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On the Regularity Conditions for the
Navier-Stokes and Related Equations

Dongho Chae

Abstract

We obtain a regularity conditions for solutions of the 3D Navier-
Stokes equations with fractional powers of the Laplacian, which in-
corporates the vorticity direction and its magnitude simultaneously.
We find that regularity assumption of direction field of the vortic-
ity compensates with the integrability condition for the magnitude
of vorticity. The regularity of direction field is most naturally mea-
sured in terms of the Triebel-Lizorkin type of norms. This unifies
and extends previous results in this direction of studies, where the
geometric structure of the vortex stretching term is used to obtain
refined regularity conditions, initiated by Constantin and Fefferman.

1. Introduction

We are concerned with the following ‘generalized’ Navier-Stokes equations:

∂v

∂t
+ (v · ∇)v = −∇p − νΛαv,(1.1)

div v = 0,(1.2)

v(x, 0) = v0(x),(1.3)

where v = (v1, v2, v3), vj = vj(x, t), j = 1, 2, 3 is the velocity of the fluid
flows, p = p(x, t) is the scalar pressure, v0(x) is a given initial velocity field
satisfying div v0 = 0, and ν > 0 is the viscosity constant. We are using
the notation, Λα = (−∆)

α
2 . We denote the system (1.1)-(1.3) by (NS)α.

The case α = 2 corresponds to the usual Navier-Stokes equations, which we
denote simply by (NS). Heuristically, number α represents the ‘strength of
dissipation’, and in this paper we are concerned with the case 0 < α ≤ 2.
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We note that the system (NS)α was first considered by J.L. Lions in [25],
and the global regularity for α ≥ 5

2
is shown there. We also remark that

more recently there were studies on the small data global well-posedness
on the same equation with 0 ≤ α ≤ 2 by the author of this paper, using
the scale invariant Besov spaces ([14]) (see also [33, 7] for related studies).
Taking curl of (1.1), we obtain the following vorticity equation.

(1.4)
∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v − νΛαω,

where the vorticity ω is defined by

(1.5) ω = curl v.

The incompressibility condition (1.2) combined with (1.5) implies the Biot-
Savart’s law,

(1.6) v(x, t) = − 1

4π

∫
R3

y × ω(x + y, t)

|y|3 dy

for sufficiently rapidly decaying vorticity near infinity. After pioneering work
by J. Leray ([24]) there are many comprehensive literatures on the existence
theory of the weak solution of the (NS) equations (say, [23, 31, 26]). The
regularity of this weak solution is known as one of the most challenging
problems in the mathematical fluid mechanics. In this note we are concerned
with the regularity condition of the weak solutions of (NS)α. The first result
for (NS) in this direction is the one by Prodi ([27]), which states that if weak
solution v(x, t) satisfies

(1.7) v ∈ Lr(0, T ; Lp(R3)),
3

p
+

2

r
≤ 1

for 3 < p ≤ ∞, then v(x, t) is regular. After that there are further develop-
ments and refinements by Serrin ([29]), Fabes-Jones-Riviere ([20]), Kozono-
Taniuchi ([22]), and Escauriaza-Sverak-Seregin ([19]). In particular, Beirão
da Veiga ([3]) obtained regularity condition in terms of ∇v, which is equiv-
alent to the one in terms of the vorticity due to the Calderon-Zygmund
inequality. This states that if the vorticity, ω = curl v of the weak solution v
satisfies

(1.8) ω ∈ Lr(0, T ; Lp(R3)),
3

p
+

2

r
≤ 2,

for 3
2

< p ≤ ∞, then v becomes regular. This condition is later improved
in [13], requiring the same regularity condition only for the two components
of the vorticity.
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On the other hand, Constantin and Fefferman discovered remarkable
geometric structures of the vortex stretching term, the first one of the right
hand side of (1.4), which leads to the following statements [16] (see also [15]).
Let ξ(x, t) = ω(x, t)/|ω(x, t)| be the direction field of the vorticity, and let
θ(x, y, t) be the angle between ξ(x, t) and ξ(x + y, t). If θ(x, y, t) satisfies

| sin θ(x, y, t)| ≤ C|y|
in the region where the |ω(x, t)|, |ω(x+y, t)| > K for some large constant K,
then the solution becomes regular. After that this geometric structures have
been used by many authors, say [17, 11, 10, 5, 2, 21]. For the convenience
in the later discussion of our main result we describe here the results in [5]
and [2]. In [5] it is proved that if

| sin θ(x, y, t)| ≤ g(x, t)|y|s, for some function g ∈ Lr(0, T ; Lp(R3))

