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The intrinsic square function

Michael Wilson

Abstract

We show that the Lusin area function and essentially all of its
real-variable generalizations are pointwise dominated by an “intrin-
sic” square function, and that this latter function is, for all practical
purposes, no larger than a “generic” square function.

0. Introduction

The Lusin area (or “square”) function is a familiar object. If f : R
d �→ R

is such that u(x, y) ≡ Py ∗ f(x), the Poisson integral of f , is defined for all
(x, y) ∈ R

d+1
+ = R

d × (0,∞), then we define the Lusin function S(f) by

S(f)(x) ≡
(∫

Γ(x)

|∇u(t, y)|2 dt dy
yd−1

)1/2

,

where Γ(x) denotes the usual “cone of aperture one”,

Γ(x) = {(t, y) : |x− t| < y}.
We can similarly define a cone of aperture β for any β > 0:

Γβ(x) = {(t, y) : |x− t| < βy},
and corresponding square function

Sβ(f)(x) ≡
(∫

Γβ(x)

|∇u(t, y)|2 dt dy
yd−1

)1/2

.

There are also “zero-aperture” and (so to speak) “infinite aperture” varia-
tions of S(f).
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The zero-aperture one is called the Littlewood-Paley g-function and it is
defined by

g(f)(x) ≡
(∫ ∞

0

y|∇u(x, y)|2 dy
)1/2

.

The infinite-aperture object depends on a positive parameter λ and is called
the g∗λ-function. It is given by

g∗λ(f)(x) ≡
(∫

R
d+1
+

|∇u(t, y)|2
(

y

y + |x− t|
)λ

dt dy

yd−1

)1/2

.

These objects satisfy some well-known pointwise inequalities: If β < β ′,
Sβ(f) ≤ Sβ′(f); if λ < λ′, g∗λ(f) ≥ g∗λ′(f); for all β > 0 and λ > 0,
Sβ(f) ≤ C(λ, β)g∗λ(f); for all β > 0, g(f) ≤ C(β, d)Sβ(f) (the last one
makes use of the sub-mean value property of |∇u|2).

They also satisfy some familiar norm inequalities. If 1 < p < ∞ and
f ∈ Lp, then ‖f‖p ∼ ‖g(f)‖p, with comparability constants that only depend
on p and d. Similarly, ‖f‖p ∼ ‖Sβ(f)‖p, but now the constants depend
on β as well. Finally (and with similar qualifications), if λ > 2d/p, then
‖f‖p ∼ ‖g∗λ(f)‖p. These inequalities also hold for many weighted Lp spaces.

What makes these functions useful is that they are “almost invariant”
under the action of many Fourier multiplier and singular integral opera-
tors. For example, if d = 1 and H denotes the Hilbert transform, then
S(Hf) = S(f) (because |∇(Py ∗ Hf)(x)| = |∇(Py ∗ f)(x)|), immediately
implying ‖Hf‖p ∼ ‖f‖p for 1 < p < ∞. Unfortunately, for other oper-
ators T , things are not so simple. The best one can usually get is that
S(Tf) or g(Tf) is bounded by a constant times the relatively unwieldy
g∗λ(f), where λ depends on T . This limits the usefulness of these “classical”
Littlewood-Paley functions.

Another serious limitation comes from the very definitions of Sβ(f), and
g(f), and g∗λ(f); namely, that they come from convolutions between f and
kernels with unbounded supports. This can make it hard to analyze the
local behavior of, say, S(f). Suppose we want to know what S(f) is doing
on a cube Q. Here it is natural to consider a “truncated” form of S(f),
given by the formula

Str(f)(x) ≡
(∫

(t,y)∈Γ(x): y≤�(Q)

|∇u(t, y)|2 dt dy
yd−1

)1/2

, (0.1)

where �(Q) denotes the sidelength of Q. Unfortunately, to understand even
this simplified S(f), we must separately consider the contributions of f
“near” Q (say, in Q̃, the triple of Q) and “far” from Q (everything else);
and the contribution from “everything else” can be substantial.
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This problem can be overcome by defining a new square function. Let
ψ ∈ C∞

0 (Rd) be real, radial, have support contained in {x : |x| ≤ 1}, and
be normalized so that ∫ ∞

0

|ψ̂(yξ)|2 dy
y

≡ 1

for all ξ �= 0. The real-variable Lusin function Sψ(f) is defined by

Sψ(f)(x) ≡
(∫

Γ(x)

|f ∗ ψy(t)|2 dt dy
yd+1

)1/2

,

where we are using ψy to denote the usual L1 dilation of ψ:

ψy(x) ≡ y−dψ(x/y).

Like the classical Lusin function, Sψ(f) satisfies

‖Sψ(f)‖p ∼ ‖f‖p for 1 < p <∞,

but Sψ(f)(x) has the good property that, for x ∈ Q, its truncated form
(analogous to (0.1)) only depends on what f does near Q, which makes it
(in many cases) easier to analyze. Also like S(f), it is “almost invariant”
under the action of singular integral operators; however, in this case the
complications become more acute, because we can no longer use properties
of harmonic functions to analyze the resulting square functions.

In this paper we introduce a real-variable version of the Lusin function
that, within reason, does everything one would ever want a square function
to do: it dominates (modulo constants) g(f) and all the Sβ(f)’s, while being
essentially no bigger than a generic Sψ(f), and its truncated form (see (0.1))
only depends on what f does near Q.

