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Harmonic polynomials and tangent
measures of harmonic measure

Matthew Badger

Abstract

We show that on an NTA domain if each tangent measure to
harmonic measure at a point is a polynomial harmonic measure then
the associated polynomials are homogeneous. Geometric information
for solutions of a two-phase free boundary problem studied by Kenig
and Toro is derived.

1. Introduction

In this paper we use tools from geometric measure theory to catalog fine be-
havior of harmonic measure on a class of two-sided domains Ω ⊂ R

n, n ≥ 3.
Roughly stated we address the following question. What does a boundary
look like if it looks the the same (in terms of harmonic measure) from the
interior and from the exterior of a domain? More precisely, if Ω is 2-sided
NTA what conditions does ∂Ω satisfy when harmonic measure ω+ on the
interior Ω+ = Ω and harmonic measure ω− on the exterior Ω− = R

n \ Ω
are mutually absolutely continuous? In [11], Kenig and Toro examine this
question under the additional hypothesis that the Radon-Nikodym deriva-
tive f = dω−/dω+ has log f ∈ VMO(dω+). They show that for every point
Q ∈ ∂Ω and sequence of scales ri ↓ 0 there is a subsequence (which we
relabel) and a harmonic polynomial h : R

n → R such that

(1.1)
∂Ω −Q

ri

→ h−1(0) in Hausdorff distance,uniformly on compact sets.

One may hope that only linear polynomials h appear in (1.1), i.e. that the
boundary is always flat on small scales; however, there are examples of
domains with ω+ � ω− � ω+ and log f ∈ C∞(∂Ω) for which non-linear
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polynomials h appear (see Example 1.4 below). The method in [11] relates
the geometric blow-ups of the boundary to tangent measures of the harmonic
measure. Thus information about the free boundary may be obtained by
studying tangent measures of harmonic measure —this is our strategy for
the question above. To identify the polynomials appearing in (1.1), we
study properties of “polynomial harmonic measures” in the topology of weak
convergence of Radon measures of R

n. We prove that only homogeneous
harmonic polynomials arise in blow-ups of the boundary.

For any harmonic polynomial h : R
n → R, the positive and negative

parts h± of h are Green functions with pole at infinity for the unbounded
open sets {x ∈ R

n : h±(x) > 0}. The harmonic measure ωh associated to h
is the unique harmonic measure with pole at infinity on Ω±

h = {h± > 0}
with Green function h±. That is, for all ϕ ∈ C∞

c (Rn),

(1.2)

∫
{h=0}

ϕdωh =

∫
Ω+

h

h+Δϕ =

∫
Ω−

h

h−Δϕ.

Alternatively, by a result of Hardt and Simon [5], the zero set h−1(0) =
∂Ω±

h of a harmonic polynomial is smooth away from a rectifiable subset of
Hausdorff dimension at most n − 2. Hence there exists a unique outward
unit normal ν± on ∂Ω±

h at almost every point with respect to the surface
measure σ = Hn−1 {h = 0} and (1.2) is equivalent to

(1.3) dωh = −∂h
+

∂ν+
dσ = −∂h

−

∂ν−
dσ

by the generalized Gauss-Green theorem. In the sequel, we focus on two
collections of polynomial harmonic measures that arise as tangent measures
of harmonic measure on 2-sided NTA domains examined in [11] and [8].
(See §2, §5 and §6 below for definitions of tangent measures, NTA and
2-sided NTA domains, respectively.)

Set

Pd = {ωh : h is a non-zero harmonic polynomial(1.4)

of degree ≤ d and h(0) = 0},
Fk = {ωh : h is a homogenous harmonic polynomial of degree k}.(1.5)

By convention we will use d for the degree of any non-zero polynomial, but
reserve k for the degree of a homogeneous polynomial. If 1 ≤ k ≤ d, note
that Fk ⊂ Pd. When k = 1 the family F1 is the collection of (n− 1)-flat
measures in R

n, i.e. Hausdorff measures restricted to codimension 1 hyper-
planes through the origin.
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Our main objective is to exhibit a “self-improving” property of the tan-
gent measures Tan(ω,Q) of harmonic measure ω at a point Q in the bound-
ary of an NTA domain Ω. Because Tan(ω,Q) is independent of the choice
of pole for ω (see Remark 5.8), we omit the pole from the notation. If Ω is
unbounded, ω may have a finite pole or pole at infinity.

Theorem 1.1. Let Ω ⊂ R
n be an NTA domain with harmonic measure ω.

If Q ∈ ∂Ω and Tan(ω,Q) ⊂ Pd, then Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d.

The proof of the Theorem 1.1 illustrates the versatility of a powerful
technique from geometric measure theory. Tangent measures are a tool
that encode information about the support of a measure, similar to how
derivatives describe the local behavior of functions. A remarkable feature is
that under general conditions (Theorem 2.12) the cone of tangent measures
at a point is connected. This fact lies at the core of Preiss’ celebrated
paper on rectifiability [15] and recently enabled Kenig, Preiss and Toro [8]
to compute the Hausdorff dimension of harmonic measure on 2-sided NTA
domains with ω+ � ω− � ω+. (To appreciate the second result, we invite
the reader to compare Theorem 1.2 with the dimension of harmonic measure
on Wolff snowflakes [17], [12].)

Theorem 1.2. ([8, Theorem4.3]). Let Ω ⊂ R
n be a 2-sided NTA domain.

If harmonic measure ω+ on the interior Ω+ = Ω and harmonic measure ω−

on the exterior Ω− = R
n \ Ω of Ω are mutually absolutely continuous, then

the Hausdorff dimension of ω± is n − 1. Recall this means there exists a
subset Σ ⊂ ∂Ω such that dim Σ = n − 1 and ω±(∂Ω \ Σ) = 0; moreover, if
A ⊂ ∂Ω and dimA < n− 1 then ω±(∂Ω \ A) > 0.

In previous instances connectedness of the cone of tangent measures was
applied to conclude that the tangent measures of a certain measure (at a.e.
point) belong to the cone of flat measures F1. The authors in [8] express
an opinion that the connectedness of tangent measures “should be useful in
other situations where questions of size and structure of the support of a
measure arise”. To our knowledge the proof of Theorem 1.1 is the first use
of this technique to show that the tangent measures of a measure at a point
live in a cone of measures other than F1.

Stated in the language of tangent measures, Kenig and Toro proved
in [11] that there exists d ≥ 1 such that Tan(ω±, Q) ⊂ Pd for every Q ∈ ∂Ω.
Applying Theorem 1.1 we obtain a refined description of the free bound-
ary. Zooming in along any sequence of scales at a point in the boundary,
on a domain satisfying the hypotheses of Theorem 1.3, we see the zero set
of a homogeneous harmonic polynomial. The degree of the polynomial is
uniquely determined at each point.
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Theorem 1.3. Let Ω ⊂ R
n be a 2-sided NTA domain with harmonic mea-

sures ω+ on the interior Ω+ = Ω and ω− on the exterior Ω− = R
n \Ω of Ω.

Assume ω+ and ω− are mutually absolutely continuous and f = dω−/dω+

satisfies log f ∈ VMO(dω+). Then there exists d ≥ 1 depending only on n
and the NTA constants of Ω and pairwise disjoint sets Γ1, . . . ,Γd such that

(1.6) ∂Ω = Γ1 ∪ · · · ∪ Γd.

For each Q ∈ Γk and each sequence ri ↓ 0, there is a subsequence (which we
relabel) and a homogeneous harmonic polynomial h : R

n → R of degree k
such that

(1.7)
∂Ω −Q

ri

→ h−1(0) in Hausdorff distance,uniformly on compact sets.

Moreover, the open sets {h± > 0} are unbounded 2-sided NTA domains and
ω±(∂Ω \ Γ1) = 0.

Example 1.4. In [13] Lewy shows that for n = 3 there exists a spherical
harmonic (homogeneous harmonic polynomial) of degree k whose nodal set
divides S2 into two components if and only if k is odd. An explicit example
(see Figure 1) is given by

(1.8) h(x, y, z) = x2(y − z) + y2(z − x) + z2(x− y) − xyz.

The domain Ω = {h > 0} is a 2-sided NTA domain such that for harmonic
measures ω+ = ω− with pole at infinity log f ≡ 0 and 0 ∈ Γ3. Thus, for all
n ≥ 3, it is possible that ∂Ω \Γ1 is non-empty and dim ∂Ω \Γ1 ≥ n− 3. We
do not know if an upper bound on the Hausdorff dimension of ∂Ω\Γ1 holds
in general. For instance, is it always true that dim ∂Ω \ Γ1 < n− 1?