(1.9) with
3

p
+

2

r
= s − 1

2
,

for some s∈ [1/2, 1], r∈ [ 4
2s−1

,∞] in the region where |ω(x, t)|, |ω(x+y, t)|>K
for some large constant K, then the solution becomes regular on [0, T ]. We
note here that for p = r = ∞, s = 1/2 the condition (1.9) reduces to

| sin θ(x, y, t)| ≤ C|y| 12 ,
which shows genuine improvement of [5] from [16]. In order to handle the
case s ∈ (0, 1/2] in (1.9) the following is proved in [2]. If

(1.10) | sin θ(x, y, t)| ≤ |y|s and ω ∈ L2(0, T ; Lp(R3)),
3

p
= s + 1

for some s ∈ (0, 1
2
] in the region where the |ω(x, t)|, |ω(x+y, t)| > K for some

large constant K, then the solution becomes regular on [0, T ]. We observe
here that there is an extra condition of suitable integrability of the vorticity
besides the regularity condition of the direction. Before stating our main
theorems below we note that all of the above regularity conditions for weak
solutions can be viewed as continuation principle for local in time strong
solutions in Hs(R3), s > 5/2. In the case considered in this paper, since the
existence of weak solutions is not yet proved rigorously for 0 < α < 2, in
particular (although I believe it could be done following the same lines of
proof as the case of α = 2), the regularity conditions stated in Theorem 1.1
and Theorem 1.2 below should be understood as the continuation principle
for local in time strong solution. We now state our main results in this
paper. The main purpose of the following first result is to use it to prove
Theorem 1.2 below, which we state as a theorem, since it is interesting
in itself.
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Theorem 1.1 Let ω is the vorticity of a solution of v for (NS)α, 0 < α ≤ 2,
satisfying

(1.11) ω ∈ Lr(0, T ; Lp(R3)), with
3

p
+

α

r
≤ α,

where 6
α

< p ≤ ∞. Then, there is no singularity up to T .

Remark 1.1: The above theorem says quantitatively that for the regularity
of solutions of weaker dissipative term we need higher integrability of the
vorticity. For α = 2 (1.11) reduces to (1.8). For p = ∞, r = 1 (1.11) reduces
to the Beale-Kato-Majda condition [1].

Remark 1.2: We observe that the system (NS)α is invariant under scaling
transform,

v(x, t) → vλ(x, t) = λα−1v(λx, λαt), p(x, t) → pλ(x, t) = λ2α−2p(λx, λαt),

which induces the scaling for the vorticity, ω(x, t) → ωλ(x, t) = λαω(λx, λαt).
For this scaling transform we have the norm invariance in the case of equality
in (1.11) as follows.

‖ω‖Lr(0,T ;Lp(R3)) = ‖ωλ‖Lr(0,λαT ;Lp(R3)), if
3

p
+

α

r
= α.

In this sense we can regard the condition (1.11) as optimal.

For the statement of our main result we introduce a function space. Given
0 < s < 1, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, the function space Ḟ s

p,q is defined by the
seminorm,

‖f‖Ḟs
p,q

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∥∥∥∥∥
(∫

Rn

|f(x + y) − f(x)|q
|y|n+sq

dy

)1
q

∥∥∥∥∥
Lp(Rn,dx)

if 1 ≤ p ≤ ∞, 1 ≤ q <∞
∥∥∥∥∥ess sup

|y|�=0

|f(x + y) − f(x)|
|y|s

∥∥∥∥∥
Lp(Rn,dx)

if 1 ≤ p ≤ ∞, q = ∞

Observe that, in particular, Ḟ s
∞,∞ ∼= Cs, the usual Hölder seminormed space.