This square function is easy to define. For 0 < α ≤ 1, let Cα be the family
of functions φ : R

d �→ R such that φ’s support is contained in {x : |x| ≤ 1},∫
φ dx = 0, and, for all x and x′,

|φ(x) − φ(x′)| ≤ |x− x′|α.
For (t, y) ∈ R

d+1
+ and f ∈ L1

loc(R
d), set

Aα(f)(t, y) ≡ sup
φ∈Cα

|f ∗ φy(t)|.

We define the intrinsic square function of f (of order α) by the formula

Gα(f)(x) ≡
(∫

Γ(x)

(Aα(f)(t, y))2 dt dy

yd+1

)1/2

.
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In section 1 we prove

Theorem 1 If 0 < α ≤ 1 and 1 < p ≤ 2, there is a constant C(p, d, α)
such that, for all f ∈ L1

loc(R
d) and all non-negative v ∈ L1

loc(R
d),∫

Rd

(Gα(f))p v dx ≤ C(p, d, α)

∫
Rd

|f |pM(v) dx, (0.2)

where M(·) denotes the Hardy-Littlewood maximal operator.

If φ ∈ Cα, and we replace Gα(f) with Sφ(f) (defined just as we did for
ψ ∈ C∞

0 (Rd)), then the inequality,∫
Rd

(Sφ(f))p v dx ≤ C

∫
Rd

|f |pM(v) dx, (0.3)

holds for all 1 < p ≤ 2, all f , and all v, with a constant C that only depends
on p, d, and α [2]. What is significant is that we can find a φ ∈ Cα such that
(0.3) fails for both p ≤ 1 and p > 2. (Indeed, if p ≤ 1 and v ≡ 1, inequality
(0.3) fails if f is the characteristic function of a cube.) It is therefore a little
(but only a little) surprising that the inequality remains true for Gα(f).

As we did with S(f), we can define varying-aperture (and even zero-
aperture) versions of Gα(f):

Gα,β(f)(x) ≡
(∫

Γβ(x)

(Aα(f)(t, y))2 dt dy

yd+1

)1/2

gα(f)(x) ≡
(∫ ∞

0

(Aα(f)(x, y))2 dy

y

)1/2

.

We can also define a discretized form:

σα(f)(x) ≡
( ∞∑

−∞
(Aα(f)(x, 2k))2

)1/2

.

All three of these functions—Gα,β(f), gα(f), and σα(f)—are pointwise com-
parable to Gα(f), with comparability constants which, for the first function,
depend on α, β, and d, and, for other two, only depend on α and d. This
result is easy (we prove it in section 1). It is useful because, in estimating
Gα(f), it means we can choose a form that requires the least work.

In section 2 we show that Gα(f), which is defined via convolutions with
kernels supported in {x : |x| ≤ 1}, actually dominates similar-looking
square functions that are defined via convolutions with kernels that have
unbounded supports. One of these similar-looking functions is bigger than
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or equal to a constant times S(f), implying that inequality (0.3) also holds
for the classical Lusin function. This yields a positive answer to a question
raised by R. Fefferman and E. M. Stein. The result, though expected, is
slightly surprising, because the proofs of (0.2) and (0.3) –as we will see–
make essential use of the assumption that the φ’s supports are contained in
{x : |x| ≤ 1}.

These similar-looking square functions are also easy to define. For 0 <
α ≤ 1 and ε > 0, let C(α,ε) be the family of functions φ : R

d �→ R such that,
for all x,

|φ(x)| ≤ (1 + |x|)−d−ε; (0.4)

and, for all x and x′,

|φ(x) − φ(x′)| ≤ |x− x′|α((1 + |x|)−d−ε + (1 + |x′|)−d−ε); (0.5)

and also satisfy
∫
φ dx = 0.

It is frequently useful to observe that, if φ satisfies (0.4), then inequal-
ity (0.5) will hold for all x and x′, if and only if it holds for all x and x′ such
that |x− x′| ≤ 1.

Let f be such that |f |(1 + |x|)−d−ε ∈ L1. For every (t, y) ∈ R
d+1
+ , set

Ã(α,ε)(f)(t, y) ≡ sup
φ∈C(α,ε)

|f ∗ φy(t)|.

We define

G̃(α,ε)(f)(x) ≡
(∫

Γ(x)

(Ã(α,ε)(f)(t, y))2 dt dy

yd+1

)1/2

.

There is a positive constant c, depending only on α, ε, and d, such that
cφ ∈ C(α,ε) whenever φ ∈ Cα. Therefore, Gα(f) ≤ CG̃(α,ε)(f). In section 2 we
prove that this inequality has a partial converse; one which, for all practical
purposes, might as well be a full converse. We prove:

Theorem 2 Let 0 < α ≤ 1 and ε > 0. For every α′ satisfying 0 < α′ ≤ α
and α′ < ε, there is a constant C(α, α′, ε, d), so that, for all f such that
|f |(1 + |x|)−d−ε ∈ L1, and all t ∈ R

d,

G̃(α,ε)(f)(t) ≤ C(α, α′, ε, d)Gα′(f)(t).

The proof of Theorem 2 makes use of a simple observation (“free lunch
lemma”) which seems to be new.
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In section 1 we prove Theorem 1 and the pointwise comparabilities among
Gα(f), Gα,β(f), gα(f), and σα(f). In section 2 we prove Theorem 2. In sec-
tion 3 we discuss some of the implications of these theorems for singular
integrals and pointwise convergence of continuous approximations.

