The volume near the zeroes of a smooth function

Pavel Batchourine and Charles Fefferman

Abstract

We show that if a smooth function that never vanishes to infinite order, then the set of points within the distance δ from the zeroes of this function has volume $O(\delta)$.

1. Statement of Result

Let $B(x, r)$ denote the open ball of radius r about x in \mathbb{R}^{n}. In this note we prove the following result.
Theorem 1. Let F be a real-valued C^{m} function on $B(0,1)$, with

1. $c_{0}<\max _{|\alpha|=m-1}\left|\partial^{\alpha} F(0)\right|<C_{0}$, and with
2. $\left|\partial^{\alpha} F\right| \leq C_{1}$ on $B(0,1)$ for $|\alpha|=m$.

Let
3. $V(F)=\{x \in B(0,1): F(x)=0\}$, and let
4. $V(F, \delta)=\left\{x \in B\left(0, c_{1}\right):\right.$ distance $\left.(x, V(F))<\delta\right\}$,
where c_{1} is a small enough constant determined by $c_{0}, C_{0}, C_{1}, m, n$.
Then we have

$$
\operatorname{Vol}\{V(F, \delta)\} \leq C_{2} \delta \text { for } 0<\delta<c_{1}
$$

where C_{2} is a large constant determined by $c_{0}, C_{0}, C_{1}, m, n$.
Thus, if F is a smooth function that never vanishes to infinite order, then the set of points within the distance δ from the zeroes of F has volume $O(\delta)$. If we allow F to vanish to infinite order then the corresponding assertion is plainly wrong. For the level sets of polynomials this statement is proven in [1].

[^0]
2. A Convenient Reduction

In this section, we reduce Theorem 1 to the following result which is seemingly a bit less general.
Theorem 2. Let F be a real-valued C^{m} function on $B(0,1)$, with

1. $c_{0}<\left|\partial^{\alpha} F\right|<C_{0}$ everywhere on $B(0,1)$, for every multi-index α of order $m-1$,
2. $\left|\partial^{\alpha} F\right| \leq C_{1}$ everywhere on $B(0,1)$ for every multi-index α of order m.

Let
3. $V(F)=\{x \in B(0,1): F(x)=0\}$, and let
4. $V(F, \delta)=\left\{x \in B\left(0, c_{1}\right)\right.$: distance $\left.(x, V(F))<\delta\right\}$,
where c_{1} is a small enough constant determined by $c_{0}, C_{0}, C_{1}, m, n$.
Then we have

$$
\operatorname{Vol}\{V(F, \delta)\} \leq C_{2} \delta \quad \text { for } 0<\delta<c_{1}
$$

where C_{2} is a large constant determined by $c_{0}, C_{0}, C_{1}, m, n$.
To reduce Theorem 1 to Theorem 2, we use the following elementary result.
Proposition 3. Let F satisfy the hypotheses of Theorem 1. Then there exists a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and constants c and C, with the following properties:

1. c and C are determined by $c_{0}, C_{0}, C_{1}, m, n$,
2. the maps A and A^{-1} have norms at most C,
3. $F \circ A$ is well-defined on $B(0, c)$,
4. $c<\left|\partial^{\alpha}(F \circ A)\right|<C$ on $B(0, c)$ for all α with $|\alpha|=m-1$,
5. $\left|\partial^{\alpha}(F \circ A)\right|<C$ on $B(0, c)$ for all α with $|\alpha|=m$.

Once the proposition is proven, then the Theorem 1 follows by applying Theorem 2 to the function $\tilde{F}(x)=(F \circ A)(c x), x \in B(0,1)$.

Proof of the Proposition. In this proof, we say that a constant is controlled, if it is determined by c_{0}, C_{0}, C_{1}, m and n; and we write c, C, C^{\prime}, etc. to denote the controlled constants.