In order to compare this space with other more classical function spaces let
us introduce the Banach space F s

p,q by defining its norm,

‖f‖Fs
p,q

= ‖f‖Lp + ‖f‖Ḟs
p,q

.

We note that for 0 < s < 1, 2 ≤ p < ∞ and q = 2, F s
p,2

∼= Lp
s(R

n) =

(1−∆)−
s
2 Lp(Rn), the fractional order Sobolev space (or the Bessel potential

space). (See [30, pp. 163]).
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If n
min{p,q} < s < 1, n < p < ∞ and n < q ≤ ∞, then F s

p,q coincides

with the Triebel-Lizorkin space F s
p,q (See [32, pp. 101]). We note that there

are previous papers (see [6, 8, 9, 11, 12]), where the the Triebel-Lizorkin
space F s

p,q was used for the study of Cauchy problems in the fluid mechanics.
The following is our main Theorem.

Theorem 1.2 Let v(x, t) be a solution to (NS)α and ω(x, t) = curl v(x, t).
Let ξ(x, t) be its direction field, ξ(x, t) = ω(x, t)/|ω(x, t)|, defined for ω(x, t)
	= 0. Suppose there exists s ∈ (0, 1), q ∈ ( 3

3−s
,∞], p1 ∈ (1,∞], p2 ∈ (1, 3

s
)

satisfying s
3

< 1
p1

+ 1
p2

< α+s
3

, 1
p2

+ 1
q

< 1 + s
3

and r1, r2 ∈ [1,∞] such that
the followings hold.

ξ(x, t) ∈ Lr1(0, T ; Ḟ s
p1,q) and ω(x, t) ∈ Lr2(0, T ; Lp2(R3))

(1.12) with
3

p1

+
3

p2

+
α

r1

+
α

r2

≤ α + s.

Then, there is no singularity up to T .

Remark 1.3: Intuitively, the above theorem says that assumption of higher
regularity of the direction vector field compensates with the assumption of
the weaker integrability of the amplitude of vorticity field.

Remark 1.4: We consider the two special cases for (NS) below (α = 2
case). First, let p2 = r2 = 2. Then, we know that the Leray-Hopf weak

solution ω satisfies
∫ T

0
‖ω(t)‖2

L2dt < ∞, and the condition of the above
theorem becomes

(1.13) ξ(x, t) ∈ Lr1(0, T ; Ḟ s
p1,q

),
3

p1

+
2

r1

≤ s − 1

2
.

Comparing this with (1.9), we find the natural identification of the function
g(x, t) as the direction field ξ(x, t). Moreover, since we allow any finite
number for q in ( 3

3−s
,∞], not necessarily infinity, the condition (1.13) is a

generalization of (1.9).
Secondly, we observe that in the case p1 = r1 = ∞, and s ∈ (0, 1

2
] the

condition of the above theorem reduces to

(1.14) ξ ∈ Ḟ s
∞,q, ω ∈ Lr2(0, T ; Lp2(R3)) with

3

p2
+

2

r2
≤ s + 2.

Since Ḟ s
∞,∞ ∼= Cs, and | sin θ(x, y, t)| ≤ |ξ(x + y, t) − ξ(x, t)|, as can be

checked by elementary geometry, we have that

| sin θ(x, y, t)| ≤ C|y|s if ξ ∈ L∞(0, T ; Ḟ s
∞,∞).

Hence, we find that (1.10) is a special case for q = ∞, r2 = 2 of (1.14).



376 D. Chae

2. Proof of the Main Theorems

We first recall the following continuation principle (blow-up criterion) for
the 3D Euler equations, due to Beale, Kato and Majda [1]:

Theorem 2.1 Suppose v(x, t) is a local in time classical solution of the 3D
Euler equation, namely the system (1.1)-(1.3) with ν = 0, corresponding to
initial data v0 ∈ Hs(R3), s > 5

2
. If we have a priori estimate for vortic-

ity,
∫ T

0
‖ω(t)‖L∞dt < ∞, then we have lim supt↗T ‖v(t)‖Hs < ∞, and in

particular there is no singularity up to T .