This research was carried out while I was spending a delightful sabbatical
year at the Universidad de Sevilla. While there my family and I received
countless kindnesses and acts of hospitality from friends both inside and
outside the Universidad. I am afraid to try to list all of our benefactors,
for fear of omitting any one of them. But I must give special thanks to
my friend and colleague, Carlos Pérez Moreno, without whose tireless work,
both before and after our arrival in Spain, my visit would not have been
possible.

1. The basic inequalities

The proof of Theorem 1 has three steps, of which the first is fundamental.

Step One. There is a constant C(α, d) such that, for all f ∈ L1
loc(R

d),

‖Gα(f)‖2 ≤ C(α, d)‖f‖2.

From this the method of [1] will immediately yield:

Step Two. There is a constant C(α, d) such that, for all f ∈ L1
loc(R

d) and
all non-negative v ∈ L1

loc(R
d),∫

Rd

(Gα(f))2 v dx ≤ C(α, d)

∫
Rd

|f |2M(v) dx.

Then, mimicking the method from [2], we will get:

Step Three. There is a constant C(α, d) such that, for all λ > 0, all f ∈
L1
loc(R

d) and all non-negative v ∈ L1
loc(R

d),

v ({x : Gα(f)(x) > λ}) ≤ C(α, d)

λ

∫
Rd

|f |M(v) dx.

Theorem 1 will then follow by interpolation.

Step One. It is an easy exercise to show that Aα(f)(t, y) is a measurable
function of (t, y). Therefore the questions we are asking about Aα(f)(t, y)
all make sense. An application of Fubini-Tonelli shows that L2 boundedness
of Gα(f) is equivalent to having∫

R
d+1
+

(Aα(f)(t, y))2dt dy

y
≤ C(α, d)

∫
Rd

|f |2 dx
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for all f ∈ L2, which is the same as showing∫
K

(Aα(f)(t, y))2dt dy

y
≤ C(α, d)

∫
Rd

|f |2 dx

for all compact K ⊂ R
d+1
+ , and this is what we will show.

Let K ⊂ R
d+1
+ be compact and suppose that ‖f‖2 ≤ 1. If φ ∈ Cα then

f ∗ φy(t) is continuous on K. The function Aα(f)(t, y) is also continuous
onK. Therefore we can choose, in a measurable (indeed, piecewise constant)
fashion, functions φ(t,y) ∈ Cα such that, for every (t, y) ∈ K,

|f ∗ φ(t,y)
y (t)| ≥ (1/2)Aα(f)(t, y).

Let g : R
d+1
+ �→ R be a measurable function such that∫

R
d+1
+

|g(t, y)|2 dt dy
y

= 1.

We will be done if we can show∣∣∣∣
∫
K

(f ∗ φ(t,y)
y (t)) g(t, y)

dt dy

y

∣∣∣∣ ≤ C(α, d). (1.1)

The integral in (1.1) is equal to∫
Rd

f(x)

(∫
K

g(t, y)φ(t,y)
y (t− x)

dt dy

y

)
dx.

Set

G(x) ≡
∫
K

g(t, y)φ(t,y)
y (t− x)

dt dy

y
.

Since the integration is over a compact set, this is a bounded, continuous
function of x, with bounded support. What we need to show is that

‖G‖2 ≤ C(α, d).

We will now do this.

For every dyadic cube Q ⊂ R
d, let T (Q) = Q × [�(Q)/2, �(Q)), where

�(Q) is Q’s sidelength. (This is the standard “top half” of the Carleson box
over Q.) These sets tile R

d+1
+ , and only finitely many of them intersect K;

therefore we can rewrite the integral defining G as

∑
Q

∫
T (Q)∩K

g(t, y)φ(t,y)
y (t− x)

dt dy

y
,

and this is in fact a finite sum.
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We can rewrite each summand as∫
T (Q)∩K

g(t, y)φ(t,y)
y (t− x)

dt dy

y
= λQa(Q),

where

λQ =

(∫
T (Q)

|g(t, y)|2 dt dy
y

)1/2

and a(Q) is a continuous function having certain nice properties. In part-
icular:

1. The support of a(Q) is contained inside Q̃, the triple of Q.

2.

∫
a(Q) dx = 0.

3. There is a constant C(α, d) such that, for all x and x′,

|a(Q)(x) − a(Q)(x
′)| ≤ C(α, d)(|x− x′|/�(Q))α|Q|−1/2.

Each of these properties follows from a corresponding defining property
for Cα. The only moderately tricky one is number 3, for which the crucial
inequality to show is:(∫

T (Q)

∣∣φ(t,y)
y (t−x) − φ(t,y)

y (t−x′)∣∣ 2 dt dy
y

)1/2

≤ C(α, d)(|x−x′|/�(Q))α|Q|−1/2,

which is easy, although the reader should notice how important it is that
the smoothness property of functions in Cα holds pointwise, and not merely
in an averaged sense.

It is a theorem (see [5, p. 11]) that a collection of functions {a(Q)}Q,
indexed over dyadic cubes Q, and satisfying 1, 2, and 3, is almost orthogonal :
there is a C(α, d) such that, for all finite linear combinations

∑
Q γQa(Q),∫

Rd

∣∣∣∑
Q

γQa(Q)

∣∣∣2 dx ≤ C(α, d)
∑
Q

|γQ|2.