Pick a vector $v \in \mathbb{R}^{n}$ of length 1 to maximize $\left|(v \cdot \nabla)^{m-1} F(0)\right|$. Without loss of generality, we may assume that $v=e_{n}$, the n'th unit vector in \mathbb{R}^{n}. Then we have

$$
c<\left|\left(\frac{\partial}{\partial x_{n}}\right)^{m-1} F(0)\right|<C, \quad \text { and } \quad\left|\partial^{\alpha} F(0)\right|<C \text { for }|\alpha|=m-1 .
$$

Consequently, for any $\lambda \in(0,1)$, and for any multi-index $\alpha=\left(\alpha_{1}, \ldots \alpha_{n}\right)$ with $|\alpha|=\alpha_{1}+\ldots+\alpha_{n}=m-1$, we have

$$
\left(\frac{\partial}{\partial x_{n}}+\lambda \frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \ldots\left(\frac{\partial}{\partial x_{n}}+\lambda \frac{\partial}{\partial x_{n-1}}\right)^{\alpha_{n-1}}\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} F(0)=\sum_{k=0}^{m-1} A_{k}^{(\alpha)} \lambda^{k}
$$

with $c<\left|A_{0}^{(\alpha)}\right|<C$ and $\left|A_{k}^{(\alpha)}\right|<C$ for all k.
Therefore, if we take $\lambda=\bar{c}$ for small enough controlled constant \bar{c}, then we obtain

$$
c<\left|\left(\frac{\partial}{\partial x_{n}}+\lambda \frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \ldots\left(\frac{\partial}{\partial x_{n}}+\lambda \frac{\partial}{\partial x_{n-1}}\right)^{\alpha_{n-1}}\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} F(0)\right|<C
$$

for all $\alpha=\left(\alpha_{1}, \ldots \alpha_{n}\right)$ with $|\alpha|=m-1$.
We define

$$
A:\left(x_{1}, \ldots x_{n}\right) \mapsto\left(x_{n}+\lambda x_{1}, \ldots, x_{n}+\lambda x_{n-1}, x_{n}\right) .
$$

Thus

$$
\begin{equation*}
\|A\|,\left\|A^{-1}\right\| \leq C \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c<\left|\partial^{\alpha}(F \circ A)(0)\right|<C \text { for all } \alpha \text { with }|\alpha|=m-1 . \tag{2.2}
\end{equation*}
$$

From (2.1), and from hypothesis (2) of Theorem 1, we see then

$$
\begin{equation*}
F \circ A \text { is well-defined on } B(0, c), \quad \text { and } \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left|\partial^{\alpha}(F \circ A)\right|<C \text { on } B(0, c), \quad \text { for all } \alpha \text { with }|\alpha|=m . \tag{2.4}
\end{equation*}
$$

From (2.2), (2.3), (2.4), we obtain

$$
\begin{equation*}
c^{\prime}<\left|\partial^{\alpha}(F \circ A)\right|<C^{\prime} \text { on } B\left(0, c^{\prime \prime}\right), \quad \text { for all } \alpha \text { with }|\alpha|=m-1 . \tag{2.5}
\end{equation*}
$$

Since $c, C, c^{\prime}, C^{\prime}, c^{\prime \prime}$ are controlled constants, the conclusion of our proposition follows at once from (2.1), (2.3), (2.4), (2.5). The proof of the proposition is complete.

Thus we have reduced Theorem 1 to Theorem 2.

3. An Elementary Remark

For $i=1, \ldots n$, let e_{i} denote the i^{\prime} th unit vector in \mathbb{R}^{n}. In this section we recall the following elementary result.

Proposition 4. Let $M_{1}, M_{2}, a_{1}, \delta, \Gamma$ be positive real numbers and let G be a real-valued C^{2} function on $B\left(x^{0}, 2 \delta\right)$. Assume that

1. $\left|\frac{\partial}{\partial x_{i}} G\right| \leq M_{1} \Gamma \delta^{-1}$ and $\left|\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} G\right| \leq M_{2} \Gamma \delta^{-2}$ on $B\left(x^{0}, 2 \delta\right)$;
2. $\left|\frac{\partial}{\partial x_{i_{0}}} G\left(x^{0}\right)\right| \geq a_{1} \Gamma \delta^{-1}$ and
3. $\left|G\left(x^{0}\right)\right| \leq a_{*} \Gamma$ for all small enough a_{*}, determined by M_{1}, M_{2}, a_{1}, n. Then, for any $x \in B\left(x^{0}, a_{*} \delta\right)$, there exists $\tau \in(-\delta, \delta)$ such that $G\left(x+\tau e_{i_{0}}\right)=0$.

