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Algebras of Toeplitz operators
with oscillating symbols

Albrecht Böttcher, Sergei M. Grudsky
and Enrique Ramı́rez de Arellano

Abstract

This paper is devoted to Banach algebras generated by Toeplitz
operators with strongly oscillating symbols, that is, with symbols of
the form b(eiα(x)) where b belongs to some algebra of functions on the
unit circle and α is a fixed orientation-preserving homeomorphism of
the real line onto itself. We prove the existence of certain interesting
homomorphisms and establish conditions for the normal solvability,
Fredholmness, and invertibility of operators in these algebras.

1. Introduction and main results

The Hardy space H2(R) is the closed subspace of L2(R) constituted by the
functions f of the form

f(x) =

∫ ∞

0

g(t)eitxdt (x ∈ R)

with g ∈ L2(0,∞). Let L∞(R) be the C∗-algebra of all essentially bounded
functions on R. For a ∈ L∞(R), the Toeplitz operator T (a) is the bounded
linear operator on H2(R) defined by T (a)f = P (af), where P denotes the
orthogonal projection of L2(R) onto H2(R). The function a is referred to as
the symbol of the operator T (a).

Given a closed subalgebra S of L∞(R), we denote by BS the Banach
algebra generated by all Toeplitz operators with symbols in S. Thus, BS is
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the closure in L(H2(R)) of the set B0
S of all operators of the form

A =
∑

j

∏
k

T (ajk), ajk ∈ S,

the sum and the products finite. Such algebras have been extensively studied
for many decades. We here confine ourselves to quoting the pioneering
work [9], [16] for S = C(Ṙ) (the continuous functions on the one-point
compactification of R), [18], [19] for S = PC(R) (the C∗-algebra of all
piecewise continuous functions on R), [11], [12] for S = C(Ṙ) + H∞(R) (the
Douglas algebra), and [29] for S = PQC(R) (the piecewise quasicontinuous
functions on R). The books [7] and [25] contain all these results together
with full proofs. The key to the investigation of the algebras listed above is
the happy circumstance that the commutator T (a)T (b) − T (b)T (a) or even
the semi-commutator T (a)T (b) − T (ab) is compact for a, b ∈ S.

This paper is concerned with the algebras BS in the case where S is an
algebra of strongly oscillating functions. For instance, we consider the case
where S is the algebra of all continuous 2π/λ-periodic functions on R, that is,
the algebra of all functions of the form b(eiλx) with b a continuous function
on the complex unit circle. In the case of strongly oscillating symbols, the
commutator T (a)T (b) − T (b)T (a) is in general not compact. Algebras of
Toeplitz operators with strongly oscillating symbols arise, for example, in the
inverse scattering method for the modified Korteweg-de Vries equation (see,
e.g., [2], [10], [24]). To state precise results, we need some more notation.

Let H2(T) be the Hardy space of the complex unit circle T, that is, the
space of all functions f ∈ L2(T) whose Fourier series is of the form

f(t) =

∞∑
k=0

fkt
k (t ∈ T)

and let PT be the orthogonal projection of L2(T) onto H2(T). It will be
convenient to define the norm in L2(T) and H2(T) by

‖f‖2
2 =

1

2π

∫ 2π

0

|f(eiθ)|2dθ.

The Toeplitz operator on H2(T) generated by a function b ∈ L∞(T) (its
symbol) is the operator T (b) : H2(T) → H2(T), f �→ PT(bf). For a closed
subalgebra R of L∞(T), we define BR as the closure in L(H2(T)) of the
set B0

R of all operators of the form

B =
∑

j

∏
k

T (bjk), bjk ∈ R,

where the sum and the products are finite.
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Let α : R → R be a homeomorphism that preserves the orientation of R.
Then eiα is a map of R onto T. Thus, if b is a function on T, then the
function b ◦ eiα defined by (b ◦ eiα)(x) = b(eiα(x)) is a function living on R.
Note that typically b ◦ eiα is strongly oscillating.