But that implies that ‖G‖2 ≤ C(α, d), and so finishes the proof of Step One.

Step Two. Here and in the sequel, we will be using this definition of the
Hardy-Littlewood maximal function:

M(h)(x) ≡ sup
B:x∈B

1

|B|
∫
B

|h(t)| dt,

where the supremum is over all balls that contain x.
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Let v be an arbitrary non-negative function in L1
loc(R

d). When E is a
measurable subset of R

d we will denote
∫
E
v dx by v(E). For (t, y) ∈ R

d+1
+ ,

let B(t; y) be the Euclidean ball in R
d centered at t with radius y. Fubini-

Tonelli implies that∫
Rd

(Gα(f))2 v dx = C(d)

∫
R

d+1
+

(Aα(f)(t, y))2 v(B(t; y))

|B(t; y)|
dt dy

y
.

For each integer k, define

F k = {(t, y) ∈ R
d+1
+ : 2k <

v(B(t; y))

|B(t; y)| ≤ 2k+1}.

These sets are disjoint and their union is {(t, y) ∈ R
d+1
+ : v(B(t; y)) > 0}.

Therefore∫
Rd

(Gα(f))2 v dx = C(d)
∑
k

∫
F k

(Aα(f)(t, y))2 v(B(t; y))

|B(t; y)|
dt dy

y

≤ C(d)
∑
k

2k
∫
F k

(Aα(f)(t, y))2 dt dy

y
.

We now notice two things:

a) if (t, y) ∈ F k then B(t; y) ⊂ {x ∈ R
d : M(v) > 2k} ≡ Ek;

b) if (t, y) ∈ F k then Aα(f)(t, y) = Aα(fχEk
)(t, y).

The first fact is trivial. The second follows because, if φ ∈ Cα, the function
φy(t − ·) has support contained in B(t; y) (this is where compact support
plays a vital role). These imply that, for each k,∫

F k

(Aα(f)(t, y))2 dt dy

y
=

∫
F k

(Aα(fχEk
)(t, y))2 dt dy

y

≤ C(α, d)

∫
|fχEk

|2 dx

= C(α, d)

∫
|f |2 χEk

dx,

where the second line follows from Step One. Summing on k, we now get∫
Rd

(Gα(f))2 v dx ≤ C(α, d)
∑
k

2k
∫
|f |2 χEk

dx ≤ C(α, d)

∫
Rd

|f |2M(v) dx,

which is Step Two.
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Step Three. Following the argument from [2], we will show that there is
a constant C(α, d) such that, for all λ > 0, and all functions f and v,

v ({x : Gα(f)(x) > λ}) ≤ C(α, d)

λ

∫
Rd

|f |M(v) dx,

from which Theorem 1 will follow.
Let Ωλ = {x : M(f)(x) > λ}, and let {Qk}k be a decomposition of Ωλ

into Whitney cubes. These are disjoint dyadic cubes whose union is all of
Ωλ and such that, for all k,

�(Qk) ≤ d(Qk, ∂Ωλ) ≤ C(d)�(Qk),

where d(·, ·) is the Euclidean distance between two sets, and C(d) is a di-
mensional constant; we refer the reader to [6] for their construction.

A result of Fefferman and Stein [3] says that

v(Ωλ) ≤ C(d)

λ

∫
Rd

|f |M(v) dx.

Therefore it will be enough for us to show

v ({x /∈ Ωλ : Gα(f)(x) > λ}) ≤ C(α, d)

λ

∫
Rd

|f |M(v) dx.

Following a standard procedure, we split f into two pieces: f = g+ b, where

g(x) =

{
f(x) if x /∈ Ωλ;

1
|Qk|

∫
Qk
f dt if x ∈ Qk.

Because the Whitney cubes are “almost maximal,” the function g satisfies

‖g‖∞ ≤ C(d)λ.

Set bk ≡ bχQk
= (f −fQk

)χQk
, where we are using fQk

to denote f ’s average
over Qk. Each function bk is supported in Qk, has integral equal to 0, and
also satisfies ‖bk‖1 ≤ C(d)

∫
Qk

|f | dx. It is clear that b =
∑

k bk.

We will separately estimate

v ({x /∈ Ωλ : Gα(g)(x) > λ/2}) (1.2)

and

v ({x /∈ Ωλ : Gα(b)(x) > λ/2}) . (1.3)
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Estimation of (1.2). By Step One,∫
Rd\Ωλ

(Gα(g))
2 v dx =

∫
Rd

(Gα(g))
2 vχRd\Ωλ

dx

≤ C(α, d)

∫
Rd

|g|2M(vχRd\Ωλ
) dx

≤ C(α, d)λ

∫
Rd\Ωλ

|f |M(v) dx+ C(α, d)λ
∑
k

∫
Qk

|g|M(vχRd\Ωλ
) dx

≤ C(α, d)λ

∫
Rd

|f |M(v) dx+ C(α, d)λ
∑
k

|fQk
|
∫
Qk

M(vχRd\Ωλ
) dx.

However, for each Qk,

sup
x∈Qk

M(vχRd\Ωλ
)(x) ≤ C(d) inf

x∈Qk

M(v)(x),

and therefore

|fQk
|
∫
Qk

M(vχRd\Ωλ
) dx ≤ C(d)

∫
Qk

|f |M(v) dx.