In order to apply this theorem to our system (NS)α, we just observe that the
exactly same continuation principle holds for our system for any α ∈ [0, 2],
which can be proved by obvious modifications of the proof in [1].

Prof of Theorem 1.1 Let p1 ∈ [2,∞) be of the form p1 = 2m, where m is
a positive integer. We take D = (∂x1 , ∂x2 , ∂x2) to (1.4), and then take inner
product it with Dω|Dω|p1−2. After integration by part we have

1

p1

d

dt
‖Dω‖p1

Lp1 + ν

∫
R3

(ΛαDω)Dω|Dω|p1−2dx

= −
∫

R3

D[(v · ∇)ω] · Dω|Dω|p1−2dx +

∫
R3

D[(ω · ∇)v] · Dω|Dω|p1−2dx

= I + J.(2.1)

The viscosity term on the left hand side is estimated by

ν

∫
R3

(ΛαDω)Dω|Dω|p1−2dx ≥ ν

p1

∫
R3

∣∣∣Λα
2

(
|Dω| p1

2

)∣∣∣2 dx

≥ νCα

p1

(∫
R3

|Dω| 3p1
3−α dx

) 3−α
3

=
νCα

p1

‖Dω‖p1

L
3p1
3−α

(2.2)

where we used Lemma 2.4 of [18] for the estimate of the fractional derivative
in the first inequality (we note that the special form p1 = 2m is used to apply

this lemma), and used the Sobolev imbedding, L2
α
2
(R3) ↪→ L

6
3−α (R3) in the

second inequality, where Lp
s(R

n) is the Bessel potential space introduced in
the previous section before Theorem 1.2. Next, we estimate I, J below.

I = −
∫

R3

Dv · ∇ω · Dω|Dω|p1−2dx −
∫

R3

(v · ∇)Dω · Dω|Dω|p1−2dx

= I1 + I2.

Integrating by part, and using the fact, div v = 0, we obtain

I2 = − 1

p1

∫
R3

(v · ∇)|Dω|p1dx =
1

p1

∫
R3

(div v)|Dω|p1dx = 0.
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By Hölder’s inequality and the standard Lp−interpolation inequality to-
gether with the Calderon-Zygmund inequality we estimate,

|I1| =

∫
R3

|Dv||Dω||Dω|p1−1dx ≤ ‖Dv‖Lp‖
L

pp1
p−p1

‖p1−1
Lp1

≤ C‖ω‖Lp‖1− 3p1
αp

Lp1 ‖
3p1
αp

L
3p1
3−α

‖p1−1
Lp1

= C‖ω‖Lp‖p1− 3p1
αp

Lp1 ‖
3p1
αp

L
3p1
3−α

.(2.3)

We note that the interpolation inequality used in here requires that p1 ≤
pp1

p−p1
≤ 3p1

3−α
, which is equivalent to p1 ≤ αp

3
. Combined with p1 ≥ 2, we have

p ≥ 6/α. In order to estimate J we first decompose it into two terms as
follows.

J =

∫
R3

·∇v · ||p1−2dx +

∫
R3

(ω · ∇)Dv · ||p1−2dx

= J1 + J2.

Since

J1 ≤
∫

R3

|||∇v|||p1−1dx,

the estimate of J1 is the same as that of I1. On the other hand, by the
Hölder and the Calderon-Zygmund inequalities,

J2 ≤ ‖ω‖Lp‖D2v‖
L

pp1
p−p1

‖p1−1
Lp1 ≤ C‖ω‖Lp‖

L
pp1

p−p1
‖p1−1

Lp1 .