In the plane (n = 2) it is known that ∂Ω = Γ1; see Remark 4.3 in [11]
for details. �

The paper is organized as follows. In §2 we provide an introduction
to tangent measures and related concepts in the general setting of Radon
measures on R

n. The notation established in this section is used pervasively
throughout the paper. Our review concludes with an important criterion
for connectedness of tangent measures. Here is the rough scheme. Suppose
that M and F are cones of non-zero Radon measures such that F ⊂ M.
Furthermore suppose that the set of tangent measures Tan(μ, x) of a Radon
measure μ at point x ∈ R

n belongs to M. Under a pair of conditions on F
and M (see Theorem 2.12) the tangent measures Tan(μ, x) are connected
relative to F : if one tangent measure of μ at x belongs to F , then all tangent
measures of μ at x belong to F . While one condition (compactness of F
and M) is routinely checked, verifying the second condition (separation of F
and M\F) requires work and must be adapted to each situation.
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Figure 1: The variety h−1(0) separates the sphere S2 into 2 components.

Sections 3 through 5 form the core of the paper. In §3 we establish
inequalities for uniformly bounded spherical harmonics (homogeneous har-
monic polynomials restricted to the unit sphere) which depend only on the
dimension and degree of the polynomial. In particular, Corollary 3.3 is cru-
cial for proving uniform lower estimates for harmonic measures associated
to harmonic polynomials of a given degree.

Section 4 studies polynomial harmonic measures in the framework of §2,
focusing on properties which hold independently of assumptions on the un-
derlying domain such as number of components or non-tangential accessi-
bility. The central idea is to consider the rate of doubling at infinity of
the measures ωh, i.e. the quantity ωh(B(0, τr))/ωh(B(0, r)) as r → ∞ as a
function of τ > 1. We show that

(1.9)
ωh(B(0, τr))

ωh(B(0, r))
∼ τn+d−2 as r → ∞, for every τ > 1,

where d = deg h and the implied constants for the lower and upper bounds
in (1.9) depend only on n and d. Similar bounds for ωh(B(0, τr))/ωh(B(0, r))
as r → 0 are also obtained.

Section 5 is devoted to the proof of Theorem 1.1. To start we recall the
definition of non-tangentially accessible domains and two useful features of
their harmonic measures. The proof of Theorem 1.1 then proceeds in two
steps. Suppose that Tan(ω,Q) ⊂ Pd at some Q ∈ ∂Ω. Our goal is to show
Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d. First we apply a blow-up procedure
from [10] to identify a degree k = k(Q) such that Tan(ω,Q)∩Fk �= ∅. Second
we use the doubling property of harmonic measure on NTA domains [6] and
results from section 4 to invoke Theorem 2.12 with F = Fk and M =
Tan(ω,Q) ∪ Fk. The connectedness criterion implies that every tangent
measure of ω at Q belongs to Fk.
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In §6, we derive Theorem 1.3 on homogeneous blow-ups of the boundary
of a domain. In addition to Theorem 1.1, we require a blow-up procedure
for 2-sided NTA domains from [11] and the fact that at almost every point
translations of tangent measures are tangent measures. We end by inter-
preting the decomposition (1.6) in Theorem 1.3 from the measure theoretic
viewpoint of §2.

2. Geometric Measure Theory ingredients

Tangent measures and cones of measures were introduced in [15], where
Preiss proved that measures on R

n with positive and finite m-density almost
everywhere are m-rectifiable. Here we collect definitions, notation and basic
properties of weak convergence of Radon measures, tangent measures and
cones of measures which are used throughout the sequel. Much of this
material may be found in textbooks of Mattila [14] or Falconer [4]; also see
the recent exposition of Preiss’ proof by DeLellis [1]. The criterion to check
the connectedness of tangent measures (Theorem 2.12) is taken from Kenig–
Preiss–Toro [8]. Where notations differ across these sources, we adopt the
original notation of [15]. (The two novel features of this review are our
definition of Fr and the explicit statement of Lemma 2.6.)

Let B(x, r) denote the closed ball with center x ∈ R
n and radius r > 0.

We use the abbreviation Br = B(0, r) for all r > 0. Note that ∂B1 = Sn−1,
the unit sphere in R

n.
A Radon measure μ on R

n is a positive Borel regular outer measure
on R

n that is finite on compact sets. A sequence (μi)
∞
i=1 of Radon measures

on R
n converges weakly to a Radon measure μ, written μi ⇀ μ, provided

(2.1) lim
i→∞

∫
fdμi =

∫
fdμ for all f ∈ Cc(R

n).

Of course, to test for weak convergence one only needs to check that (2.1)
holds on a class of functions smaller than Cc(R

n); for example, either C∞
c (Rn)

or Lipc(R
n) suffice. Below we require a quantitative version of weak conver-

gence. To capture the idea that μi ⇀ μ exactly when μi “gets close to” μ on
the ball Br for every (large) r > 0, we introduce a family of semi-metrics.

Let μ be a Radon measure on R
n, and for each r > 0 define

(2.2) Fr(μ) =

∫ r

0

μ(Bs)ds.

Since a Radon measure is locally finite, Fr(μ) <∞ for all r > 0. In fact,

(2.3)
r

2
μ(Br/2) ≤ Fr(μ) ≤ rμ(Br) for all r > 0.
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If μ and ν are Radon measures and r > 0, we set

(2.4) Fr(μ, ν) = sup
{∣∣∣ ∫

fdμ−
∫
fdν

∣∣∣ : f ≥ 0, Lip f ≤ 1, spt f ⊂ Br

}

where Lip f and spt f denote the Lipschitz constant and the support of a
function f , respectively. As an easy exercise one checks Fr is a semi-metric
on the set of Radon measures on R

n and a metric on the subset of measures
supported in Br. If r ≤ s then Fr(μ, ν) ≤ Fs(μ, ν). Also notice that
Fr(μ, 0) = Fr(μ). Indeed

Fr(μ, 0) =

∫
dist(z,Rn \Br)dμ(z) =

∫ r

0

μ{z : dist(z,Rn \Br) > s}ds(2.5)

=

∫ r

0

μ(Br−s)ds =

∫ r

0

μ(Bs)ds.

We now state the relationship between weak convergence of Radon mea-
sures and Fr.

Lemma 2.1. ([14, Lemma 14.13]) Suppose that μ, μ1, μ2, . . . are Radon mea-
sures on R

n. Then μi ⇀ μ if and only if limi→∞ Fr(μi, μ) = 0 for all r > 0.

Proposition 2.2. ([15, Proposition 1.12]). The Radon measures on R
n ad-

mit a complete separable metric

(2.6)
∞∑
i=1

2−i min(1, Fi(μ, ν))

whose topology is equivalent to the topology of weak convergence of Radon
measures.

Remark 2.3. The family of semi-metrics Fr is related to a distance between
probability measures in a compact metric space, which is known by various
names in the literature. If X is a compact metric space, the Kantorovich–
Rubinstein formula

(2.7) sup

{∫
fd(μ− ν) : Lip f ≤ 1

}

defines a complete separable metric on the space of probability measures
on X whose topology is equivalent to the weak convergence of probability
measures [7]. For further discussion we refer the reader to the bibliographical
notes in Chapter 6 of [16]. �
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Let x ∈ R
n and r > 0. We write Tx,r : R

n → R
n for the translation by x

and dilation by r,

(2.8) Tx,r(y) =
y − x

r
for all y ∈ R

n.

The image measure Tx,r[μ] of a Radon measure μ, which acts on a set E ⊂ R
n

by

(2.9) Tx,r[μ](E) = μ(T−1
x,r (E)) = μ(x+ rE),

is also Radon since Tx,r is a homeomorphism. In the case E = B1, we
interpret (2.9) as saying Tx,r[μ] “blows-up” B(x, r) (for r small) to the unit
ball B1 in the sense that μ(B(x, r)) = Tx,r[μ](B1). Integration against Tx,r[μ]
obeys

(2.10)

∫
f(z)dTx,r[μ](z) =

∫
f

(
z − x

r

)
dμ(z)

whenever at least one of the integrals is defined. Let us pause to record a
few simple but highly useful calculations.

Lemma 2.4. (Composition Laws). For all x ∈ R
n, for all r, s > 0 and all

measures μ, ν,

1. Tx,rs = T0,s ◦ Tx,r,

2. Tx,rs[μ] = T0,s[Tx,r[μ]],

3. Frs(μ) = sFr(T0,s[μ]),

4. Frs(μ, ν) = sFr(T0,s[μ], T0,s[ν]).

We can now present a definition of tangent measure. The basic idea is
to take a sequence of blow-ups Tx,ri

[μ] as ri > 0 shrinks to zero and then
normalize by some constants ci > 0 so that the limit converges.

Definition 2.5. Let μ be a non-zero Radon measure and let x ∈ sptμ. We
say a non-zero Radon measure ν is a tangent measure of μ at x and write
ν ∈ Tan(μ, x) if there exists sequences ri ↓ 0 and ci > 0 such that

(2.11) ciTx,ri
[μ] ⇀ ν.

The set of tangent measures at a point is non-empty under mild assump-
tions on the measure. For example, if x ∈ sptμ and one of the conditions

• D
s
(μ, x) = lim supr↓0 μ(B(x, r))/rs ∈ (0,∞) for some 0 < s <∞

• lim supr↓0 μ(B(x, 2r))/μ(B(x, r)) <∞
hold, then Tan(μ, x) �= ∅ by the weak compactness of Radon measures.
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Taking blow-ups of a measure at a point is closed in the sense that
tangent measures to tangent measures are tangent measures. We need two
formulations of this principle.