Hence,

∫
Rd\Ωλ

(Gα(g))
2 v dx ≤ C(α, d)λ

(∫
Rd

|f |M(v) dx+
∑
k

∫
Qk

|f |M(v) dx

)

≤ C(α, d)λ

∫
Rd

|f |M(v) dx.

An application of Chebyshev’s Inequality (dividing both sides by (λ/2)2)
yields the desired estimate.

Estimation of (1.3). We will show that, for each k,∫
Rd\Ωλ

Gα(bk) v dx ≤ C(α, d)

∫
Qk

|f |M(v) dx. (1.4)

Summing on k will then yield∫
Rd\Ωλ

Gα(b) v dx ≤ C(α, d)
∑
k

∫
Qk

|f |M(v) dx,

from which the weak (1, 1) estimate will follow at once.
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Inequality (1.4) is itself a direct consequence of this simple fact: Suppose
that h ∈ L1(Q), Q a cube, and

∫
Q
h dx = 0. Then, for all x such that

d(x,Q) > �(Q),

Gα(h)(x) ≤ C(α, d)‖h‖1|Q|−1(1 + |x− xQ|/�(Q))−d−α, (1.5)

where we are using xQ to denote Q’s center. This implies (1.4) because it
yields∫

Rd\Ωλ

Gα(bk) v dx ≤

C(α, d)

(∫
Qk

|f | dx
)(

|Qk|−1

∫
Rd

v(x) (1 + |x− xQ|/�(Q))−d−α dx
)
.

But

|Qk|−1

∫
Rd

v(x) (1 + |x− xQ|/�(Q))−d−α dx ≤ C(α, d) inf
x∈Qk

M(v)(x),

and therefore ∫
Rd\Ωλ

Gα(bk) v dx ≤ C(α, d)

∫
Qk

|f |M(v) dx.

We finish by proving (1.5).

Suppose d(x,Q) > �(Q), (t, y) ∈ Γ(x), and φ ∈ Cα. Since φ is supported
inside {x : |x| ≤ 1} and |x − t| < y, the convolution h ∗ φy(t) will be zero
unless y > c|x − xQ|, where c is some positive constant that depends on d.
We merely note this fact now; it will become important soon.

We can easily estimate the convolution h ∗ φy(t).

|h ∗ φy(t)| =

∣∣∣∣
∫
Q

φy(t− x) h(x) dx

∣∣∣∣ =

∣∣∣∣
∫
Q

(φy(t− x) − φy(t− xQ)) h(x) dx

∣∣∣∣
≤ C(d)(�(Q)/y)αy−d‖h‖1 = C(d)�(Q)α‖h‖1y

−d−α,

implying that Aα(h)(t, y) ≤ C(α, d)�(Q)α‖h‖1y
−d−α for (t, y) ∈ Γ(x). If we

fix a y > c|x− xQ| then∫
|t−x|<y

(Aα(f)(t, y))2 dt

yd+1
≤ C(α, d)�(Q)2α‖h‖2

1y
−2d−2α−1.

When we integrate this (in y) from c|x− xQ| to infinity, and take a square
root, we obtain:

Gα(h)(x) ≤ C(α, d)�(Q)α‖h‖1|x− xQ|−d−α.
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However, so long as |x− xQ| > �(Q),

�(Q)α

|x− xQ|d+α ≤ C
�(Q)α

(�(Q) + |x− xQ|)d+α
= C�(Q)−d(1 + |x− xQ|/�(Q))−d−α = C|Q|−1(1 + |x− xQ|/�(Q))−d−α,

which is exactly what we wanted. Theorem 1 is proved.

To understand the relationships among among Gα(f), Gα,β(f), gα(f),
and σα(f), it is convenient to rephrase the definition of Aα(f)(t, y). For
(t, y) ∈ R

d+1
+ , let Cα(t, y) be the family of functions φ : R

d �→ R, supported
in B(t; y), such that

∫
φ dx = 0 and, for all x and x′ in R

d,

|φ(x) − φ(x′)| ≤ y−d−α|x− x′|α.
It is trivial that

Aα(f)(t, y) = sup
φ∈Cα(t,y)

∣∣∣∣
∫
f(x)φ(x) dx

∣∣∣∣ .
We make two observations about the families Cα(t, y).

1. If 0 < y1 < y2 and φ ∈ Cα(t, y1), then (y1/y2)
d+αφ ∈ Cα(t, y2).

2. If |t−x| < y1, y2 ≥ 2y1, and φ ∈ Cα(t, y1), then (y1/y2)
d+αφ ∈ Cα(x, y2).

In particular, 2d+αφ ∈ Cα(x, 2y1).

These observations have two easy consequences.

1. If β ≥ 1 then Gα,β(f)(x) ≤ β(3/2)d+αGα(f)(x).

Proof : It is clearly enough to prove this when x = 0. We begin with the
inequality, valid for all |t| < βy,

Aα(f)(t, y) ≤ βd+αAα(f)(t, βy),

which follows from observation 1. Therefore, for each fixed y > 0,∫
|t|<βy

(Aα(f)(t, y))2 dt

yd+1
≤ β2d+2α

∫
|t|<βy

(Aα(f)(t, βy))2 dt

yd+1
.

Integrating in y from 0 to ∞ yields

(Gα,β(f)(0))2 ≤ β2d+2α

∫
|t|<βy

(Aα(f)(t, βy))2 dt dy

yd+1
.