Hence, the estimate of J2 is also the same as that of I1. Combining the
above estimates I, with (2.1)-(2.2), we have

d

dt
‖p1

Lp1 + νCα‖p1

L
3p1
3−α

≤ C‖ω‖Lp‖p1− 3p1
αp

Lp1 ‖
3p1
αp

L
3p1
3−α

≤ C‖ω‖
αp

αp−3

Lp ‖p1

Lp1 +
νCα

2
‖p1

L
3p1
3−α

,

where we used Young’s inequality, ab ≤ εau

u
+ Cε

bu′

u′ , 1/u + 1/u′ = 1. Ab-
sorbing the viscosity term to the left hand side, we find

(2.4)
d

dt
‖p1

Lp1 +
νCα

2
‖p1

L
3p1
3−α

≤ C‖ω‖
αp

αp−3

Lp ‖p1

Lp1 .

Now, observe that the condition (1.11) is equivalent to

r ≥ αp

αp − 3
.
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Hence, applying Gronwall’s lemma and Hölder’s inequality to (2.4), we ob-
tain

‖(t)‖Lp1 ≤ ‖0‖Lp1 exp

[
C

∫ T

0

‖ω‖
αp

αp−3

Lp dt

]

≤ ‖0‖Lp1 exp

[
C

(∫ T

0

‖ω‖r
Lpdt

) αp
r(αp−3)

T 1− αp
r(αp−3)

]

< ∞.

for all t ∈ [0, T ], By the Gagliardo-Nirenberg inequality,

‖∇v(t)‖L∞ ≤ C‖v(t)‖
2p1−6
7p1−6

L2 ‖D2v(t)‖
5p1

7p1−6

Lp1 ≤ C‖v0‖
2p1−6
7p1−6

L2 ‖Dω(t)‖
5p1

7p1−6

Lp1

≤ C(‖v0‖L2 , ‖Dω0‖Lp1 , T ), ∀t ∈ [0, T ],

and ∫ T

0

‖ω(t)‖L∞dt ≤
∫ T

0

‖∇v(t)‖L∞dt ≤ CT.

We have shown that ω satisfies the Beale-Kato-Majda criterion, and hence
we have regularity up to T . �

Note after the proof. After finishing the paper the author was informed
that the estimate (2.2) with α = 2 is obtained in [4]. The case 0 < α < 2,
however, is much more delicate, and could be successfully handled thanks
to Lemma 2.4 of [18] as described above by assuming integer power of p1.

Proof of Theorem 1.2 Let p be of the form p = 2m, m ∈ N, and sat-
isfy

(2.5)
3

α
≤ p < ∞.

Taking L2(R3) inner product of (1.4) by ω(x, t)|ω(x, t)|p−2 and substituting v
from (1.6) into it, we have after integration by parts

1

p

d

dt
‖ω(t)‖p

Lp + ν

∫
R3

(Λαω) · ω|ω|p−2dx

=
3

4π

∫
R3

∫
R3

(ω(x, t) · ŷ)(ω(x + y, t) × ω(x, t) · ŷ)
dy

|y|3 |ω(x, t)|p−2dx

= I,(2.6)

where the integral with respect to y in the right hand side is in the sense of
principal value. Here we used the notation, ŷ = y/|y| for y ∈ R

3, y 	= 0.
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We first estimate the viscosity term in the left hand side as follows.

ν

∫
R3

(Λαω) · ω|ω|p−2dx ≥ ν

p

∫
R3

∣∣∣Λα
2 (|ω| p

2 )
∣∣∣2 dx

≥ νCα

p

(∫
R3

|ω| 3p
3−α dx

) 3−α
3

=
νCα

p
‖ω‖p

L
3p

3−α

,(2.7)

which is similar to the estimates in (2.2) of the previous proof. Note that the
assumption p = 2m is used here as previously (see lines after (2.2)). Next,
using the fact, ξ(x, t) × ξ(x, t) = 0, we estimate the vortex stretching term
as follows.