Lemma 2.6. Let μ be a non-zero Radon measure on R
n and let x ∈ spt μ.

If ν ∈ Tan(μ, x), then Tan(ν, 0) ⊂ Tan(μ, x).

Proof. Let ρ ∈ Tan(ν, 0). Let ri, si ↓ 0 and ci, di > 0 be sequences such that
ciTx,ri

[μ] ⇀ ν and diT0,si
[ν] ⇀ ρ. Since ciTx,ri

[μ] ⇀ ν, Lemma 2.1 implies
that limi→∞ F1(ciTx,ri

[μ], ν) = 0. Choose a subsequence (ci(j), ri(j)) of (ci, ri)
such that

(2.12) F1(ci(j)Tx,ri(j)
[μ], ν) ≤ 1

j

(
sj

dj

)
.

After relabeling (ci(j), ri(j)), we may assume that

(2.13) F1(cjTx,rj
[μ], ν) ≤ 1

j

(
sj

dj

)
.

Fix r > 0. Since Fr is a semi-metric,

(2.14) Fr(cjdjTx,rjsj
[μ], ρ) ≤ Fr(cjdjTx,rjsj

[μ], djT0,sj
[ν]) + Fr(djT0,sj

[ν], ρ).

On one hand, limj→∞ Fr(djT0,sj
[ν], ρ) = 0 since djT0,sj

[ν] ⇀ ρ. On the other
hand, for all j sufficiently large such that sjr ≤ 1,

Fr(cjdjTx,rjsj
[μ], djT0,sj

[ν]) = djFr(T0,sj
[cjTx,rj

[μ]], T0,sj
[ν])(2.15)

=
dj

sj
Fsjr(cjTx,rj

[μ], ν) ≤ dj

sj
F1(cjTx,rj

[μ], ν) ≤ 1

j
.

Hence limj→∞ Fr(cjdjTx,rjsj
[μ], ρ) = 0. Since r > 0 was arbitrary, we get

cjdjTx,rjsj
[μ] ⇀ ρ. Therefore, Tan(ν, 0) ⊂ Tan(μ, x). �

Theorem 2.7. ([14, Theorem14.16]). Let μ be a non-zero Radon measure.
At μ-a.e. x ∈ sptμ the following holds: if ν ∈ Tan(μ, x) and y ∈ spt ν, then

(1) Ty,1[ν] ∈ Tan(μ, x),

(2) Tan(ν, y) ⊂ Tan(μ, x).

Proof Sketch. The proof of (1) uses the separability of Radon measures in
the topology generated by the semi-metrics Fr. Statement (2) follows quickly
from (1), the composition law Ty,ri

[ν] = T0,ri
[Ty,1[ν]] and Lemma 2.6. �

Next we introduce cones of measures or collections of measures which
are invariant under scaling.
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Definition 2.8. A collection M of non-zero Radon measures on R
n is a

cone provided whenever ψ ∈ M and c > 0 then cψ ∈ M. A cone M is
a d-cone (or dilation invariant) if furthermore ψ ∈ M and r > 0 imply
T0,r[ψ] ∈ M. We also require that M �= ∅.

The technical advantage of working with dilation invariant cones is a
simple observation. If M is a d-cone of Radon measures, then for all r > 0
there is μ ∈ M such that Fr(μ) > 0. Indeed take any ψ ∈ M. Then
Fs(ψ) > 0 for some s > 0 because ψ �= 0. For any r > 0,

(2.16) Fr(T0,s/r[ψ]) =
r

s
Fr(s/r)(ψ) =

r

s
Fs(ψ) > 0.

Since M is closed under dilations, ψr = T0,s/r[ψ] ∈ M satisfies Fr(ψr) > 0.
In particular, since F1(ψ1) > 0 and M is closed under scaling the following
set is non-empty.

Definition 2.9. The basis of a d-cone M is the subset {ψ ∈M : F1(ψ) = 1}.
Lemma 2.10. ([15, Remark 2.1]). Let M be a d-cone. In the topology of
weak convergence of Radon measures, M is relatively closed (relatively com-
pact) in the collection of all non-zero Radon measures if and only if the basis
of M is closed (compact).

We are already familiar with the canonical example of a dilation invariant
cone.

Lemma 2.11. ([15, Remark 2.3]). If Tan(μ, x) �= ∅, then Tan(μ, x) is a
d-cone with a closed basis.

Following [15] we define a normalized version of Fr for the distance of a
measure to a d-cone of measures as follows. Let r > 0 and suppose σ is a
measure such that Fr(σ) > 0. If M is any d-cone, the “distance” of σ to M
at scale r is given by

(2.17) dr(σ,M) = inf
{
Fr

( σ

Fr(σ)
, ψ

)
: ψ ∈ M and Fr(ψ) = 1

}
.

If Fr(σ) = 0 we set dr(σ,M) = 1. Our main use for dr is to detect, given a
pair of nested cones M1 ⊂ M2, if M1 is separated from M2 \M1.

Theorem 2.12. ([8, Corollary 2.1]). Let F and M be d-cones, F ⊂ M.
Assume that

(1) Both F and M have compact bases,

(2) There exists ε0 > 0 such that whenever ψ ∈ M and dr(ψ,F) < ε0 for
all r ≥ r0 then ψ ∈ F .

If Tan(μ, x) ⊂ M and Tan(μ, x) ∩ F �= ∅, then Tan(μ, x) ⊂ F .



Harmonic polynomials and tangent measures 851

We end this review with two conditions that ensure a d-cone has a com-
pact basis. Additional criterion may be found in [15].

Proposition 2.13. ([15, Proposition 2.2]). Assume M is a d-cone with a
closed basis. Then M has a compact basis if and only if there exists a finite
number q ≥ 1 such that ψ(B(0, 2r)) ≤ qψ(B(0, r)) for all ψ ∈ M and r > 0.

Corollary 2.14. ([15, Corollary 2.7]). Let μ be a non-zero Radon measure.
If x ∈ sptμ and lim supr↓0 μ(B(x, 2r))/μ(B(x, r)) < ∞ then Tan(μ, x) has
a compact basis.

3. Inequalities for spherical harmonics

A well known fact about harmonic functions is that the derivatives of a
function at a point are controlled by the L∞-norm of the function in a
surrounding ball, in a uniform way depending on the distance of the point to
the boundary. Starting from local estimates for the derivatives of harmonic
functions on B2 at points of Sn−1, we derive several inequalities for spherical
harmonics (homogeneous harmonic polynomials on R

n restricted to Sn−1)
of a given degree.

Lemma 3.1. Let u be a real-valued harmonic function on B2 = B(0, 2).
For all θ ∈ Sn−1 and every multi-index α,

(3.1) |Dαu(θ)| ≤ (2n+1n|α|)|α| ‖u‖L∞(∂B2).

Proof. For example, by Theorem 7 in §2.2 of [2] with r = 1,

(3.2) |Dαu(θ)| ≤ (2n+1n|α|)|α|
ωn

‖u‖L1(B(θ,1))

where ωn = Ln(B(0, 1)) denotes the volume of the unit ball in R
n. The

claim follows since ‖u‖L1(B(θ,1)) ≤ ωn‖u‖L∞(B(θ,1)) ≤ ωn‖u‖L∞(∂B2), where
the last inequality holds by the maximum principle. �

Uniformly bounded spherical harmonics of degree k have a uniform Lip-
schitz constant.

Proposition 3.2. Let n ≥ 2 and k ≥ 1. There exists a constant An,k > 1
such that for every homogeneous harmonic polynomial h : R

n → R of de-
gree k and every θ1, θ2 ∈ Sn−1,

(3.3) |h(θ1) − h(θ2)| ≤ An,k ‖h‖L∞(Sn−1) |θ1 − θ2|.
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Proof. Write M = ‖h‖L∞(Sn−1). If |θ1 − θ2| ≥ 1 then |h(θ1) − h(θ2)| ≤ 2M
≤ 2M |θ1 − θ2|.

Suppose that |θ1 − θ2| ≤ 1. By Lemma 3.1,

(3.4) |Dαh(θ2)|≤(2n+1n|α|)|α|‖h‖L∞(∂B2) =(2n+1n|α|)|α|2kM≤(2n+2nk)kM

for every multi-index α with |α| ≤ k, where ‖h‖L∞(∂B2) = 2kM since h is
homogeneous of degree k. Expanding h in a Taylor series about θ2,

(3.5) h(θ) − h(θ2) =
∑

1≤|α|≤k

Dαh(θ2)

α!
(θ − θ2)

α.

Evaluating (3.5) at θ = θ1 and applying the estimate (3.4),

(3.6) |h(θ1) − h(θ2)| ≤
∑

1≤|α|≤k

(2n+2nk)kM

α!
|(θ1 − θ2)

α| ≤ An,kM |θ1 − θ2|

where An,k = (2n+2nk)k
∑

1≤|α|≤k(α!)−1. �
The next inequality roughly says that a spherical harmonic takes its “big

values” on a “big piece” of the unit sphere. Here σ denotes surface measure
on Sn−1 with total mass σ(Sn−1) = σn−1 = nωn.