Given a closed subalgebra R of L∞(T), we let BR(eiα) denote the closure
in L(H2(R)) of the set B0

R(eiα) of all operators that can be written as

A =
∑

j

∏
k
T (bjk ◦ eiα), bjk ∈ R,

the sum and the products again finite. Equivalently, BR(eiα) = BS where
S = {b ◦ eiα : b ∈ R}. It is algebras of the form BR(eiα) that are the subject
of this paper.

We remark that the map

U : H2(T) → H2(R), (Uf)(x) =
1√
π
· 1

x + i
f

(
x − i

x + i

)
is an isometric isomorphism. If b ∈ L∞(T), then

(1.1) UT (b)U−1 = T (b#),

where b# ∈ L∞(R) is given by

b#(x) = a((x − i)(x + i)).

In this way all the results we will establish for Toeplitz operators on H2(R)
can be easily transferred to Toeplitz operators on H2(T). We prefer the
H2(R) setting because the line is more convenient than the circle when
working with oscillating functions.

Let H∞(R) be the Banach algebra of all functions in L∞(R) that can
be continued to bounded analytic functions in the upper half-plane C+.
If eiα ∈ H∞(R), then eiα is an inner function, and we write eiα = u in this
case. Individual operators of the form T (b ◦ u) were studied in [3], [4], [13],
[22], [25], for example. In particular, it is known that if b ∈ L∞(T), then
T (b ◦ u) is invertible if and only if T (b) is invertible. One purpose of this
paper is to extend results of this type to operators in BL∞(T)(u). This will
be done with the help of the following theorem.

Theorem 1.1 The map

Fu : B0
L∞(T) → B0

L∞(T)(u),
∑

j

∏
k

T (bjk) �→
∑

j

∏
k

T (bjk ◦ u)

is well-defined and extends to an (isometric) C∗-algebra isomorphism Fu of
BL∞(T) onto BL∞(T)(u).

The proof of this theorem will be based on the so-called “functional model”
(see, e.g., [25]).
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Given a Hilbert space H, we denote by L(H) and K(H) the bounded and
compact linear operators on H, respectively. An operator T ∈ L(H) is said
to be normally solvable if its range Im T := {Th : h ∈ H} is closed, and it is
called Fredholm, left Fredholm, right Fredholm if the coset T + K(H) is in-
vertible, left invertible, right invertible in the quotient algebra L(H)/K(H).
The kernel KerT is defined as {h ∈ H : Th = 0}. It is well known
(see, e.g., [19]) that T is left Fredholm if and only if Im T is closed and
dim KerT < ∞ and that T is right Fredholm if and only if Im T is closed
and dim Coker T < ∞, where Coker T := H/Im T . We here prove the fol-
lowing.

Theorem 1.2 If A is in BL∞(T)(u) and B ∈ BL∞(T) is given by A = Fu(B),
then

A is normally solvable ⇐⇒ B is normally solvable,

A is (left/right) Fredholm ⇐⇒ A is (left/right) invertible,

A is (left/right) invertible ⇐⇒ B is (left/right) invertible.

Things are more complicated if eiα is not an inner function. Our basic
assumption on the homeomorphism α will be that

(1.2) eiα ∈ C(Ṙ) + H∞(R).

In [5] and [21], it was shown that this assumption is satisfied by many of
interesting homeomorphisms α (see Section 3). Here is the main result of
this paper.

Theorem 1.3 If (1.2) holds, then the map

Gα : B0
C(T)(e

iα) → B0
C(T),

∑
j

∏
k

T (bjk ◦ eiα) �→
∑

j

∏
k

T (bjk)

is well-defined and extends to a (contractive) C∗-algebra homomorphism Gα

of BC(T)(e
iα) onto BC(T). The homomorphism Gα in injective and hence an

(isometric) C∗-algebra isomorphism if and only if eiα ∈ H∞(R).