I =
3

4π

∫
R3

∫
R3

(ξ(x, t) · ŷ)(ξ(x+y, t)× ξ(x, t) · ŷ)|ω(x + y, t)| dy

|y|3 |ω(x, t)|pdx

=
3

4π

∫
R3

∫
R3

(ξ(x, t) · ŷ) [(ξ(x + y, t) − ξ(x, t)) × ξ(x, t) · ŷ]

× |ω(x + y, t)| dy

|y|3 |ω(x, t)|pdx

≤ 3

4π

∫
R3

∫
R3

|ξ(x + y, t) − ξ(x, t)||ω(x + y, t)| dy

|y|3 |ω(x, t)|pdx

≤ 3

4π

∫
R3

(∫
R3

|ξ(x + y, t) − ξ(x, t)|q
|y|3+sq

dy

) 1
q

×
(∫

R3

|ω(x + y, t)|q′
|y|3−sq′ dy

) 1
q′

|ω(x, t)|pdx

(2.8) ≤ 3

4π
‖ξ‖Ḟs

p1,q

∥∥∥{Isq′(|ω|q′)}
1
q′

∥∥∥
Lp̃2

‖ω‖p
Lp3 ,

where

(2.9)
1

p1

+
1

p̃2

+
p

p3

= 1,
1

q
+

1

q′
= 1,

and Iσ(·), 0 < σ < 3, is the operator defined by the Riesz potential as
follows.

Iσ(f)(x) = γ(σ)

∫
R3

f(x + y)

|y|3−σ
dy, γ(σ) = 2σπ

3
2

Γ(σ
2
)

Γ(3−σ
2

)
.

From the well-defined property of the Riesz operator we have the restriction
0 < sq′ < 3, which gives us q ∈ ( 3

3−s
,∞] due the second equation of (2.9).
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Using the Hardy-Littlewood-Sobolev inequality ([30]), we estimate∥∥∥{Isq′(|ω|q′)}
1
q′

∥∥∥
Lp̃2

= ‖Isq′(|ω|q′)‖
1
q′

L
p̃2
q′

≤ C‖ |ω|q′‖
1
q′
Lr = C‖ω‖Lrq′ = C‖ω‖

L
3p̃2

3+sp̃2

,(2.10)

where we used the relation, 1
r

= q′
p̃2

+ sq′
3

, and hence rq′ = 3p̃2

3+sp̃2
. Observe

that we require here that p̃2 > q′. On the other hand, using the standard
Lp−interpolation inequality, we estimate

‖ω‖p
Lp3 ≤ C‖ω‖( 3p

p3
− 3

α
+1)p

Lp ‖ω‖
3
α
− 3p

αp3

L
3p

3−α

= C‖ω‖p− 3p
αp1

− 3p
αp̃2

Lp ‖ω‖
3p

αp1
+ 3p

αp̃2

L
3p

3−α

,(2.11)

where we used the relation (2.9). Note that use of the interpolation in-
equality in (2.11) requires that p < p3 < 3p

3−α
, which, in turn, gives us the

condition

(2.12) 0 <
1

p1

+
1

p̃2

<
α

3

due the first equation of (2.9). Combining (2.8) with (2.10) and (2.11), we
derive

I ≤ C‖ξ‖Ḟs
p1,q

‖ω‖
L

3p̃2
3+sp̃2

‖ω‖p− 3p
αp1

− 3p
αp̃2

Lp ‖ω‖
3p

αp1
+ 3p

αp̃2

L
3p

3−α

≤ C

(
‖ξ‖Ḟs

p1,q
‖ω‖

L
3p̃2

3+sp̃2

) αp1p̃2
αp1p̃2−3p1−3p̃2 ‖ω‖p

Lp +
νCα

2p
‖ω‖p

L
3p

3−α
,(2.13)

where we used Young’s inequality, ab ≤ Cε
au

u
+ ε bu′

u′ with

a = ‖ξ‖Ḟs
p1,q

‖ω‖
L

3p̃2
3+sp̃2

‖ω‖p− 3p
αp1

− 3p
αp̃2

Lp , b = ‖ω‖
3p

αp1
+ 3p

αp̃2

L
3p

3−α

,

and

u =
αp1p̃2

αp1p̃2 − 3(p1 + p̃2)
, u′ =

αp1p̃2

3(p1 + p̃2)
.