Corollary 3.3. Let n ≥ 2 and k ≥ 1. There exists a constant ln,k > 0 such
that for every homogeneous harmonic polynomial h : R

n → R of degree k,

(3.7) σ{θ ∈ Sn−1 : |h(θ)| ≥ 1
2
‖h‖L∞(Sn−1)} ≥ ln,k.

Proof. Choose θ0 ∈ Sn−1 such that |h(θ0)| = ‖h‖L∞(Sn−1) = M . By Propo-
sition 3.2,

(3.8) |h(θ)| ≥ |h(θ0)| − |h(θ) − h(θ0)| ≥ M(1 − An,k|θ − θ0|).
If |θ− θ0| ≤ 1/2An,k, then |h(θ)|≥M/2. That is, the set {θ∈Sn−1 : |h(θ)|≥
M/2} contains the surface ball Δ(θ0, 1/2An,k). Thus ln,k =σ(Δ(θ0, 1/2An,k))
suffices. �

Thus spherical harmonics of degree k satisfy a reverse Hölder inequality.

Corollary 3.4. Let n ≥ 2 and k ≥ 1. There exists a constant Bn,k > 1 such
that for every homogeneous harmonic polynomial h : R

n → R of degree k,

(3.9) ‖h‖L∞(Sn−1) ≤ Bn,k‖h‖L1(Sn−1).

Proof. Let Γ = {θ ∈ Sn−1 : |h(θ)| ≥ 1
2
‖h‖L∞(Sn−1)}. By Corollary 3.3,

(3.10) ‖h‖L1(Sn−1) ≥ 1

2
‖h‖L∞(Sn−1)σ(Γ) ≥ ln,k

2
‖h‖L∞(Sn−1)

and Bn,k = 2/ln,k suffices. �
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4. Polynomial harmonic measures

A harmonic polynomial h : R
n → R of degree d decomposes as

(4.1) h = hd + hd−1 + · · ·+ h0

where each non-zero term hi is a homogenous harmonic polynomial of de-
gree i. If h =

∑
|α|≤d cαx

α is any polynomial, assign hi =
∑

|α|=i cαx
α.

When h is harmonic,

(4.2) 0 = Δhd + Δhd−1 + · · ·+ Δh2.

Since Δhi is the sum of monomials of degree i−2, the right hand side of (4.2)
vanishes only if Δhi = 0 for all i ≤ d.

Recall that the collections Pd and Fk of polynomial harmonic measures
were defined by

• Pd = {ωh : h is a non-zero harmonic polynomial
of degree ≤ d and h(0) = 0},

• Fk = {ωh : h is a homogenous harmonic polynomial of degree k}.
Our first observation is that Pd and Fk fit into the framework of Section 2.

Lemma 4.1. Pd and Fk are dilation invariant cones.

Proof. Suppose ω is associated to a harmonic polynomial h = hd + · · · + h1

and let c, r > 0. We claim cT0,r[ω] is harmonic measure associated to
g(x) = crnh(rx) where Δg = crn+dΔhd + · · · + crn+2Δh2 = 0 by the re-
mark following (4.2). For any ϕ ∈ C∞

c (Rn),∫
{g>0}

g(x)Δϕ(x)dx =

∫
r−1{h>0}

crnh(rx)Δϕ(x)dx

= c

∫
{h>0}

h(y)Δϕ(r−1y)dy = c

∫
{h=0}

ϕ(r−1y)dω(y)

= c

∫
r−1{h=0}

ϕ(x)dT0,r[ω](x) = c

∫
{g=0}

ϕ(x)dT0,r[ω](x).

(4.3)

Since g has the same degree as h and g is homogeneous if h is homoge-
neous, Pd and Fk are dilation invariant cones. �

Here is a practical formula to compute ωh on balls Br centered at the
origin in terms of the surface measure σ on the boundary ∂Br. Throughout
this section Ω± denotes the open sets of positive and negative values of h,
Ω± = {h± > 0}.
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Lemma 4.2. Let h : R
n → R be a harmonic polynomial such that h(0) = 0.

For any r > 0,

(4.4) ωh(Br) =

∫
∂Br∩Ω+

∂h+

∂r
dσ =

∫
∂Br∩Ω−

∂h−

∂r
dσ.

If h is homogeneous of degree k, then

(4.5) ωh(Br) =
k

2
rn+k−2‖h‖L1(Sn−1).

Proof. By a result of Hardt and Simon [5], the zero set of a harmonic poly-
nomial is smooth away from a rectifiable subset of dimension at most n− 2.
Hence, for any harmonic polynomial h : R

n → R with h(0) = 0, the set
Br ∩ Ω± is non-empty and has locally finite perimeter. By the generalized
Gauss-Green theorem (c.f. Chapter 5 of [2]),

(4.6)

∫
∂(Br∩Ω±)

∂h±

∂ν±
dσ =

∫
Br∩∂Ω±

Δh± = 0

where ν± denotes the unique outer unit normal that is defined at σ-a.e.
Q ∈ ∂(Br ∩ Ω±). Thus, writing ∂(Br ∩ Ω±) = (∂Br ∩ Ω±) ∪ (Br ∩ ∂Ω±),

(4.7)

∫
∂Br∩Ω±

∂h±

∂r
dσ = −

∫
Br∩∂Ω±

∂h±

∂ν±
dσ = ωh(Br)

as desired.
Summing the two formulas in (4.4),

(4.8) 2ωh(Br) =

∫
∂Br∩Ω+

∂h+

∂r
dσ +

∫
∂Br∩Ω−

∂h−

∂r
dσ.

If h(rθ) = rkh(θ), then ∂rh(rθ) = krk−1h(θ) and rθ ∈ Ω± if and only if
θ ∈ Ω±. Hence

2ωh(Br) =

∫
∂Br∩Ω+

krk−1h+(θ)dσ +

∫
∂Br∩Ω−

krk−1h−(θ)dσ

=

∫
∂Br

krk−1|h(θ)|dσ = krn+k−2

∫
∂B1

|h(θ)|dσ
(4.9)

whenever h is homogeneous of degree k. �
A consequence of (4.5) is that the measures in Fk are uniformly doubling

at the origin, i.e. for any ω ∈ Fk and r > 0,

(4.10)
ω(B2r)

ω(Br)
= 2n+k−2 <∞.
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We now investigate the doubling properties of measures associated to ar-
bitrary harmonic polynomials. The inequality for spherical harmonics in
Corollary 3.3 is key.

Lemma 4.3. Let h : R
n → R be a harmonic polynomial of degree d ≥ 1

with h(0) = 0. There exists r1 = r1(n, d, ζ(h)) ≥ 1 such that for all r > r1,

(4.11)
ln,d

4
· drn+d−2‖hd‖L∞(Sn−1) ≤ ωh(Br) ≤ 3σn−1

2
· drn+d−2‖hd‖L∞(Sn−1).

Here ζ(h) = max1≤k≤d−1 ‖hk‖L∞(Sn−1)/‖hd‖L∞(Sn−1).

Proof. Without loss of generality assume M=‖hd‖L∞(Sn−1) = ‖h+
d ‖L∞(Sn−1);

that is, the maximum of the homogeneous part hd of h over Sn−1 is obtained
at a positive value. Writing h in polar coordinates,

h(rθ) = rdhd(θ) + rd−1hd−1(θ) + · · ·+ rh1(θ),(4.12)

∂h

∂r
(rθ) = drd−1hd(θ) + (d− 1)rd−2hd−1(θ) + · · ·+ h1(θ).(4.13)

Let r > 1. Then 1
r

+ · · · + (
1
r

)d−1 ≤ ∑∞
i=1

(
1
r

)i
= 1

r−1
and with ζ(h) defined

as above, ∣∣∣∣rd−1hd−1(θ) + · · ·+ rh1(θ)

rd

∣∣∣∣ ≤Mζ(h)

(
1

r
+ · · · + 1

rd−1

)

≤ Mζ(h)

r − 1
,

(4.14)

∣∣∣∣(d− 1)rd−2hd−1(θ) + · · · + h1(θ)

rd−1

∣∣∣∣ ≤ dMζ(h)

(
1

r
+ · · ·+ 1

rd−1

)

≤ dMζ(h)

r − 1
.

(4.15)

If rθ ∈ ∂Br ∩ Ω+, then h(rθ) > 0 and by (4.12) and (4.14),

(4.16) hd(θ) > −r
d−1hd−1(θ) + · · · + rh1(θ)

rd
≥ −Mζ(h)

r − 1
.

Similarly, for all r > 1 and θ ∈ Sn−1, by (4.13) and (4.15),

(4.17) drd−1

(
hd(θ) − Mζ(h)

r − 1

)
≤ ∂h

∂r
(rθ) ≤ drd−1

(
hd(θ) +

Mζ(h)

r − 1

)
.

