ERRATA

CORRECTION TO "IDEAL KAEHLERIAN SLANT SUBMANIFOLDS IN COMPLEX SPACE FORMS"

By ION MIHAI

Volume 35, Number 3, 2005

pages 950-952

We state a theorem of characterization of ideal Kaehlerian slant submanifolds in the complex Euclidean space.

Theorem 3.5. Let M be an n-dimensional Kaehlerian slant submanifold of the complex Euclidean space \mathbb{C}^n such that $\operatorname{Im} h_p \neq T_p^{\perp} M$, at each point $p \in M$. Then M is ideal if and only if M is a ruled minimal submanifold.

PROOF. Let M be an n-dimensional ideal Kaehlerian slant submanifold in \mathbb{C}^n . Then, by Theorem 2.1, M is a minimal submanifold.

Let U_l denote the interior of the subset consisting of points in M such that the relative null space at p has dimension l. Since Im $h_p \neq T_p^{\perp} M$, at each point $p \in M$, it follows that $U_l \neq \emptyset$, for some integer $1 \leq l \leq n$. By applying Codazzi equation, it is easily seen that Ker h is integrable on U_l and each leaf of (Ker h) $|_{U_l}$ is an l-dimensional totally geodesic submanifold of \mathbb{C}^n . Thus, M contains a geodesic of \mathbb{C}^n through each point $p \in U_l$. Since M is the union of the closure of all U_l , we conclude by continuity that M contains a geodesic of the ambient space through each point in M. Therefore, M is a ruled minimal submanifold.

The converse statement is obvious. \Box

Received by the editors on June 13, 2005.

1430 I. MIHAI

Note added in proof. After the acceptance for publication of this article, we discovered a very recent paper of I. Salavessa [12]. By combining Proposition 1.2 of [12] and Theorem 2.1 of this article, we have the following nonexistence result.

Theorem 3.6. There do not exist n-dimensional ideal Kaehlerian slant submanifolds in the complex projective space $P^n(\mathbf{C})$.

REFERENCES

- $\bf 6.~B.-Y.~Chen,~First~normal~bundle~of~ideal~Lagrangian~immersions~in~complex~space~forms,~Math.~Proc.~Cambridge~Philos.~Soc.~\bf 138~(2005),~461–464.$
- 12. I. Salavessa, On the Kähler angles of submanifolds, Portugal. Math. 60 (2003), 215–235.
- 13. K. Yano and M. Kon, Structures on manifolds, World Scientific, Singapore, 1984

University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania $E\text{-}mail\ address:}$ imihai@fmi.unibuc.ro