Setting 3p̃2

3+sp̃2
= p2, we have p̃2 = 3p2

3−sp2
. We observe here that there is a

restriction of p2 < 3
s

due to positiveness of p̃2. Combining this equality
with the previous condition, p̃2 > q′ (see lines after (2.10)), we also have
3p2 > (3 − sp2)q

′, which implies that

(2.14)
1

p2
+

1

q
< 1 +

s

3
.
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Substituting the value of p̃2 into (2.13), we obtain

(2.15) I ≤ C‖ξ‖Q

Ḟs
p1,q

‖ω‖Q
Lp2‖ω‖p

Lp +
νCα

2p
‖ω‖p

L
3p

3−α
,

where we set
Q =

αp1p2

(α + s)p1p2 − 3p1 − 3p2
.

We note that the restriction (2.12) becomes

(2.16)
s

3
<

1

p1

+
1

p2

<
α

3
+

s

3

in terms of p1, p2. Substituting the estimates (2.15) and (2.7) into (2.6), and
absorbing the viscosity term, νCα

2p
‖ω‖p

L
3p

3−α

to the left hand side, we have

(2.17)
d

dt
‖ω(t)‖p

Lp +
νCα

2
‖ω(t)‖p

L
3p

3−α

≤ C‖ξ(t)‖Q

Ḟs
p1,q

‖ω(t)‖Q
Lp2‖ω‖p

Lp.

Now the condition (1.12) becomes

1

r1

+
1

r2

≤ 1

Q

in terms of Q. The Gronwall lemma applied to (2.17) combined with Hölder’s
inequality provides us with

‖ω(t)‖Lp ≤ ‖ω0‖Lp exp

[
C

∫ T

0

‖ξ(t)‖Q

Ḟs
p1,q

‖ω(t)‖Q
Lp2dt

]

≤ ‖ω0‖Lp exp

⎡
⎣(

C

∫ T

0

‖ξ(t)‖r1

Ḟs
p1,q

dt

) Q
r1

(∫ T

0

‖ω(t)‖r2
Lp2dt

) Q
r2

T

�
1− Q

r1
− Q

r2

�
⎤
⎦

for all t ∈ [0, T ]. Hence, ω ∈ L∞(0, T ; Lp(R2)). Integrating (2.17) over [0, T ],
we have

‖ω(t)‖p
Lp +

νCα

2

∫ T

0

‖ω(t)‖p

L
3p

3−α
dt

≤ C sup
0≤t≤T

‖ω(t)‖p
Lp

∫ T

0

‖ξ(t)‖Q

Ḟs
p1,q

‖ω(t)‖Q
Lp2dt + ‖ω0‖p

Lp < ∞

for all t ∈ [0, T ], and hence∫ T

0

‖ω(t)‖p

L
3p

3−α

dt < ∞.
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Since ω ∈ Lp(0, T ; L
3p

3−α (R3)), and our choice of p in (2.5) implies

3

r
+

α

p
≤ α with r =

3p

3 − α

which is a special case of the condition in (1.11). Hence, applying Theo-
rem 1.1, we find that the solution v(x, t) is regular up to T . �
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Kōkyūroku 1315. Research Institute of Mathematical Sciences, Kyoto Uni-
versity, 2003.

[3] Beirão da Veiga, H.: Concerning the regularity problem for the solutions
of the Navier-Stokes equations. C. R. Acad. Sci. Paris Sér. I Math. 321
(1995), no. 4, 405–408.

[4] Beirão da Veiga, H.: Existence and asymptotic behavior for strong
solutions of the Navier-Stokes equations in the whole space. Indiana Univ.
Math. J. 36 (1987), no. 1, 149–166.

[5] Beirão da Veiga, H. and Berselli, L. C.: On the regularizing effect of
the vorticity direction in incompressible viscous flows. Differential Integral
Equations 15 (2002), no. 3, 345–356.

[6] Cannone, M.: Ondelettes, paraproduits et Navier-Stokes. Diderot Edi-
teur, Paris, 1995.

[7] Cannone, M. and Karch, G.: Incompressible Navier-Stokes equa-
tions in abstract Banach spaces. In Tosio Kato’s method and principle
for evolution equations in mathematical physics (Sapporo, 2001), 27–41.
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