The proof of this theorem makes use of the techniques developed in [20]
and [21] (also see [3], [5], [6], [13]), where individual operators of the form
T (b◦eiα) were considered, and the main ingredient is the observation that eiα

admits the factorization eiα = uαc where uα is an inner function and c is a
function in C(Ṙ) such that c(∞) = 1.
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It is well known that the map

Sym : B0
L∞(R) → L∞(R),

∑
j

∏
k

T (ajk) �→
∑

j

∏
k

ajk

can be extended to a well-defined (contractive) C∗-algebra homomorphism
of BL∞(R) onto L∞(R) (see [1], [7, Proposition 4.4], [11], [27] for H2(T) and
use (1.1) to pass to H2(R)). The following theorem uncovers the structure
of operators in BC(T)(e

iα).

Theorem 1.4 Suppose (1.2) holds and let eiα = uαc, where uα is inner,
c ∈ C(Ṙ), c(∞) = 1. Every operator A ∈ BC(T)(e

iα) is of the form

(1.3) A = Fuα(B) + T (Sym A − Sym Fuα(B)) + K

where B = Gα(A) and K is a compact operator.

Here is an analogue of Theorem 1.2 in the case where eiα is not required
to be analytic.

Theorem 1.5 Let (1.2) be satisfied. If A ∈ BC(T)(e
iα) and B = Gα(A), then

A is normally solvable =⇒ B is normally solvable,

A is (left/right) Fredholm ⇐⇒ B is (left/right) invertible.

This theorem can be proved by localization techniques: note that at
infinity the operator

∑
j

∏
k T (bjk ◦ eiα) is locally equivalent to the operator∑

j

∏
k T (bjk ◦ uα) and thus to an operator as in Theorem 1.2. We will

proceed differently and derive Theorem 1.5 from Theorem 1.4.

If eiα = u ∈ H∞(R), then Theorem 1.2 shows that in the assertion of
Theorem 1.5 which concerns normal solvability the implication “=⇒” can
even be replaced by the equivalence “⇐⇒”. As the following result reveals,
this is no longer true if eiα is not analytic.

Theorem 1.6 Let eiα be in C(Ṙ) + H∞(R) but not in H∞(R). Then there
exist operators A ∈ BC(T)(e

iα) such that A is not normally solvalble although
B = Gα(A) is normally solvable.

The paper is organized as follows. Section 2 deals with algebras generated
by Toeplitz operators of the form T (b ◦ u) where u is an arbitrary inner
function. In the special case where u = eiα with an orientation-preserving
homeomorphism α : R → R, these results imply Theorems 1.1 and 1.2.
Section 3 is devoted to the proof of Theorem 1.3, and in Section 4 we prove
Theorems 1.4 to 1.6.

We remark that our proofs show that Theorems 1.1 to 1.6 remain lit-
erally true in the matrix case, that is, for algebras generated by operators
of the form T (b ◦ eiα) where b is a matrix function on T and α is a fixed
homeomorphism of R onto itself that preserves the orientation of R.
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2. Oscillations caused by inner functions

The results of this section will imply Theorems 1.1 and 1.2.

Let u ∈ H∞(R) be an inner function. We do not assume that u is of
the form eiα with an orientation-preserving homeomorphism α : R → R.
However, we assume that u is not a finite Blaschke product (this case will
be treated separately in the end of this section).

The set uH2(R) := {uh : h ∈ H2(R)} is a closed subspace of H2(R).
Let Ku denote the orthogonal complement of uH2(R) in H2(R):

(2.1) H2(R) = uH2(R) ⊕ Ku.

It is easily seen that

(2.2) Ku = KerT (u),

and since u is not a finite Blaschke product, dim Ku = ∞ (see, e.g., [7,
Theorem 2.64] or [25]). The following lemma is a well known consequence
of the Wold decomposition (see, e.g., [23], [25]). We include an elementary
proof for the reader’s convenience.

Lemma 2.1 We have

H2(R) =

∞⊕
j=1

K(j)
u with K(j)

u := ujKu.

