y > 0 or 2,y < 0 and z = (Az + (1 — N)y), it is easy to see that
for each x1 € T'(z) and y1 € T(y), there exists z; € T(z) such that |z1] <
max{||z: |, [y}

Ifx <0,y >0and z=Ax+ (1 — Ny <0, then for each 1 = ¥x € T(x)
and y; € T(y) we have ¢z = 21 < 21 = {{/ Az + (1 - Ny} < 0 < y;. Hence,
[z < max{|[z1 ][, lya[[}-

Ifzx<0,y>0and z= Az + (1 — Ny > 0, then for each 1 = ¥/z € T(x)
and y; € T(y), there exists z; € T(z) such that /z =z <0 < 2z; < y;. Hence,
llz1|l < max{||z1||, [|y1]|]}. Therefore, T is semi-convex.

THEOREM 2.5. Let T\T,: M — CB(M) be given. If T, is a hemi-convex
multifunction for allm > 1 and H(T,(z),T(x)) — 0 for all x € M, then T is

a hemi-convex multifunction.
PROOF. Fixe > 0,7 > 0,0 < A <1and x,y € M with d(z,T(z)) < r,
d(y,T(y)) < r. Choose a natural number N such that

H(To(2), T(x)) <&, H(Tu(y), T(y)) <e,
H(T,Qxz+ 1 -Ny), TOx+(1-Ny)) <e
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for all n > N. Then, for each n > N we have

d(z, Tp(x)) <d(z,T(x))+ H(T,(z),T(z)) <r+e

d(y, Ta(y)) < d(y,T(y)) + H(Tu(y), T(y)) <7 +e.
Thus, d(Ax + (1 — Ny, T,(Ax + (1 — N)y)) < r +e. Hence, for each n > N we
have

dAdz+ 1 =Ny, Tz + (1 -Ny)) <dXzx+ (1 =Ny, T,(Az+ (1 — N)y))
+ HT,(Az+ (1 =Ny), Tz + (1 =Ny)) <r+ 2.

Since € was arbitrary, we obtain d(Ax+(1—\)y, T'(Az+(1—A)y)) < r. Therefore,

T is a hemi-convex multifunction. O

THEOREM 2.6. Let T:M — CB(M) be an upper semi-continuous hemi-

convex multifunction. Then the set of fixed points of T is convexr and closed.

PROOF. Set F' = {z: x € T(z)}. For each z,y € F we have d(z,T(z)) =0
and d(y,T(y)) = 0. Thus, d(T(Az + (1 — N)y), Az + (1 — N)y) = 0 and so
Az + (1 — Ay € F for all A € [0,1], because T is a closed-valued multifunction.
Since T is upper semi-continuous and closed-valued, Gr(T) is closed.

Let {,}n>1 be a sequence in F with z,, — x. Since x,, € T(z,), (Tn,Tn) €
Gr(T'). Hence, (z,z) € Gr(T') and so x € F'. O

DEFINITION 2.7. Let M be a convex subset of a Banach space X and r > 0.
We say that the function f: X — R is r-hemi-convex on M whenever
fOx+ (1 =Ny <r
for all A € [0,1] and x,y € M with f(z) < r and f(y) < r. We say that f is

hemi-convex on M whenever f is r-hemi-convex on M for all r > 0.

LEMMA 2.8. Let M be a convex subset of a Banach space X, 6 >0, m > 2
and f: X — R a hemi-convex function on M. If x1,... ,2m € M with f(x;) <6
fori=1,....,m and \1,... , Ay €[0,00) with ;" \i =1, then

i=1

Proor. We prove this by induction. For m = 2 we have nothing to prove.
Suppose that this lemma holds for each 1 < k < m — 1. We have to prove it
for m. Note that, one can assume A; # 0 and so

f(ZM%) = f()\lﬂh + ZM%‘) = f()qffl +(1=A)> (151)\1)561)
i=1 i—2 i—2

Put y = >0 (Ai/(1 — A1)z, Since Y ;"5 Ai/(1 — A1) = 1, by assumption of
the induction, we have f(y) < 4.
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Now, by the case of m = 2, we obtain

m

f(z )\zxz> = f()\l.’L'l + (1 — )\1) (1_/\1)l‘l> = f()\lxl + (1 — )\1)@/) < 5
i=1 =2
This completes the proof. O

THEOREM 2.9. Let M be a weakly compact subset of X, T: M — CB(X)
a multifunction and infyep d(x, T(x)) = 0. If the function f: M — [0,00),
defined by f(x) = d(z,T(x)), is lower semi-continuous and hemi-convex on M,
then T has a fixed point in M.

ProOOF. Choose a sequence {z,, },>1 in M such that d(z,,,T(z,)) — 0. Since
M is weakly compact, there exists a subsequence {2, }n>1 of {zy}n>1 such that
2p — x( for some xy € M. Since f is a lower semi-continuous function, for
each € > 0 choose & > 0 such that f(zo) < f(y) +¢/2 for all y € M with
lly — zo|| < d ([7]). Since f(z,) — 0, there exists a natural number N such that
f(zn) <e/2for alln > N.