To estimate ωh(Br) for r � 1, we will combine (4.4), (4.16) and (4.17)
with Corollary 3.3. By the latter, the set Γ = {θ ∈ Sn−1 : hd(θ) ≥ M/2}
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has surface measure σ(Γ) ≥ ln,d. Note that rΓ ⊂ ∂Br ∩ Ω+ provided that
r > 1 + 2ζ(h), since h(rθ) ≥ rd(hd(θ) −Mζ(h)/(r − 1)), again by (4.12)
and (4.14). Put Λr = (∂Br ∩ Ω+) \ rΓ. Then, by (4.4) and (4.17),

ωh(Br) ≥ drd−1

∫
∂Br∩Ω+

(
hd(θ) − Mζ(h)

r − 1

)
dσ(4.18)

≥ drd−1

∫
rΓ

(
M

2
− Mζ(h)

r − 1

)
dσ(4.19)

+ drd−1

∫
Λr

(
−Mζ(h)

r − 1
− Mζ(h)

r − 1

)
dσ,

where hd(θ) ≥ M/2 on Γ by definition and hd(θ) > −Mζ(h)/(r − 1) for
rθ ∈ Λr by (4.16). Since σ(rΓ) ≥ ln,dr

n−1 and σ(Λr) ≤ σn−1r
n−1,

ωh(Br) ≥ drd−1M

(
1

2
− ζ(h)

r − 1

)
ln,dr

n−1(4.20)

+ drd−1M

(
−2ζ(h)

r − 1

)
σn−1r

n−1

≥ drn+d−2M

(
ln,d

2
− 3σn−1ζ(h)

r − 1

)
.(4.21)

Thus, if r > 1 + 12σn−1ζ(h)/ln,d, we obtain the lower bound ωh(Br) ≥
(ln,d/4)drn+d−2M . A similar (and easier!) estimate using the upper bound
in (4.17) shows if r > 1 + 2ζ(h) then ωh(Br) ≤ (3σn−1/2)drn+d−2M . There-
fore, it suffices to take r1 = 1 + 12σn−1ζ(h)/ln,d. �

As an immediate corollary of Lemma 4.3 we see that ωh(Br) is dou-
bling as r → ∞ with doubling constants depending only on n and d in the
following sense.

Theorem 4.4. There is a constant Cn,d > 1 such that for every τ > 1 and
every harmonic measure ω associated to a harmonic polynomial h : R

n → R

of degree d with h(0) = 0,

(4.22)
τn+d−2

Cn,d
≤ lim inf

r→∞
ω(Bτr)

ω(Br)
≤ lim sup

r→∞

ω(Bτr)

ω(Br)
≤ Cn,dτ

n+d−2.

Proof. By Lemma 4.3 there exists r1 ≥ 1 depending on ω such that for all
r > r1,

(4.23)
ln,d

6σn−1
τn+d−2 ≤ ω(Bτr)

ω(Br)
≤ 6σn−1

ln,d
τn+d−2.

Thus, Cn,d = 6σn−1/ln,d suffices. �
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While the top degree term of the polynomial h determines the harmonic
measure ωh(Br) for large r, the non-zero term of lowest degree controls
ωh(Br) on small radii.

Lemma 4.5. Suppose that h = hd +hd−1+ · · ·+hj is a harmonic polynomial
with 1 ≤ j ≤ d and hj �= 0. There exists r2 = r2(n, j, ζ∗(h)) ≤ 1/2 such that
for all r < r2,

(4.24)
ln,j

4
· jrn+j−2‖hj‖L∞(Sn−1) ≤ ωh(Br) ≤ 3σn−1

2
· jrn+j−2‖hj‖L∞(Sn−1).

Here ζ∗(h) = maxj+1≤k≤d ‖hk‖L∞(Sn−1)/‖hj‖L∞(Sn−1).

Proof. Without loss of generality assume M=‖hj‖L∞(Sn−1) = ‖h+
j ‖L∞(Sn−1);

that is, the maximum of the homogeneous part hj of h over Sn−1 is obtained
at a positive value. Writing h in polar coordinates,

h(rθ) = rdhd(θ) + · · ·+ rj+1hj+1(θ) + rjhj(θ),(4.25)

∂h

∂r
(rθ) = drd−1hd(θ) + · · · + (j + 1)rjhj+1(θ) + jrj−1hj(θ).(4.26)

Let r ≤ 1/2. Then r + · · · + rd−j ≤ ∑∞
i=1 r

i = r
1−r

≤ 2r and with ζ∗(h)
defined as above,∣∣∣rdhd(θ) + · · · + rj+1hj+1(θ)

rj

∣∣∣≤Mζ∗(h)(rd−j + · · · + r)(4.27)

≤ 2Mζ∗(h)r.

Also, since (j + i)/2j ≤ i for all i, j ≥ 1 and
∑∞

i=1 ir
i = r

(1−r)2
≤ 4r,

∣∣∣drd−1hd(θ) + · · ·+ (j + 1)rjhj+1(θ)

rj−1

∣∣∣ ≤(4.28)

≤Mζ∗(h)(drd−j + · · ·+ (j+1)r)= 2jMζ∗(h)
( d

2j
rd−j+ · · ·+ j+1

2j
r
)

≤ 2jMζ∗(h)
∞∑
i=1

iri ≤ 8jMζ∗(h)r.

If rθ ∈ ∂Br ∩ Ω+, then h(rθ) > 0 and by (4.25) and (4.27),

(4.29) hj(θ) > −r
dhd(θ) + · · ·+ rj+1hj+1(θ)

rj
≥ −2Mζ∗(h)r.

Similarly, for all r ≤ 1/2 and θ ∈ Sn−1, by (4.26) and (4.28),

(4.30) jrj−1 (hj(θ) − 8Mζ∗(h)r) ≤ ∂h

∂r
(rθ) ≤ jrj−1 (hj(θ) + 8Mζ∗(h)r) .
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By Corollary 3.3, the set Γ = {θ ∈ Sn−1 : hj(θ) ≥ M/2} has surface
measure σ(Γ) ≥ ln,j. Note rΓ ⊂ ∂Br ∩ Ω+ if r < 1/4ζ∗(h), since h(rθ) ≥
rj(hj(θ)−2Mζ∗(h)r), again by (4.25) and (4.27). Put Λr = (∂Br ∩Ω+)\rΓ.
Then, by (4.4) and (4.30),

ωh(Br) ≥ jrj−1

∫
∂Br∩Ω+

(hj(θ) − 8Mζ∗(h)r) dσ(4.31)

≥ jrj−1M

∫
rΓ

(
1

2
− 8ζ∗(h)r

)
dσ(4.32)

+ jrj−1M

∫
Λr

(−2ζ∗(h)r − 8ζ∗(h)r) dσ,

where hj(θ) ≥ M/2 on Γ by definition and hj(θ) > −2Mζ∗(h)r for rθ ∈ Λr

by (4.29). Since σ(rΓ) ≥ ln,jr
n−1 and σ(Λr) ≤ σn−1r

n−1, if r < 1/16ζ∗(h)
we obtain

ωh(Br) ≥ jrj−1M

(
1

2
− 8ζ∗(h)r

)
ln,jr

n−1(4.33)

+ jrj−1M (−10ζ∗(h)r)σn−1r
n−1

≥ jrn+j−2M

(
ln,j

2
− 18σn−1ζ∗(h)r

)
.(4.34)

Thus, if r < min(1/2, ln,j/72σn−1ζ∗(h)), we get the lower bound

(4.35) ωh(Br) ≥ (ln,j/4)jrn+j−2M.

The estimate ωh(Br) ≤ (3σn−1/2)jrn+j−2M for all r < min(1/2, 1/16ζ∗(h))
follows easily from (4.4) and the upper bound in (4.30). Therefore, (4.24)
holds for all r < r2 with r2 = min(1/2, ln,j/72σn−1ζ∗(h)). �
Theorem 4.6. There is a constant cn,j > 1 such that for every τ > 1 and
every harmonic measure ω associated to a polynomial h = hd+hd−1+· · ·+hj

with 1 ≤ j ≤ d and hj �= 0,

(4.36)
τn+j−2

cn,j
≤ lim inf

r→0

ω(Bτr)

ω(Br)
≤ lim sup

r→0

ω(Bτr)

ω(Br)
≤ cn,jτ

n+j−2.

Proof. By Lemma 4.5 there exists r2 ≤ 1/2 depending on ω such that

(4.37)
ln,j

6σn−1
τn+j−2 ≤ ω(Bτr)

ω(Br)
≤ 6σn−1

ln,j
τn+j−2

whenever τr < r2. Thus, cn,j = 6σn−1/ln,j suffices. �

The next lemma generalizes Lemma 4.1 in [8]; notice that the assumption
{h > 0} and {h < 0} are NTA domains has been removed.
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Lemma 4.7. Suppose h : R
n → R is a harmonic polynomial of degree d ≥ 1

with h(0) = 0, and let ω be harmonic measure associated to h. There exists
ε0 > 0 depending only on n, d and k such that if dr(ω,Fk) < ε0 for all r ≥ r0
then d = k.