Proof. By rescaling, we may suppose $\Gamma=\delta=1$. Integrating $|\nabla G|$ and $\left|\nabla \frac{\partial}{\partial x_{i}} G\right|$ on the line segment joining x^{0} to x, we find that

$$
\begin{gathered}
\left|G(x)-G\left(x^{0}\right)\right| \leq \sqrt{n} M_{1}\left|x-x^{0}\right| \leq \sqrt{n} M_{1} a_{*}, \quad \text { and } \\
\left|\frac{\partial}{\partial x_{i_{0}}} G(x)-\frac{\partial}{\partial x_{i_{0}}} G\left(x^{0}\right)\right| \leq \sqrt{n} M_{2}\left|x-x^{0}\right| \leq \sqrt{n} M_{2} a_{*}
\end{gathered}
$$

Hence,

$$
\begin{equation*}
|G(x)| \leq\left(1+\sqrt{n} M_{1}\right) a_{*}, \quad \text { and } \tag{3.1}
\end{equation*}
$$

$\left|\frac{\partial}{\partial x_{i_{0}}} G(x)\right| \geq a_{1}-\sqrt{n} M_{2} a_{*} \geq 1 / 2 a_{1}, \quad$ (if we take a_{*} small enough)
Since also $\left|\left(\frac{\partial}{\partial x_{i_{0}}}\right)^{2} G\right| \leq M_{2}$ on $B\left(x^{0}, 2\right),(3.2)$ implies that

$$
\begin{equation*}
\left|\frac{\partial}{\partial x_{i_{0}}} G\left(x+\tau e_{i_{0}}\right)\right| \geq 1 / 2 a_{1}-M_{2}|\tau| \geq 1 / 4 a_{1} \tag{3.3}
\end{equation*}
$$

for $\tau \in\left[-\frac{a_{1}}{4 M_{2}}, \frac{a_{1}}{4 M_{2}}\right] \cap(-1,1)=I$.
Let $g(\tau)=G\left(x+\tau e_{i_{0}}\right)$ for $\tau \in I$. Then g is a C^{2}-function on I; and (3.1), (3.3) yield

$$
\begin{equation*}
|g(0)| \leq\left(1+\sqrt{n} M_{1}\right) a_{*}, \quad \text { and } \quad\left|g^{\prime}\right| \geq 1 / 4 a_{1} \text { on } I \tag{3.4}
\end{equation*}
$$

If a_{*} is taken small enough, then (3.4) easily implies $g(\tau)=0$ for some $\tau \in I$. In particular, $G\left(x+\tau e_{i_{0}}\right)=0$ for some $\tau \in(-1,1)$, proving the proposition.

4. Two Main Lemmas

From now on, we assume that the function F and the constants c_{0}, C_{0}, C_{1} satisfy the hypothesis of the Theorem 2 . We say that a constant is controlled, if it is determined by c_{0}, C_{0}, C_{1}, m and n; and we write c, C, C^{\prime}, etc. to denote the controlled constants.

As in the Section 2, we write e_{1}, \ldots, e_{n} for the unit vectors in \mathbb{R}^{n}.
Lemma 5. For a small enough controlled constant \bar{c}, the following holds. Suppose $x^{0} \in V(F) \cap B(0,1 / 2)$, and suppose $0<\delta<\bar{c}$. Then, for any $x \in B\left(x^{0}, \bar{c} \delta\right)$, there exist β, i_{0}, τ with

1. $|\beta| \leq m-2,1 \leq i_{0} \leq n$;
2. $\tau \in[-\delta, \delta]$ and
3. $\partial^{\beta} F\left(x+\tau e_{i_{0}}\right)=0$.

Proof. Let $A_{m}, A_{m-1}, \ldots A_{0}$ be constants to be picked later. We write $C\left(A_{m}, \ldots A_{k}\right)$ to denote a constant determined by $A_{m}, \ldots A_{k}$ and c_{0}, C_{0}, C_{1}, m, n. We define

$$
\begin{equation*}
\Omega=\max _{|\gamma| \leq m-1} A_{|\gamma|} \delta^{|\gamma|}\left|\partial^{\gamma} F\left(x^{0}\right)\right|, \tag{4.1}
\end{equation*}
$$

and we suppose that the max in (4.1) is attained at $\gamma=\bar{\gamma}$. From the hypothesis (1) of the Theorem 2, we have

$$
\begin{equation*}
\Omega \geq A_{m-1} c_{0} \delta^{m-1} \tag{4.2}
\end{equation*}
$$