Proof. If f, g ∈ Ku and j < k, then

(ujf, ukg) = (uk−jf, g) = (uk−jf, Pg) = (P (uk−jf, g) = (T (u)k−jf, g),

and this is zero by virtue of (2.2). Thus, it remains to show that ⊕∞
j=1K

(j)
u is

dense in H2(R). Assume the contrary: there exists a g ∈ H2(R) such that

g �= 0 and g ⊥ K
(j)
u for all j. It follows that (ujg, h) = (g, ujh) = 0 for all

h ∈ Ku and all j, whence ujg ∈ uH2(R) for all j due to (2.1). Consequently,
g ∈ uj+1H2(R) for all j. Thus, g = uj+1gj with gj ∈ H2(R) for all j. Since
g �= 0, there is a point z0 in the upper half-plane such that g(z0) �= 0. As
|g(z0)| = |u(z0)|j+1|gj(z0)| and |u(z0)| < 1, we conclude that |gj(z0)| → ∞
as j → ∞. But Cauchy’s integral formula tells us that

gj(z0) =
1

2πi

∫
R

gj(x)

x − z0

dx,

and the Cauchy-Schwarz inequality therefore gives

|gj(z0)| ≤ ‖gj‖2

2π

(∫
R

dx

|x − z0|2
)1/2

=
‖g‖2

2π

(∫
R

dx

|x − z0|2
)1/2

.

As the integral in the last estimate is finite, we have a contradiction. �
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From the theory of composition operators it is well known that if f ∈H2(T)
and u is an inner function, then the function f(u(x))/(x+i) belongs to H2(R)
(see, e.g., [26], [30]). Clearly, f ◦ u itself need not be in H2(R) (take, for
example, f = 1). However, if we multiply f ◦ u by a function in Ku, then
the result is always in H2(R). This is the content of the following lemma.

Lemma 2.2 Let e ∈ Ku and ‖e‖2 = 1.

(a) If f ∈ L2(T) and k ∈ Z, then euk(f ◦ u) ∈ L2(R) and ‖euk(f ◦ u)‖2 =
‖f‖2.

(b) If f ∈ H2(T), then e(f ◦ u) ∈ H2(R) and ‖e(f ◦ u)‖2 = ‖f‖2.

Proof. This follows from the equalities

‖euk(f ◦ u)‖2
2 =

(
euk

∑
fju

j, euk
∑

flu
l
)

=
∑
j,l

fjf l(eu
k+j, euk+l)

=
∑

j

|fj|2(e, e) (Lemma 2.1)

=
∑

j

|fj|2 = ‖f‖2
2. �

The following lemma describes the action of T (b ◦ u) on functions of the
form e(f ◦ u).

Lemma 2.3 Let e ∈ Ku, f ∈ H2(T), b ∈ L2(T). Then

(2.3) T (b ◦ u)(e(f ◦ u)) = e(T (b)f ◦ u).

Proof. Define χn by χn(t) = tn (t ∈ T). For j ∈ Z and k ∈ Z+,

T (χj ◦ u)(e(χk ◦ u)) = P (ujeuk) =

{
euj+k if j + k ≥ 0,

0 if j + k < 0,

and

e(T (χj)χk ◦ u) = e(P (χj+k) ◦ u) =

{
euj+k if j + k ≥ 0,

0 if j + k < 0.

This implies (2.3) for b = χj and f = χk. From Lemma 2.2(a) we deduce
that if b ∈ L2(T), then

‖(b ◦ u)(e(χk ◦ u))‖2 = ‖euk(b ◦ u)‖2 = ‖b‖2,

‖e(T (b)χk ◦ u)‖2 = ‖T (b)χk‖2 ≤ ‖b‖2,

which shows that the maps

b �→ T (b ◦ u)(e(χk ◦ u)), b �→ e(T (b)χk ◦ u)

are bounded linear operators on L2(T).
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Consequently, (2.3) is true for all b ∈ L∞(T) ⊂ L2(T) and for f = χk.
Finally, for b ∈ L∞(T) and f ∈ H2(T) we obtain from Lemma 2.2(b) that