Proof. Let τ > 1 and choose r ≥ r0 such that dτr(ω,Fk) < ε0. Then there
exists ψ ∈ Fk such that Fτr(ψ) = 1 and

(4.38) Fr

(
ω

Fτr(ω)
, ψ

)
≤ Fτr

(
ω

Fτr(ω)
, ψ

)
< ε0.

Hence, by the triangle inequality,

(4.39) Fr(ψ) − ε0 <
Fr(ω)

Fτr(ω)
< Fr(ψ) + ε0.

Since ψ is associated to a homogeneous polynomial of degree k, say p, by
Lemma 4.2,

(4.40) Fr(ψ)=

∫ r

0

ψ(Bs)ds =
k‖p‖L1(Sn−1)

2

∫ r

0

sn+k−2ds =
k‖p‖L1(Sn−1)

2 (n+k−1)
rn+k−1

for all r > 0. In particular, 1 = Fτr(ψ) = τn+k−1Fr(ψ). That is,

(4.41) Fr(ψ) = τ−n−k+1.

Moreover, since (r/2)ω(Br/2) ≤ Fr(ω) ≤ rω(Br) for all r, by Theorem 4.4,

1

Cn,d

(
1

2τ

)n+d−1

≤ 1

2τ

ω(Br/2)

ω(Bτr)
≤ Fr(ω)

Fτr(ω)
(4.42)

≤ 2

τ

ω(Br)

ω(Bτr/2)
≤ Cn,d

(
2

τ

)n+d−1

for all r > r1(h). Setting C̃ = Cn,d2
n+d−1 > 1,

(4.43) C̃−1τ−n−d+1 ≤ Fr(ω)

Fτr(ω)
≤ C̃τ−n−d+1

for all r > r1. Combining (4.39), (4.41) and (4.43) yields

(4.44) τ−n−k+1 − ε0 < C̃τ−n−d+1 and C̃−1τ−n−d+1 < τ−n−k+1 + ε0.

Equivalently,

(4.45) τd−k(1 − τn+k−1ε0) < C̃ and τk−d(1 + τn+k−1ε0)
−1 < C̃.
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Since C̃ is independent of τ , we can set τ = 2C̃. Thus, for (2C̃)n+k−1ε0 = 1
2
,

(4.46)
1

2
(2C̃)d−k < C̃ and

2

3
(2C̃)k−d < C̃.

On a moment’s reflection one sees (4.46) is impossible if d �= k. (For example,

if d − k ≥ 1, then C̃ = 1
2
(2C̃) ≤ 1

2
(2C̃)d−k < C̃. If k − d ≥ 1, then

4
3
C̃ = 2

3
(2C̃) ≤ 2

3
(2C̃)k−d < C̃.) Therefore, if dr(ω,Fk) < ε0 = 1

2
(2C̃)−n−k+1

for all r ≥ r0 then h has degree k. �
For emphasis let us remark again that ε0 in Lemma 4.7 only depends

on the dimension, the degree d of the polynomial h and the degree k of
the “homogeneous cone” Fk. Taking the minimum of finitely many ε0 from
Lemma 4.7 we obtain:

Corollary 4.8. There is ε1 = ε1(n, d) > 0 with the property if ω ∈ Pd and
dr(ω,Fk) < ε1 for all r ≥ r0 with 1 ≤ k ≤ d then the degree of the polynomial
associated to ω is k.

Corollary 4.9. There is ε2 = ε2(n, d) > 0 with the property if ω ∈ Pd and
dr(ω,F1) < ε2 for all r ≥ r0 then ω ∈ F1.

In order to invoke Theorem 2.12 the cones studied must satisfy a com-
pactness condition. Recall that the basis of a dilation invariant cone M is
{ψ ∈ M : F1(ψ) = 1}.
Lemma 4.10. For each k ≥ 1, Fk has a compact basis.

Proof. First we claim there exists a constant C = C(n, k) < ∞ such that
the coefficients of any polynomial associated to a harmonic measure in the
basis of Fk are bounded by C. Let ω ∈ Fk satisfying F1(ω) = 1 be associated
to the homogeneous harmonic polynomial h of degree k. By (4.5) and the
definition of F1,

(4.47) F1(ω) =

∫ 1

0

ω(Bs)ds =
k

2(n+ k − 1)
‖h‖L1(Sn−1).

Since F1(ω) = 1, ‖h‖L1(Sn−1) = 2(n+ k − 1)/k. Hence, by Corollary 3.4,

(4.48) ‖h‖L∞(Sn−1) ≤ Bn,k‖h‖L1(Sn−1) =
2Bn,k(n+ k − 1)

k
.

If h(X) =
∑

|α|=k cαX
α then |cα| = |Dαh(0)|/α! ≤ |Dαh(0)| by Taylor’s

formula. Then the mean value property for Dαh and estimate (3.4) yield

(4.49) |cα| ≤ −
∫

Sn−1

|Dαh(θ)|dσ(θ) ≤ sup
θ∈Sn−1

|Dαh(θ)|≤(2n+2nk)k‖h‖L∞(Sn−1).

Combining (4.48) and (4.49) shows that |cα| ≤ C(n, k) for every coefficient
of h.
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Now let ωi ∈ Fk be any sequence of measures such that F1(ω
i) = 1,

and let hi be the polynomial associated to ωi. By the argument above, the
coefficients of hi are uniformly bounded. Hence from hi we can extract a
subsequence hij → h∞ uniformly on compact subsets of R

n, where h∞ is
either identically zero or a homogeneous harmonic polynomial of degree k.
(We will exclude the first possibility shortly). If ϕ ∈ C∞

c (Rn), then

(4.50) lim
j→∞

∫
ϕdωij = lim

j→∞

∫
(hij )+Δϕ =

∫
(h∞)+Δϕ =

∫
ϕdωh∞.

Thus ωij ⇀ ω∞ = ωh∞ and since F1(ω
∞) = limj→∞ F1(ω

ij) = 1, h∞ �≡ 0.
We have shown that for every sequence ωi ∈ Fk with F1(ω

i) = 1 there is a
subsequence ωij ⇀ ω∞ ∈ Fk. Therefore, Fk has a compact basis. �

We do not know if the cone Pd has a closed or compact basis for d ≥ 2.
To implement the method of Lemma 4.10 and show that Pd has a compact
basis, one must find a way to control ‖h‖L∞(Sn−1) from the data F1(ωh) = 1.
On the other hand, to prove that Pd does not have a compact basis, by
Proposition 2.13 it suffice to produce a sequence of measures ωi ∈ Pd and
radii ri > 0 such that supi ωi(B2ri

)/ωi(Bri
) = ∞. Since polynomial harmonic

measures are doubling near infinity (Theorem 4.4) and doubling near zero
(Theorem 4.6), candidate radii must be selected from an intermediate range
depending on ζ(h) and ζ∗(h). The main challenge lies in estimating ωh(Br)
on these middle scales. Since ζ(h)ζ∗(h) ≤ 1 for every quadratic polynomial h,
the final answer may depend on whether d = 2 or d ≥ 3.

5. Polynomial tangent measures are homogeneous

We now recast our focus to polynomial harmonic measures which appear
as tangent measures of harmonic measure on NTA domains and take up
the proof of Theorem 1.1. Jerison and Kenig introduced non-tangentially
accessible domains in R

n as a natural class of domains on which Fatou type
convergence theorems hold for harmonic functions [6]. Here the doubling
of harmonic measure on NTA domains is combined with properties from
Section 4 and a blow-up procedure from [10] in order to invoke Theorem 2.12.

We start by recalling the definitions of NTA domains.

Definition 5.1. An open set Ω ⊂ R
n satisfies the corkscrew condition with

constants M > 1 and R > 0 provided for every Q ∈ ∂Ω and 0 < r < R there
exists a non-tangential point A = A(Q, r) ∈ Ω such thatM−1r < |A−Q| < r
and dist(A, ∂Ω) > M−1r.
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An M–non-tangential ball B(X, r) in a domain Ω, is an open ball con-
tained in Ω whose distance to ∂Ω is comparable to its radius in the sense
that

(5.1) M−1r < dist(B(X, r), ∂Ω) < Mr.

For X1, X2 ∈ Ω a Harnack chain form X1 to X2 is a sequence of M–non-
tangential balls such that the first ball contains X1, the last contains X2,
and consecutive balls intersect.

Definition 5.2. A domain Ω ⊂ R
n satisfies the Harnack chain condition

with constants M > 1 and R > 0 if for every Q ∈ ∂Ω and 0 < r < R when
X1, X2 ∈ Ω ∩ B(Q, r/4) satisfy

(5.2) min
j=1,2

dist(Xj , ∂Ω) > ε and |X1 −X2| < 2kε

then there is a Harnack chain from X1 to X2 of length Mk such that the
diameter of each ball is bounded below by M−1 minj=1,2 dist(Xj , ∂Ω).