In particular, $\Omega \neq 0$. Since $x^{0} \in V(F)$, we have $F\left(x^{0}\right)=0$, so the maximum in (4.1) is not attained at $\gamma=0$. Hence, $\bar{\gamma} \neq 0$, and consequently, we may write $\bar{\gamma}=1_{i_{0}}+\beta$, where $|\beta| \leq m-2$, and $1_{i_{0}}$ is the i_{0}-th unit multi-index. In particular, i_{0} and β satisfy (1). By the definition of $\Omega, \bar{\gamma}$, i_{0}, β, we have

$$
\begin{gather*}
\left|\partial^{\gamma} F\left(x^{0}\right)\right| \leq A_{|\gamma|}^{-1} \Omega \delta^{-|\gamma|} \text { for }|\gamma| \leq m-1, \text { and } \tag{4.3}\\
\left|\frac{\partial}{\partial x_{i_{0}}}\left(\partial^{\beta} F\right)\left(x^{0}\right)\right|=A_{|\beta|+1}^{-1} \Omega \delta^{-|\beta|-1} \tag{4.4}
\end{gather*}
$$

Also, for $|\gamma|=m, x \in B(0,1)$, estimate (4.2) and the hypothesis (2) of the Theorem 2 yield

$$
\begin{equation*}
\left|\partial^{\gamma} F(x)\right| \leq C_{1} \leq C_{1} c_{0}^{-1} A_{m-1}^{-1} \Omega \delta^{-(m-1)} \tag{4.5}
\end{equation*}
$$

If

$$
\begin{equation*}
0<\delta<A_{m}^{-1} c_{0} A_{m-1} C_{1}^{-1} \tag{4.6}
\end{equation*}
$$

then (4.5) implies

$$
\begin{equation*}
\left|\partial^{\gamma} F\right| \leq A_{m}^{-1} \Omega \delta^{-|\gamma|} \text { on } B(0,1), \text { for }|\gamma|=m . \tag{4.7}
\end{equation*}
$$

From (4.3), (4.7) and Taylor's theorem, we obtain

$$
\begin{equation*}
\left|\partial^{\gamma} F\right| \leq C\left(A_{m}, \ldots A_{|\gamma|}\right) \Omega \delta^{-|\gamma|} \quad \text { on } B\left(x^{0}, 2 \delta\right), \text { for }|\gamma| \leq m, \tag{4.8}
\end{equation*}
$$

provided

$$
\begin{equation*}
\delta<1 / 4 \tag{4.9}
\end{equation*}
$$

(Condition (4.9) guarantees that $B\left(x^{0}, 2 \delta\right) \subset B(0,1)$, since $x^{0} \in B(0,1 / 2)$)
In particular, (4.8) gives

$$
\begin{equation*}
\left|\frac{\partial}{\partial x_{i}}\left[\partial^{\beta} F\right]\right| \leq C\left(A_{m}, \ldots, A_{|\beta|+1}\right) \Omega \delta^{-|\beta|-1} \quad \text { on } B\left(x^{0}, 2 \delta\right) \text {, } \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left[\partial^{\beta} F\right]\right| \leq C\left(A_{m}, \ldots, A_{|\beta|+2}\right) \Omega \delta^{-|\beta|-2} \text { on } B\left(x^{0}, 2 \delta\right) \text { for all } i, j . \tag{4.11}
\end{equation*}
$$

Also, (4.3) and (4.4) give

$$
\begin{equation*}
\left|\frac{\partial}{\partial x_{i_{0}}}\left[\partial^{\beta} F\right]\left(x^{0}\right)\right|=A_{|\beta|+1}^{-1} \Omega \delta^{-|\beta|-1} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left[\partial^{\beta} F\right]\left(x^{0}\right)\right| \leq A_{|\beta|}^{-1} \Omega \delta^{-|\beta|} \tag{4.13}
\end{equation*}
$$

Note that $A_{|\beta|}$ appears in (4.13), but not in (4.10), (4.11), (4.12). Suppose that

$$
\begin{equation*}
A_{|\beta|} \text { exceeds a large enough constant } C\left(A_{m}, \ldots, A_{|\beta|+1}\right) \tag{4.14}
\end{equation*}
$$

Then (4.10)-(4.14) are the hypotheses of the proposition 3 with $G=\partial^{\beta} F$, $\Gamma=\Omega \delta^{-|\beta|}, M_{1}=C\left(A_{m}, \ldots, A_{|\beta|+1}\right), M_{2}=C\left(A_{m}, \ldots, A_{|\beta|}+2\right), a_{1}=A_{|\beta|+1}^{-1}$, $a_{*}=A_{|\beta|}^{-1}$. Applying the proposition, we learn the following:

$$
\begin{equation*}
\text { Given } x \in B\left(x^{0}, A_{|\beta|}^{-1} \delta\right) \text {, there exists } \tau \in(-\delta, \delta) \tag{4.15}
\end{equation*}
$$ such that $\partial^{\beta} F\left(x+\tau e_{i_{0}}\right)=0$.