But a change of variable θ = βy shows that the right-hand integral equals
βd(Gα(f)(0))2, from which our result follows.
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2. The functions Gα(f) and gα(f) are pointwise comparable, with com-
parability constants only depending on α and d.

Proof : For all y > 0,∫
|t|<y

(Aα(f)(t, y))2 dt

yd
≤ C(α, d)(Aα(f)(0, 2y))2

and

(Aα(f)(0, y))2 ≤ C(α, d)

∫
|t|<y

(Aα(f)(t, 2y))2 dt

yd

≤ C(α, d)

∫
|t|<2y

(Aα(f)(t, 2y))2 dt

yd
.

Integrating these inequalities in dy
y

from 0 to ∞ yields gα(f)(0) ∼ Gα(f)(0),
with comparability constants only depending on α and d.

Similar arguments yield the pointwise comparability of gα(f) and σα(f);
we leave these to the interested reader, as we will also leave the verification
of the following observation. Corresponding to G̃(α,ε)(f), we can define zero-
aperture and discretized square functions; respectively,

g̃(α,ε)(f)(x) ≡
(∫ ∞

0

(Ã(α,ε)(f)(x, y))2 dy

y

)1/2

σ̃(α,ε)(f)(x) ≡
( ∞∑

−∞
(Ã(α,ε)(f)(x, 2k))2

)1/2

.

Having worked through what happens when the kernels have bounded sup-
ports, the reader should have no trouble checking that G̃(α,ε)(f) ∼ g̃(α,ε)(f) ∼
σ̃(α,ε)(f), with comparability constants that depend on α, ε, and d.

2. Unbounded supports

We need a way to express convolutions with functions in C(α,ε), in a controlled
fashion, in terms of convolutions with (appropriately dilated) functions in
some Cα′ . For this it is convenient to introduce a new class of functions.

Definition. Let 0 < α ≤ 1 and ε > 0. The Uchiyama class U(α,ε) is the set
of functions φ : R

d �→ R such that, for all x,

|φ(x)| ≤ (1 + |x|)−d−ε;
and, for all x and x′,

|φ(x) − φ(x′)| ≤ |x− x′|α ((1 + |x|)−d−ε−α + (1 + |x′|)−d−ε−α) ; (2.1)

and which also satisfy
∫
φ dx = 0.
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The only difference between C(α,ε) and U (α,ε) is in (2.1), where we are
requiring extra decay in φ’s smoothness.

This is a real difference. But, as we shall see, it is also an illusion.
The usefulness of U (α,ε) lies in the following lemma, which is a very slight

generalization of a decomposition lemma due to Uchiyama [7].

Lemma 3 Let 0 < α ≤ 1 and ε > 0. There is a constant C(d, α, ε) such
that, if ψ ∈ U(α,ε), there exists a sequence of functions {φk}∞0 such that

ψ = C(d, α, ε)

∞∑
0

2−kεφk

and every φk belongs to Cα(0, 2k).
Lemma 3 has important consequences. It implies that, if ψ ∈ U(α,ε) and

|f |(1 + |x|)−d−ε ∈ L1, then

|f ∗ ψ(0)| ≤ C(d, α, ε)

∞∑
0

2−kεAα(f)(0, 2k)

≤ C(d, α, ε)

( ∞∑
0

2−kε(Aα(f)(0, 2k))2

)1/2

.

It follows from the definition of Cα(0, y) that, if y and r are positive, then
φ ∈ Cα(0, y) if and only if φr ∈ Cα(0, ry). Therefore, if ψ ∈ U(α,ε) and j is
any integer,

|f ∗ ψ2j (0)| ≤ C(d, α, ε)

( ∞∑
0

2−kε(Aα(f)(0, 2k+j))2

)1/2

.

If {ψ(j)}∞−∞ is any sequence of functions from U(α,ε), then, assuming the
truth of Lemma 3, we will get

∞∑
j=−∞

|f ∗ ψ(j)

2j (0)|2 ≤ C(d, α, ε)

∞∑
j=−∞

∞∑
k=0

2−kε(Aα(f)(0, 2k+j))2

= C(d, α, ε)
∞∑

l=−∞
(Aα(f)(0, 2l))2

l∑
j=−∞

2−(l−j)ε

= C(d, α, ε)

∞∑
l=−∞

(Aα(f)(0, 2l))2

∞∑
k=0

2−kε = C(d, α, ε)

∞∑
l=−∞

(Aα(f)(0, 2l))2

= C(d, α, ε)(σα(f)(0))2 ≤ C(d, α, ε)(Gα(f)(0))2,

which is almost (but not quite) Theorem 2: all that would be missing is
a corresponding decomposition theorem for functions that are only good
enough to belong to C(α,ε).
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Proof of Lemma 3. Let h ∈ C∞
0 (Rd) be real, radial, non-negative, have

support contained in {x : 1/4 ≤ |x| ≤ 1}, and be normalized so that

∞∑
−∞

h(2−kx) ≡ 1

for x �= 0. There exists a j0 < 0 such that

∞∑
j0+1

h(2−kx) ≡ 1

when |x| ≥ 1. Re-index this sum as
∑∞

1 h(2−(j0+k)x). Define

ρ0(x) ≡ 1 −
∞∑
j0+1

h(2−kx)

and set
ρk(x) ≡ h(2−(j0+k)x) for k ≥ 1.