‖T (b ◦ u)(e(f ◦ u))‖2 ≤ ‖b‖∞‖e(f ◦ u)‖2 = ‖b‖∞‖f‖2,

‖e(T (b)f ◦ u)‖2 = ‖T (b)f‖2 ≤ ‖b‖∞‖f‖2

and hence the maps

f �→ T (b ◦ u)(e(f ◦ u)), f �→ e(T (b)f ◦ u)

are bounded linear operators on L2(T). This proves (2.3) for all b ∈ L∞(T)
and all f ∈ H2(T). �

Now let {ek}∞k=1 be an orthonormal basis in the infinite-dimensional
space Ku.

Lemma 2.4 We have

H2(R) =

∞⊕
k=1

E(k)
u with E(k)

u := {ek(f ◦ u) : f ∈ H2(T)}.

Proof. If k1 �= k2 and f, g ∈ H2(T), then

(ek1(f ◦ u), ek2(g ◦ u)) =

(
ek1

∑
j

fju
j, ek2

∑
l

glu
l

)
=

∑
j,l

fjgl(ek1u
j, ek2u

l)

=
∑

j

fjgj(ek1u
j, ek2u

j) (Lemma 2.1)

=
∑

j

fjgj(ek1, ek2) = 0.

It remains to prove that ⊕∞
k=1E

(k)
u is dense in H2(R). Fix an arbitrary ε > 0.

By Lemma 2.1, there are h1, . . . , hN ∈ Ku such that∥∥∥∥f −
N∑

j=1

ujhj

∥∥∥∥
2

< ε.

Each hj can be written as hj =
∑∞

k=1 cjkek with
∑∞

k=1 |cjk|2 < ∞. Put

gk =
∑N

j=1 cjkχj. Then g ◦ u =
∑N

j=1 cjku
j and∥∥∥∥f −

∞∑
k=1

ek(g ◦ u)

∥∥∥∥
2

=

∥∥∥∥f −
N∑

j=1

ujhj

∥∥∥∥
2

< ε.

This proves that ⊕∞
k=1E

(k)
u is dense in H2(R). �
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We now join the pieces of the puzzle. Let B0
L∞(T)(u) be the collection of

all operators of the form∑
j

∏
l

T (bjl ◦ u), bjl ∈ L∞(T),

the sum and the product finite, and let BL∞(T)(u) denote the closure of
B0

L∞(T)(u) in L(H2(R)). Lemma 2.4 gives us the decomposition

H2(R) =
∞⊕

k=1

E(k)
u

and Lemma 2.2(b) tells us that

(2.4) Uk : H2(T) → E(k)
u , f �→ ek(f ◦ u)

is an isometric isomorphism for each k. The following theorem clearly implies
Theorem 1.1.

Theorem 2.5 Let u ∈ H∞(R) be an inner function and suppose u is not a
finite Blaschke product. Then the map

Fu : BL∞(T) → L(H2(R)), B �→
∞⊕

k=1

UkBU−1
k

is an isometric C∗-algebra homomorphism satisfying

(2.5) Fu

( ∑
j

∏
l

T (bjk)

)
=

∑
j

∏
l

T (bjk ◦ u)

for
∑

j

∏
l T (bjk) ∈ B0

L∞(T). The image of Fu is BL∞(T)(u).

Proof. It is clear that Fu is an isometric C∗-algebra homomorphism. From
Lemma 2.3 we know that if b ∈ L∞(T), then each E

(k)
u is an invariant

subspace of T (b ◦ u) and that, for ek(f ◦ u) ∈ E
(k)
u ,

T (b ◦ u)(ek(f ◦ u)) = ek(T (b)f ◦ u) = UkT (b)f = UkT (b)U−1
k (ek(f ◦ u)).