We denote again the sequence {2, }n>n by {2, }n>1. Since z, —— w0, there
exist a sequence {y;};>1 in M and a sequence {ain}in>1 in [0,00) such that
for each i we have y; = > | inzn, where Y~ a;, = 1 and only finitely
many {«;,} are not zero, and y; — xo originally ([8; Theorem 3.13]). But, by
Lemma 2.8, we have f(y;) < /2 for all ¢ > 1. Thus, for sufficiently large i, we
obtain

flao) < flu) + 5 <<

Hence, f(xo) =0 and so zg € T(z). O

If T: M — CB(M) is an upper semi-continuous multifunction, then the func-
tion f(z) = d(z,T(x)) is lower semi-continuous ([1, Proposition 4.2.6]). Also,
note that the function f(z) = d(z, T(z)) is hemi-convex whenever T so is. We say
that the function f(x) = d(z,T(z)) has the property (B) whenever f(x,) — oo
for all sequences {x,} with ||z,|| — oco. The following example shows that weak
compactness of M is a necessary condition in Theorem 2.9.

EXAMPLE 2.10. Consider the multifunction T (0, 00) — 2(0:>°) given by

T(z) = {x+ i}

It is clear that T" is a hemi-convex multifunction, inf, ¢ ) d(z,T(z)) = 0 and
the function f(z) = d(z,T(x)) is lower semi-continuous and hemi-convex. But
it is clear that T" has no fixed point.

The following example shows that there are many multifunctions which sat-
isfy the condition inf,ecps d(z, T(z)) = 0.
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EXAMPLE 2.11. Let M be a convex and bounded subset of a Banach space
X, u € M a fixed element and T: M — CB(M) a nonexpansive multifunction.
For each n > 2 define T,,: M — CB(M) by T,,(z) = u/n+ (1 — 1/n)T(x). Since
H(T,(x), Tn(y)) < (1-1/n)||Jz—y| for all z,y € M and n > 2, T,, is a contraction
multifunction and so for each n > 2 there exists x,, € M such that z,, € T, (z,).
Note that d(z,,T(x,)) — 0 and so inf,eps d(x, T(x)) = 0.

DEFINITION 2.12. Let M be a convex subset of a Banach space X and
Tn, T:M — CB(M) a sequence of multifunctions. We say that {7}, } strongly
converges to 1" whenever for each € > 0 there exists a natural number ngy such
that H(T,(x),T(x)) < € for all n > ng and € M. In this case, we write
T, —»T.

THEOREM 2.13. Let M be a weakly compact subset of X, T: M — CB(M)
a multifunction and T,,: M — CB(M) an upper semi-continuous hemi-convex
multifunction for all n > 1. If each T, has at least one fized point in M and
T, - T, then T has a fixed point.

PROOF. Since each T, has at least one fixed point in M, inf,cps d(x, T,,(2))
=0 for all n > 1. Let € > 0 be given. Choose a natural number ng such that
H(T,(x),T(x)) < € for all n > ng. Since

d(z,T(x)) < d(x,Th(x)) + H(Ty(x), T(x)) < d(z,T,(x)) + &,

for all n > ng, infyenr d(x, T(x)) < e. Hence, inf epr d(z, T(z)) = 0. By Theo-
rem 2.5, T is hemi-convex and so is the function f(x) = d(x,T(x)). Since T is
upper semi-continuous, the function f(z) = d(z,T(x)) is lower semi-continuous.
Now by using Theorem 2.9, T" has a fixed point. ]

The next example shows that strong convergence of the sequence {7}, },>1 is
a necessary condition in Theorem 2.13.

EXAMPLE 2.14. Let X = R and M = [0,2]. Define T: M — CB(M) by
T(x)={z+1}ifz <1, T(x)={z—1}ifz > 1 and T(z) = {0,2} if z = 1.
Moreover, for each n > 2, let T,,: M — CB(M) be defined by T, (z) = T(x)
if x # 1/n and T, (z) = [0,2] if x = 1/n. It is easily seen that T), is upper
semi-continuous, d(z, T, (x)) =1 if  # 1/n, d(z,T,(z)) =0if z = 1/n and T,
has a fixed point for each n > 2. This implies that T}, is hemi-convex. Evidently
H(T,(z),T(x)) — 0 for all x € M, but T has no fixed point.

THEOREM 2.15. Let X be an uniformly convex Banach space, T: X —
CB(X) an upper semi-continuous hemi-convex multifunction, inf cpr d(x, T(x))
= 0. If the function f(x) = d(x,T(x)) has the property (B), then T has a fized
point.



FIXEDp PoINTS OF HEMI-CONVEX MULTIFUNCTIONS 389

ProOOF. Choose a sequence {z,} in X such that f(zn,4+1) < f(z,) and
f(zn) — 0. Now, for each n > 1 define F,, = {z € X : f(z) < f(x,)}. Since the
function f(x) = d(z, T(x)) has the property (B), each F}, is a nonempty bounded
subset of X. Since T is upper semi-continuous, the function f(x) = d(x,T(x))
is lower semi-continuous and so each F,, is a closed subset of X. Also, each Fj,
is convex because T is a hemi-convex multifunction. Now by using [1, Theo-
rem 2.3.14], there exists zg € X such that zo € ()7, F. Thus, f(z) < f(zn)
for all n > 1. Hence, f(x¢) =0 and so zg € T(xq). O
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