Each ρk has support contained in {x : |x| ≤ 2k} and satisfies the inequalities:∫
ρk(x) dx ≥ C2kd, |∇ρk(x)| ≤ C2−k,

where the constants C only depend on d, h, and j0.
Define, for k ≥ 0,

gk(x) ≡
(∫

(
∑k

0 ρj)ψ dt
)
ρk(x)∫

ρk(t) dt
.

It is easy to see that gk → 0 uniformly. In fact, this convergence is pretty
fast. For any k,

∫ ( k∑
0

ρj

)
ψ dt = −

∫ (∑
j>k

ρj

)
ψ dt, (2.2)

because
∫
ψ dt = 0. But, when k ≥ 1, the integral on the right-hand side

of (2.2) has modulus no bigger than∫
|x|≥c2k

|ψ(t)| dt ≤ C2−kε.

Therefore, gk = Ckρk, where |Ck| ≤ C2−k(d+ε).
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Notice that,
∫
g0(t) dt =

∫
ψ ρ0 dt; and, when k ≥ 1,∫

(gk(t) − gk−1(t)) dt =

∫
ψ(t) ρk(t) dt.

We can now finish the proof of Lemma 3 in a few lines. We write:

ψ =

∞∑
0

ψρk =

∞∑
0

ψρk −
(
g0 +

∞∑
1

(gk − gk−1)
)

= (ψρ0 − g0) +
∞∑
1

(
ψρk − (gk − gk−1)

) ≡ C(d, α, ε)
∞∑
0

2−kεφk,

and we claim that, if we take C(d, α, ε) large enough, the φk’s we have just
(implicitly) defined will do the trick. This amounts to showing that, for
each k, the support of φk is contained in {x : |x| ≤ 2k}, ∫ φk dt = 0, and,
for all x and x′,

|φk(x) − φk(x
′)| ≤ C|x− x′|α2−k(d+α),

where C is a constant depending only on h, j0, α, ε, and d. The first two
requirements are easy; and the third is also not so bad. Without loss of
generality we can assume that k ≥ 2. Because of the support condition,
we can assume that |x − x′| ≤ C2k; and, because each ρk is supported in
an annulus, with inner and outer radii comparable to 2k, we can assume
that |x| and |x′| are both comparable to 2k. For these x’s and x′’s we have
the following estimates:

|ψ(x)| + |ψ(x′)| ≤ C2−k(d+ε)

|ψ(x) − ψ(x′)| ≤ C|x− x′|α2−k(d+ε+α)

|ρk(x)| + |ρk(x′)| ≤ C

|ρk(x) − ρk(x
′)| ≤ C|x− x′|2−k ≤ C|x− x′|α2−kα,

where the last inequality uses the facts that α ≤ 1 and |x − x′|/2k ≤ C.
Combining these with our estimates on Ck above, we also get:

|gk(x)| + |gk(x′)| ≤ C2−k(d+ε)

|gk(x) − gk(x
′)| ≤ C2−k(d+ε+α)|x− x′|α,

which is exactly the smoothness we require. But now, by mimicking the
proof of the product rule, it is also easy to show that

|ψ(x)ρk(x) − ψ(x′)ρk(x′)| ≤ C2−k(d+ε+α)|x− x′|α,
which finishes the proof of Lemma 3.
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As we saw, immediately before the proof of Lemma 3, Theorem 2 would
follow if we had a “Lemma 3” for functions in C(α,ε); i.e., for functions that
do not have that extra bit of decay in their modulus of Hölder continuity.
We do have one.

Free Lunch Lemma. Let 0 < α ≤ 1 and ε > 0, and suppose 0 < α′ ≤ α
and α′ < ε. Define ε′ ≡ ε− α′. Then:

C(α,ε) ⊂ U (α′,ε′).

Remark . The moral of the Free Lunch Lemma is that, by sacrificing (actu-
ally, by not counting) a little of the decay of a φ ∈ C(α,ε), we get a function
(the same function!) with “improved” decay in its Hölder modulus, though
to a different order.

Proof of the Free Lunch Lemma. Let φ ∈ C(α,ε). It is trivial that

|φ(x)| ≤ (1 + |x|)−d−ε′,
because ε′ < ε. If |x− x′| ≤ 1 then

|φ(x) − φ(x′)| ≤ |x− x′|α ((1 + |x|)−d−ε + (1 + |x′|)−d−ε)
≤ |x− x′|α′

(
(1 + |x|)−d−ε′−α′

+ (1 + |x′|)−d−ε′−α′
)
,

because |x− x′| ≤ 1, α′ ≤ α, and ε′ + α′ = ε.

On the other hand, if |x− x′| ≥ 1,

|φ(x) − φ(x′)| ≤ (1 + |x|)−d−ε + (1 + |x′|)−d−ε

≤ |x− x′|α′
(
(1 + |x|)−d−ε′−α′

+ (1 + |x′|)−d−ε′−α′
)
.

The Free Lunch Lemma is proved, and therefore Theorem 2 is too.

3. Consequences

Continuous approximations. For 0 < α ≤ 1 and ε > 0, let I(α,ε) be the
set of functions φ such that, for all x ∈ R

d,

|φ(x)| ≤ (1 + |x|)−d−ε;
and, for all x and x′,

|φ(x) − φ(x′)| ≤ |x− x′|α((1 + |x|)−d−ε + (1 + |x′|)−d−ε).
The family I(α,ε) is just C(α,ε) without the cancellation condition. There is a
positive K such that KI(α,ε) contains infinitely many elements with integral
equal to 1. Let K(α, ε) be the infimum of all such K’s. (Note that K(α, ε)
also depends on d.)
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If f is such that |f |(1 + |x|)−d−ε ∈ L1 then, for every integer k and every
x ∈ R

d, the following object makes sense:

D(α,ε)(f)(x, 2k) ≡ sup
φ1,φ2∈2K(α,ε)I(α,ε)�

φ1=
�

φ2=1

|f ∗ (φ1)2k(x) − f ∗ (φ2)2k(x)|.