Thus, T (b ◦ u)
∣∣E(k)

u = UkT (b)U−1
k for each k. By virtue of Lemma 2.4 we

therefore have

T (b ◦ u) =
∞⊕

k=1

UkT (b)U−1
k ,

which implies that∑
j

∏
l

T (bjl ◦ u) =

∞⊕
k=1

Uk

∑
j

∏
l

T (bjl)U
−1
k

for every finite collection {bjl} of functions in L∞(T). This proves (2.5) and
shows that the image of Fu is BL∞(T)(u). �
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Theorem 2.6 Let u ∈ H∞(R) be an inner function, suppose u is not a finite
Blaschke product, let A ∈ BL∞(T)(u), and define B ∈ BL∞(T) by A = Fu(B).
Then the three equivalences of Theorem 1.2 are valid.

Proof. An operator T ∈ L(H) is normally solvable if and only if there exists
a number d > 0 such that sp (T ∗T ) ⊂ {0}∪ [d2,∞), where sp (·) denotes the
spectrum (see, e.g., [8, Theorem 4.21]). From Theorem 2.5 we infer that

sp (Fu(B)∗Fu(B)) = sp (Fu(B
∗B)) = sp (B∗B),

and hence Fu(B) is normally solvable if and only if so is B.

If B is (left/right) invertible, then, again by Theorem 2.5, Fu(B) has
the same property. Suppose now that Fu(B) is left Fredholm. Then Fu(B)
is normally solvable and dim Ker Fu(B) < ∞. We already know that B
is also normally solvable. If Bf = 0 for some nonzero f ∈ H2(T), then
Fu(B)Ukf = 0 for all k due to Theorem 2.5. As the functions Ukf are
nonzero and pairwise orthogonal, if follows that dim KerFu(B) = ∞. This
contradiction shows that KerB = {0}, and since B has closed range, we
arrive at the conclusion that B is left invertible. Consideration of adjoints
now implies that B is right invertible whenever Fu(B) is right Fredholm. �

Theorems 1.1 and 1.2 follow from Theorems 2.5 and 2.6 with u = eiα.

We finally consider the case where u is a finite Blaschke product:

u(x) = γ

n∏
j=1

x − zj

x − zj

, zj ∈ C+, γ ∈ T.

We then can repeat all the above arguments almost literally, the only dif-
ference being that dimKu = n < ∞. It results that H = ⊕n

k=1E
(k)
u and

that (2.4) is an isometric isomorphism for every orthonormal basis {ek}n
k=1

of Ku. The map

FBn : BL∞(T) → BL∞(T)(u), B �→
n⊕

k=1

UkBU−1
k

is a C∗-algebra isomorphism satisfying (2.5). If A is in BL∞(T)(u) and
B ∈ BL∞(T) is given by A = Fu(B), then

A is normally solvable ⇐⇒ B is normally solvable,

A is (left/right) Fredholm ⇐⇒ B is (left/right) Fredholm,

A is (left/right) invertible ⇐⇒ B is (left/right) invertible,

and if A is left or right Fredholm, then

dim KerA = n dim KerB, dim Coker A = n dim Coker B.
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3. The basic algebra homomorphism

In this section we prove Theorem 1.3.

Thus, suppose α : R → R is a homeomorphism that preserves the ori-
entation of R and that satisfies (1.2). In [21], it was shown that (1.2) holds
whenever α is twice continuously differentiable and subject to the following
conditions

lim inf
x→+∞

xα′′(x)

α′(x)
> −2,

lim
x→+∞

α′′(x)

(α′(x))2
= 0,

lim
x→+∞

x1/2α′′(x)

(α′(x))3/2
= 0,

lim
x→+∞

(α(x) + α(−x)) = 0.(3.1)

These conditions can be straightforwardly verified if, for example, (3.1) is
required a priorily and for large x > 0, α(x) is one of the functions

α(x) = cxγ, γ > 0,

α(x) = c logδ x, δ > 1,

α(x) = cxγ logδ x, γ > 0, δ > 1,

α(x) = c1 exp(c2x
γ), γ > 0,

α(x) = c1 exp(c2 exp(c3x
γ)), γ > 0,

where c, c1, c2, c3 are positive constants.