Definition 5.3. A domain Ω ⊂ R
n is non-tangentially accessible or NTA

if there exist M > 1 and R > 0 such that (i) Ω satisfies the corkscrew and
Harnack chain conditions, (ii) R

n \Ω satisfies the corkscrew condition. If ∂Ω
is unbounded then we require R = ∞.

A bounded simply connected domain Ω ⊂ R
2 is NTA if and only if Ω

is a quasidisk (the image of the unit disk under a quasiconformal map of
the plane). In higher dimensions, while every quasiball (the image of the
unit ball under a quasiconformal map of R

n, n ≥ 3) is still a bounded NTA
domain, there exist bounded NTA domains homeomorphic to a ball in R

n

which are not quasispheres. The reader may consult [6] for more information.
Also see [9] where it is shown that every δ-Reifenberg flat domain in R

n

with δ < δn is non-tangentially accessible.
Harmonic measure on NTA domains is locally doubling. While Jerison

and Kenig only considered bounded domains, their proof of this result ex-
tends to the unbounded case.

Lemma 5.4. ([6, Lemmas 4.8, 4.11]). Let Ω ⊂ R
n be an NTA domain.

There exists a constant C < ∞ depending on the NTA constants of Ω such
that if Q ∈ ∂Ω, 0 < 2r < R and X ∈ Ω \ B(Q, 2Mr) then ωX(B(Q, 2s)) ≤
CωX(B(Q, s)) for all 0 < s < r.

On an unbounded NTA domain there is a related doubling measure called
harmonic measure with pole at infinity, which is obtained as the weak limit
of harmonic measures ωXi (properly rescaled) as Xi → ∞.
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Lemma 5.5. ([10, Lemma 3.7, Corollary 3.2]). Let Ω ⊂ R
n be an unbounded

NTA domain. There exists a doubling Radon measure ω∞ supported on ∂Ω
satisfying

(5.3)

∫
∂Ω

ϕdω∞ =

∫
Ω

uΔϕ for all ϕ ∈ C∞
c (Rn)

where

(5.4)

⎧⎨
⎩

Δu = 0 in Ω
u > 0 in Ω
u = 0 on ∂Ω.

The measure ω∞ and Green function u are unique up to multiplication by a
positive scalar. We call ω∞ a harmonic measure of Ω with pole at infinity.

When a result about harmonic measure of a domain Ω is independent
of the choice of pole, we denote the measure by ω without any superscript.
This means that when Ω is unbounded we allow ω to have a finite pole or
pole at infinity.

Lemma 5.6. If Ω ⊂ R
n is NTA and Q ∈ ∂Ω, then Tan(ω,Q) has a compact

basis.

Proof. At any point in the support, the tangent measures of an asymp-
totically doubling measure has a compact basis by Corollary 2.14. This is
true on an NTA domain by Lemma 5.4 when ω has a finite pole and by
Lemma 5.5 when ω has pole at infinity. �

On an NTA domain there is a correspondence between the tangent mea-
sures of harmonic measure and geometric blow-ups of the domain and bound-
ary [10]. Let Ω ⊂ R

n be a NTA domain, let Q ∈ ∂Ω and let ri ↓ 0. For
each i, zoom in on the domain, the boundary and the harmonic measure
at Q and scale ri:

(5.5) Ωi =
Ω −Q

ri
, ∂Ωi =

∂Ω −Q

ri
, ωi =

TQ,ri
[ω]

ω(B(Q, ri))
.

Theorem 5.7. ([10, Lemma 3.8]). Let Ω ⊂ R
n be an NTA domain with har-

monic measure ω, let Q ∈ ∂Ω and let ri ↓ 0. Define Ωi, ∂Ωi and ωi by (5.5).
There exists a subsequence of ri (which we relabel) and an unbounded NTA
domain Ω∞ ⊂ R

n such that

Ωi → Ω∞ in Hausdorff distance, uniformly on compact sets,(5.6)

∂Ωi → ∂Ω∞ in Hausdorff distance, uniformly on compact sets.(5.7)

Moreover,

(5.8) ωi ⇀ ω∞

where ω∞ is harmonic measure for Ω∞ with pole at infinity.
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Remark 5.8. The measure ω∞ in Theorem 5.7 obtained as a weak limit of
the blow-ups ω(B(Q, ri))

−1TQ,ri
[ω] is a tangent measure of ω at Q. In fact,

up to scaling by a constant, every tangent measure of ω at Q has this form
since ω is doubling; c.f. [14] Remark 14.4. Hence, since the blow-ups Ωi of
the domain Ω do not depend on the pole of harmonic measure, the cone of
tangent measures Tan(ω,Q) is also independent of the pole of ω. �

The next lemma identifies the degree k of the cone Fk appearing in
Theorem 1.1.

Lemma 5.9. Let Ω ⊂ R
n be a NTA domain, let Q ∈ ∂Ω, and assume

Tan(ω,Q) ⊂ Pd. If k is the minimum degree such that Pk ∩ Tan(ω,Q) �= ∅,
then Pk ∩ Tan(ω,Q) ⊂ Fk.

Proof. If k = 1, then P1 = F1. If k ≥ 2, suppose for contradiction
that there exists ν ∈ Tan(ω,Q) associated to a nonhomogeneous harmonic
polynomial h of degree k, say h = hk + hk−1 + · · · + hj with j < k and
hj �= 0. By Theorem 5.7 (applied to Ω and ω), either {x ∈ R

n : h(x) > 0} or
{x ∈ R

n : h(x) < 0} is an unbounded NTA domain where ν is a harmonic
measure with pole at infinity for that domain. Without loss of generality,
assume U = {x ∈ R

n : h(x) > 0} is an unbounded NTA domain and ν is
harmonic measure on U with pole at infinity. Choose ri ↓ 0. By Theorem 5.7
(now applied to U and ν), there is a subsequence ri and an unbounded NTA
domain U∞ such that

(5.9) Ui =
U

ri
→ U∞ and ∂Ui =

∂U

ri
→ ∂U∞

in the sense of Hausdorff distance uniformly on compact sets and

(5.10) νi =
T0,ri

[ν]

ν(Bri
)
⇀ ν∞.

Moreover, ν∞ is harmonic measure with pole at infinity for U∞. Observe
that ∂Ui is the set of all y ∈ R

n such that h(riy) = 0, i.e.

(5.11) rk
i hk(y) + rk−1

i hk−1(y) + · · · + rj
ihj(y) = 0.

Dividing by rj
i and letting i → ∞, we see ∂U∞ is the set of all y ∈ R

n

such that hj(y) = 0 and ν∞ ∈ Pj. By Lemma 2.6, ν∞ ∈ Tan(ω,Q) ∩ Pj

is a blow up of ω corresponding to a harmonic polynomial of degree j < k.
This contradicts the minimality of k. Therefore, every blow up of ω at Q of
minimum degree is homogeneous, i.e. Pk ∩ Tan(ω,Q) ⊂ Fk. �
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We now have all the pieces to prove Theorem 1.1. Recall: Let Ω ⊂ R
n be

a NTA domain with harmonic measure ω. If Q ∈ ∂Ω and Tan(ω,Q) ⊂ Pd,
then Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d.

Proof of Theorem 1.1. Let k = min{j : Pj ∩Tan(ω,Q) �= ∅} ≤ d and set

(5.12) F = Fk, M = Tan(ω,Q) ∪ Fk.

Then F ⊂ M and both d-cones have a compact basis by Lemma 4.10 and
Lemma 5.6. Since M ⊂ Pd, Corollary 4.8 and Lemma 5.9 together imply
that there exists an ε1 > 0 such that for all μ ∈ M if dr(μ,Fk) < ε1 for
all r ≥ r0 then μ ∈ Fk. By Theorem 2.12 (the connectedness of tangent
measures), since Tan(ω,Q) ⊂ M and Tan(ω,Q) ∩ Fk �= ∅, we conclude
Tan(ω,Q) ⊂ Fk. �

6. Blow-ups on 2-sided NTA domains

Definition 6.1. A domain Ω ⊂ R
n is two-sided non-tangentially accessible

or 2-sided NTA if Ω+ = Ω and Ω− = R
n \ Ω are NTA; i.e., there are M > 1

and R > 0 such that Ω± satisfy the corkscrew and Harnack chain conditions,
and if ∂Ω is unbounded we require R = ∞.

Throughout this section we use the convention that if Ω ⊂ R
n is a 2-

sided domain, then ω+ is harmonic measure on the interior Ω+ = Ω and ω−

is harmonic measure on the exterior Ω− = R
n \ Ω of Ω. If Ω+ or Ω− is

unbounded, then we allow ω+ or ω− to have a finite pole or pole at infinity,
respectively.

There is a two-sided version of the blow-up procedure for NTA do-
mains [11]. Let Ω ⊂ R

n be a 2-sided NTA domain, let Q ∈ ∂Ω and let ri ↓ 0.
Let u± be the Green function for Ω± with the same pole as the harmonic
measure ω±. We zoom in on the interior and exterior domains, boundary,
harmonic measures and Green functions at Q along scales ri:

Ω±
i =

Ω± −Q

ri

, ∂Ωi =
∂Ω −Q

ri

,

ω±
i =

TQ,ri
[ω±]

ω±(B(Q, ri))
, u±i =

u± ◦ T−1
Q,ri

ω±(B(Q, ri))
rn−2
i .