We now take $A_{m}=A_{m-1}=1$, and successively pick the controlled constants $A_{m-2}, A_{m-3}, \ldots A_{0}$, so that (4.14) holds for all $|\beta| \leq m-2$. In particular, if \bar{c} is a small enough controlled constant, and if $0<\delta<\bar{c}$, then (4.6) and (4.9) are satisfied, and (4.15) applies to all $x \in B\left(x^{0}, \bar{c} \delta\right)$. Since we have already noted, that (1) holds, the conclusions of the lemma 5 are obvious from (4.15).

From now on, we fix \bar{c} as in the Lemma 5 .
We prepare to state our second Lemma. Let $0<\delta<\bar{c}$ be given. Fix a cube Q^{0} centered at the origin, such that

$$
\begin{equation*}
1 / 4 \leq \operatorname{diameter} Q^{0}<1 / 2 \tag{4.16}
\end{equation*}
$$

and such that diameter Q^{0} is an integer multiple of δ. Then we can partition Q^{0} into cubes $\left\{Q_{\nu}\right\}$ of diameter $\bar{c} \delta$.

Let x_{ν} be the center of Q_{ν}. Note that $Q^{0} \subset B(0,1 / 2)$, thanks to (4.16).
We define a label to be an ordered pair $\left(i_{0}, \beta\right)$ satisfying condition (1) of Lemma 5. We say, that the cube Q_{ν} carries the label $\left(i_{0}, \beta\right)$, provided we have $\partial^{\beta} F\left(x_{\nu}+\tau e_{i_{0}}\right)=0$ for some $\tau \in[-\delta, \delta]$. From Lemma 5 (applied to $x=x_{\nu}$), we learn the following basic fact:
(4.17) Every Q_{ν} containing a zero of F must carry some label.

On the other hand, we have the following result.
Lemma 6. Fix a label $\left(i_{0}, \beta\right)$. Then there are at most $C \delta^{-(n-1)}$ cubes Q_{ν} that carry the given label.

Proof. Without loss of generality, we may suppose that $i_{0}=n$. We arrange the cubes Q_{ν} into columns", by saying that Q_{ν} and $Q_{\nu^{\prime}}$ belong to the same "column" if their centers x_{ν} and $x_{\nu^{\prime}}$ differ at most in the n-th coordinate. There are at most $C \delta^{-(n-1)}$ distinct columns. Hence, to prove lemma 6, it is enough to show that any given column contains at most C distinct Q_{ν} that carry the label $\left(i_{0}, \beta\right)$.

Fix a column \mathcal{C}. For a suitable $\bar{x} \in \mathbb{R}^{n-1}$, the cubes Q_{ν} in \mathcal{C} have centers $\left(\bar{x}, t_{1}\right), \ldots\left(\bar{x}, t_{N}\right)$, where $t_{1}, \ldots t_{N}$ form an arithmetic progression with the step $c \delta$. For each $i(1 \leq i \leq N)$, we have $\left(\bar{x}, t_{i}\right) \in Q_{\nu} \subset Q^{0} \subset B(0,1 / 2)$.

Therefore, for $\tau \in[-\delta, \delta]$ and $i=1, \ldots, N$, we have

$$
\begin{equation*}
t_{i}+\tau \in I \tag{4.18}
\end{equation*}
$$

where I is the interval $\{t \in \mathbb{R}:(\bar{x}, t) \in B(0,1)\}$.
Let Q_{ν} be one of the cubes in \mathcal{C}, with center $\left(\bar{x}, t_{i}\right)$. By definition, Q_{ν} carries the label $\left(i_{0}, \beta\right)$ (with $i_{0}=n$) if and only if $\partial^{\beta} F\left(\bar{x}, t_{i}+\tau\right)=0$ for some $\tau \in[-\delta, \delta]$. In view of (4.18), it follows that the number of $Q_{\nu} \in \mathcal{C}$ that carry the label $\left(i_{0}, \beta\right)$ is equal to the number of $t_{i}(i=1, \ldots, N)$ that lie within the distance δ from a zero of the function $g(t)=\partial^{\beta} F(\bar{x}, t)$, defined for $t \in I$. Hence, to prove Lemma 6 , it is enough to show:

There are at most C distinct $i(i=1, \ldots N)$, such that t_{i} lies within the distance δ from a zero of $g(t)(t \in I)$.