It measures the maximum possible deviation between two (suitably normal-
ized) continuous “mollifications” of f , at scale 2k, near the point x. Clearly,

D(α,ε)(f)(x, 2k) ≤ C(α, ε, d)Ã(α,ε)(f)(x, 2k),

and therefore, if 1 < p ≤ 2,∫
Rd

(∑
k

(D(α,ε)(f)(x, 2k))2

)p/2
v dx ≤ C(α, ε, p, d)

∫
Rd

|f |pM(v) dx

for all f with suitable decay, and all non-negative v ∈ L1
loc(R

d). What is
interesting about this is that, modulo our normalization, the mollifiers φ1

and φ2 can vary arbitrarily with x and k.

A conjecture of Fefferman and Stein. R. Fefferman and E. M. Stein [4]
conjectured that the following weighted-norm inequality held for all non-
negative v ∈ L1

loc(R
d) and all f such that the left-hand side makes sense:∫

Rd

(S(f))2 v dx ≤ C

∫
Rd

|f |2M(v) dx. (3.1)

The difficulty in proving (3.1) –as opposed to (0.3)– lies in the fact that S(f)
is defined via convolutions with non-compactly supported kernels. However,
it is trivial that the kernels which “generate” the components of ∇u are all
positive multiples of functions in C(1,1), and therefore

y|∇u(t, y)| ≤ CÃ(1,1)(f)(t, y),

implying S(f) ≤ CGα(f) pointwise, for all 0 < α < 1. (In fact, since the
generating kernels actually lie in U(1,1), we can slightly improve the pointwise
inequality to S(f) ≤ CG1(f).) The conjecture now follows from Theorem 1.

Singular integrals. Let Ω : R
d \ {0} �→ R be homogeneous of order 0,

Hölder continuous of order ε on Sd−1 ≡ {x : |x| = 1}, and satisfy∫
Sd−1

Ω(x) dσ(x) = 0,

where dσ denotes (d− 1)-dimensional surface measure. We normalize Ω by
requiring that |Ω(x) − Ω(x′)| ≤ |x − x′|ε for all x and x′ in Sd−1, and of
course we assume that ε ≤ 1.
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It is well-known that the singular integral operator TΩ given by

TΩ(f)(x) ≡ p.v.

∫
f(y)

Ω(x− y)

|x− y|d dy

defines a bounded operator on Lp(Rd) for all 1 < p <∞.

We want to see what the preceding results imply about Sψ(TΩf). This is
an integral involving (TΩf) ∗ ψy(t) = f ∗ (TΩ(ψy))(t) = f ∗ (TΩψ)y(t); where
the second equation is true because TΩ commutes with dilations. This can
be a very messy object to estimate, because TΩψ typically does not have
compact support. No longer, though. It is a theorem (see [5, p. 84]) that
TΩψ is a positive multiple of a function in C(ε,ε). Therefore

|(TΩf) ∗ ψy(t)| ≤ CÃ(ε,ε)(f)(t, y),

implying
Sψ(TΩf) ≤ CGα(f)

pointwise, for all 0 < α < ε. As the statement and proof of Theorem 1 show,
Gα(f) is essentially no worse than another Sφ(f).

A final remark. It is natural to ask how “bad” a function in C(α,ε) can be.
The answer is: very bad. Fix a vector y ∈ R

d with unit norm and consider
the function defined on R

d,

φ(x) ≡ sin(〈x, y〉 · |x|M)

(1 + |x|)d+ε ,

where M is a large positive number and 〈·, ·〉 denotes the Euclidean inner
product. We claim that if Mα < ε, then φ is a positive multiple of a function
in C(α,ε−Mα). Cancellation and the decay condition on |φ| are trivial. All we
need to check is the Hölder modulus, of order α, for large x. But this boils
down to showing

| sin(t · |x|M) − sin(t′ · |x′|M)| ≤ C(1 + |x|)Mα|t− t′|α

with t = 〈x, y〉 and t′ = 〈x′, y〉; where we can, without loss of generality,
assume that both |x| and |x′| are greater than 1 and that |x−x′| ≤ 1. Because
of the sine function’s periodicity, there is t′′ such that |t − t′′| ≤ C/|x|M ,
|t − t′′| ≤ |t − t′|, where sin(t′′|x′|M) = sin(t′ · |x′|M). But now the Mean
Value Theorem implies

| sin(t · |x|M) − sin(t′′ · |x′|M)| ≤ C|x|M |t− t′′| ≤ C|x|M |t− t′′|1−α|t− t′|α
≤ C|x|M(|x|−M)1−α|t− t′|α ≤ C|x|Mα|t− t′|α,

which proves the result.
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Note. After this paper had been submitted for publication, the author
proved that the intrinsic square function defines a bounded operator on
Lp(Rd, w), for 1 < p < ∞, whenever w is an Ap weight. The proof of this
result (which implies a surprising corollary) will appear elsewhere [8].
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