(6.1)

Theorem 6.2. ([11, Theorem4.2]). Let Ω ⊂ R
n be a 2-sided NTA domain,

Q ∈ ∂Ω and ri ↓ 0. Define the sets Ω±
i and ∂Ωi, measures ω±

i and func-
tions u±i by (6.1). There is a subsequence of ri (which we relabel) and an
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unbounded 2-sided NTA domain Ω∞ such that

Ω±
i → Ω±

∞ in Hausdorff distance, uniformly on compact sets,(6.2)

∂Ωi → ∂Ω∞ in Hausdorff distance, uniformly on compact sets.(6.3)

Moreover,

ω±
i ⇀ ω±

∞,(6.4)

u±i → u±∞ uniformly on compact sets(6.5)

where ω±
∞ is harmonic measure with pole at infinity for Ω± and Green func-

tion u±∞.

Two more definitions are necessary.

Definition 6.3. Let Ω ⊂ R
n be a NTA domain with harmonic measure ω.

We say that f ∈ L2
loc(dω) has bounded mean oscillation with respect to ω,

i.e. f ∈ BMO(dω) if

(6.6) sup
r>0

sup
Q∈∂Ω

(
−
∫

B(Q,r)

|f − fQ,r|2dω
)1/2

<∞

where

fQ,r = −
∫

B(Q,r)

fdω.

Definition 6.4. Let Ω ⊂ R
n be a NTA domain with harmonic measure ω.

Let VMO(dω) denote the closure of the set of bounded uniformly continuous
functions defined on ∂Ω in BMO(dω). If f ∈ VMO(dω) we say f has
vanishing mean oscillation.

Polynomial harmonic measures appear as tangent measures on domains
with mutually absolutely continuous interior and exterior harmonic mea-
sures.

Theorem 6.5. Let Ω ⊂ R
n be a 2-sided NTA domain with interior harmonic

measure ω+ and exterior harmonic measure ω−. Assume ω+ � ω− � ω+

and f = dω−/dω+ satisfies log f ∈ VMO(dω+). There exists d ≥ 1 which
depends only on n and the NTA constants of Ω such that Tan(ω+, Q) =
Tan(ω−, Q) ⊂ Pd for all Q ∈ ∂Ω.

Proof. Under the same hypothesis, Theorem 4.4 in [11] concludes that, in
the notation of Theorem 6.2 above, ω+

∞ = ω−
∞ and u = u+

∞−u−∞ is a harmonic
polynomial. The proof that u is a polynomial shows there exists d ≥ 1
determined by n and the NTA constants of Ω such that u has degree at
most d. The correspondence between tangent measures and the blow-ups
of Green functions in Theorem 6.2 implies Tan(ω+, Q) = Tan(ω−, Q) ⊂ Pd.

�
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The self-improving property of tangent measures in Theorem 1.1 yields:

Corollary 6.6. Let Ω ⊂ R
n be a 2-sided NTA domain with interior har-

monic measure ω+ and exterior harmonic measure ω−. Assume ω+ � ω− �
ω+ and f = dω−/dω+ satisfies log f ∈ VMO(dω+). There exists d ≥ 1 which
depends only on n and the NTA constants of Ω and pairwise disjoint sets
Γ1, . . . ,Γd such that

(6.7) ∂Ω = Γ1 ∪ · · · ∪ Γd,

where Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk for all 1 ≤ k ≤ d and Q ∈ Γk.

The decomposition of the boundary in Corollary 6.6 has an extra inter-
pretation from the geometric measure theory viewpoint. Unfortunately the
proof of Theorem 2.7 does not provide a certificate to check at which points
in the support of a measure the translations of tangent measures are tangent
measures. But the corollary identifies the points in the support of harmonic
measure where this behavior occurs. To state the result, we first write down
a precise definition of the desired property.

Definition 6.7. Let M be a cone of non-zero Radon measures on R
n. We

say M is translation invariant if Tx,1[μ] ∈ M for all μ ∈ M and all x ∈ sptμ.

Proposition 6.8. Let Ω be as in Corollary 6.6. Then the cone Tan(ω±, Q)
is translation invariant if and only if Q ∈ Γ1.

Proof. If μ is a flat measure, then Tx,1[μ] = μ for every x ∈ spt μ. Hence
Tan(ω±, Q) ⊂ F1 is translation invariant for every Q ∈ Γ1.

Conversely, assume Tan(ω±, Q) ⊂ Fk is translation invariant and let
ν ∈ Tan(ω±, Q). Then spt ν = h−1(0) for some harmonic polynomial h.
By [5] the zero set of a harmonic polynomial is smooth away from a rectifiable
subset of dimension at most n−2. Hence, spt ν is smooth at some x ∈ spt ν.
Because Tx,1[ν] ∈ Tan(ω±, Q) and sptTx,1[ν] = spt ν − x, we conclude there
exists σ ∈ Tan(ω±, Q) ⊂ Fk such that spt σ is smooth at 0. But the zero
set of a non-zero homogeneous polynomial of degree k (the support of σ =
Tx,1[ν]) is smooth at 0 only if k = 1. Therefore, Tan(ω±, Q) ⊂ F1 and
Q ∈ Γ1. �

Corollary 6.9. Let Ω be as in Corollary 6.6. Then ω±(∂Ω \ Γ1) = 0.

Proof. By Theorem 2.7, the cone Tan(ω±, Q) of tangent measures at Q
is translation invariant for ω±-a.e. Q ∈ ∂Ω. Since this property fails at all
Q ∈ Γ2 ∪ · · · ∪ Γd (when d ≥ 2), the set must have zero harmonic measure.

�
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We can now record:

Proof of Theorem 1.3. Let Ω ⊂ R
n be a 2-sided NTA domain such

that ω+ � ω− � ω+ and log dω−/dω+ ∈ VMO(dω+). By Corollary 6.6
we can write ∂Ω = Γ1 ∪ · · · ∪ Γd where Tan(ω±, Q) ⊂ Fk for all Q ∈ Γk

(and d only depends on n and the NTA constants of Ω). By Corollary 6.9,
ω±(∂Ω \ Γ1) = 0.

Suppose that Q ∈ Γk and we are given ri ↓ 0. By Theorem 6.2, there is
a subsequence of ri (which we relabel) such that ω+(B(Q, ri))

−1TQ,ri
[ω+] ⇀

ω+
∞ ∈ Tan(ω+, Q) and

∂Ω −Q

ri
→ h−1(0) in Hausdorff distance,

uniformly on compact sets.
(6.8)

Since ω+
∞ ∈ Fk, there exists a homogeneous harmonic polynomial h : R

n → R

of degree k such that sptω+
∞ = h−1(0). �

Remark 6.10. One can also apply Theorem 1.1 to tangent measures on two-
sided domains without any assumptions on the Radon-Nikodym derivative
dω−/dω+. Let Ω ⊂ R

n be an arbitrary 2-sided NTA domain. First we recall
the definition of the set Γ ⊂ ∂Ω from [8]. By the differentiation theory of
Radon measures,

(6.9) h(Q) = lim
r↓0

ω−(B(Q, r))

ω+(B(Q, r))
∈ [0,∞]

exists at ω±-a.e. Q ∈ ∂Ω. Let

(6.10) Λ = {Q ∈ ∂Ω : h(Q) exists, 0 < h(Q) <∞}.
It is easily seen that ω+ � ω− � ω+ on Λ and ω+ ⊥ ω− on ∂Ω \ Λ. (Note
that [8] uses the notation ‘Λ1’ for Λ. They also define sets Λ2, Λ3 and Λ4

which we do not need here.) To define Γ we restrict our attention to density
points of Λ and h:

Γ = {Q ∈ Λ : Q is a density point of Λ

and a Lebesgue point of h w.r.t. ω+}.(6.11)

Note Γ agrees with Λ up to a set of ω± measure zero and any subset A ⊂ ∂Ω
such that ω+ A� ω− A� ω+ A can be written as A = B ∪N where
ω±(N) = 0 and B ⊂ Γ. Thus, up to a set of ω± measure zero, Γ is the
maximal “mutually absolutely continuous” piece of ∂Ω. By Theorems 3.3
and 3.4 in [8] (analogously to Theorems 6.2 and 6.5), there exists d ≥ 1 such
that Tan(ω+, Q) = Tan(ω−, Q) ⊂ Pd if Q ∈ Γ. Hence, by Theorem 1.1,

(6.12) Γ = Γ1 ∪ · · · ∪ Γd,

where for each Q ∈ Γk, Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk.
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In particular, if Ω ⊂ R
n is a 2-sided NTA domain and ω+ � ω− � ω+,

then

(6.13) ∂Ω = Γ ∪N = Γ1 ∪ · · · ∪ Γd ∪N
where ω±(N) = 0 and Tan(ω+, Q) = Tan(ω−, Q) ⊂ Fk for each Q ∈ Γk. �
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