Moreover, since t_{1}, \ldots, t_{N} form an arithmetic progression with the step $c \delta$, assertion (4.19) will follow, if we can prove that

$$
\begin{equation*}
\text { the function } g \text { has at most } C \text { distinct zeroes in } I \text {. } \tag{4.20}
\end{equation*}
$$

Thus, Lemma 6 is reduced to the task of proving (4.20).
For $t \in I$, we have $(\bar{x}, t) \in B(0,1)$ by definition of I, and therefore

$$
\left(\frac{d}{d t}\right)^{m-1-|\beta|} g(t)=\left(\frac{\partial}{\partial x_{n}}\right)^{m-1-|\beta|} \partial^{\beta} F(\bar{x}, t) \neq 0
$$

thanks to the hypothesis (1) of Theorem 2. That is,

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{m-1-|\beta|} g(t) \text { vanishes nowhere on } I \text {. } \tag{4.21}
\end{equation*}
$$

A standard argument, repeatedly applying Rolle's theorem from elementary calculus, shows that any function satisfying (4.21) can have at most $m-1-|\beta|$ distinct zeroes in I. Hence, (4.20) holds, completing the proof of Lemma 6 .

5. Conclusion

We retain the notation and the setting of Section 4.
Let c_{1} be a small enough controlled constant, and suppose we are given $x \in V(F, \delta)$ with $0<\delta<c_{1}$. By definition of $V(F, \delta)$, we have $x \in B\left(0, c_{1}\right)$, and $\left|x-x^{0}\right|<\delta$ for some $x^{0} \in V(F)$. In particular, $x^{0} \in B\left(0, c_{1}+\delta\right) \subset$ $B\left(0,2 c_{1}\right) \subset Q^{0}$, so $x^{0} \in Q_{\nu}$ for some ν. Thus, Q_{ν} contains a point of $V(F)$, and $\left|x-x_{\nu}\right| \leq\left|x-x^{0}\right|+\left|x^{0}-x_{\nu}\right|<\delta+$ diameter $Q_{\nu}=(1+\bar{c}) \delta$, i.e., $x \in B\left(x_{\nu},(1+\bar{c}) \delta\right)$. We have therefore proven the following:

For $0<\delta<c_{1}$, the set $V(F, \delta)$ is contained in the union of the balls $B\left(x_{\nu},(1+\bar{c}) \delta\right)$ over all ν such that Q_{ν} contains a point of $V(F)$.

From Section 4 (conclusion (4.17) and lemma 6), we see that there are at most $C \delta^{-(n-1)}$ distinct ν such that Q_{ν} contains a point of $V(F)$. Since each $B\left(x_{\nu},(1+\bar{c}) \delta\right)$ has volume $C \delta^{n}$, it follows from (5.1) that

$$
\begin{equation*}
\operatorname{Vol}\{V(F, \delta)\} \leq C_{2} \delta \quad \text { for } 0<\delta<c_{1} \tag{5.2}
\end{equation*}
$$

where C_{2} is a controlled constant. Estimate (5.2) is precisely the conclusion of Theorem 2. We recall from Section 2 that Theorem 1 follows from Theorem 2. Hence, the proofs of Theorems 1 and 2 are complete.

References

[1] Bálint, P. Chernov, N., Szász, D. and Tóth, I. P.: Geometry of multi-dimensional dispersing billiards. In Geometric methods in dynamics (I), 189-150. Astérisque 286 (2003).

Recibido: 7 de junio de 2005

Pavel Batchourine
Department of Mathematics
Princeton University
Princeton, NJ, 08544, USA
pbatchou@math.princeton.edu
Charles Fefferman
Department of Mathematics
Princeton University
Princeton, NJ, 08544, USA
cf@math. princeton.edu

The work of the second author was partially supported by NSF grants DMS-0245242 and DMS-0070692.

[^0]: 2000 Mathematics Subject Classification: 28A75, 54C50.
 Keywords: Level sets, volume.