The function eiα can be written in the form

(3.2) eiα(x) = uα(x)c(x)

where uα is an inner function, c ∈ C(Ṙ), and c(∞) = 1 (see [6] and [25] for
a simple way of reducing the proof to the well known factorization theorems
of [28] and [32]). The function uα can in turn be factored into a Blaschke
product and a singular inner function. Since uα is continuous on R, the zeros
of the Blaschke product cannot have an accumulation point on R. Thus, we
have uα = BSλ where B is a Blaschke that is continuously differentiable
(even C∞) on R and Sλ(x) = eiλx with λ ≥ 0 (see, e.g., [15] or [25] for
details). Clearly, uα(x) = eiϕ(x) with some real-valued continuously differ-
entiable function ϕ on R. If λ = 0, then B must be an infinite Blaschke
product, which implies that ϕ′(x) > 0 for all x ∈ R. If λ > 0, then B may
be a constant or a nonconstant finite or infinite Blaschke product; in any
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case, ϕ′(x) ≥ λ > 0 for all x ∈ R. Thus, for each γ ∈ [0, 2π) the equa-
tion eiϕ(x) = eiγ has a countable number of solutions {xk(γ)}∞k=−∞, which
can be labeled so that 3 ≤ x1(0) ≤ x1(γ) < x2(0) for all γ ∈ [0, 2π) and
xk(γ) < xk+1(γ) for all k. Obviously, xk(γ) → +∞ as k → +∞. For
γ ∈ [0, 2π) and k ∈ Z, we put

(3.3) eγ
k(x) = µγ

k

uα(x) − eiγ

x − xk(γ)
, µγ

k :=
1

(2πϕ′(xk(γ)))1/2
.

Lemma 3.1 We have eγ
k ∈ Kuα and ‖eγ

k‖2 = 1.

Proof. The function eγ
k can be analytically continued to C+ ∪ D�(xk(γ)),

where D�(xk(γ)) is the disk of radius 
 centered at xk(γ) and 
 > 0 is chosen
small enough. Since |eγ

k(z)| is bounded for z ∈ D�(xk(γ)) and decays as 1/|z|
as |z| → ∞ and Im z ≥ 0, it follows that

sup
y≥0

∫
R

|eγ
k(x + iy)|2dx < ∞.

This proves that eγ
k ∈ H2(R) (see, e.g., [15] or [25]). Furthermore, T (uα)eγ

k =
Pg with

g(z) = (1 − uα(z)eiγ)/(z − xk(γ))

for Im z ≤ 0. In the same way we showed that eγ
k ∈ H2(R), we see that g is

in the orthogonal complement of H2(R) in L2(R). Thus Pg = 0, and (2.2)
implies that eγ

k ∈ Kuα. To compute the norm of eγ
k, note first that

‖eγ
k‖2

2 = (µγ
k)

2

∫
R

2 − uα(x)e−iγ − uα(x)eiγ

(x − xk(γ))2
dx

= (µγ
k)

2

∫
Γ�

2 − uα(z)e−iγ − uα(z)eiγ

(z − xk(γ))2
dz,(3.4)

where Γ� results from R by replacing the segment |x − xk(γ)| ≤ 
/2 by the
half-circle {z ∈ C : Im z ≤ 0, |z − xk(γ)| = 
/2}. As 2/(z − xk(γ))2 and
uα(z)/(z−xk(γ))2 are analytic in the lower half-plane and vanish at infinity,
Cauchy’s theorem shows that the integral (3.4) can be reduced to

‖eγ
k‖2

2 = (µγ
k)

2

∫
Γ�

−uα(z)e−iγ

(z − xk(γ))2
dz.

Finally, Cauchy’s integral formula for the complex region above Γ� yields

‖eγ
k‖2

2 = (µγ
k)

22πi(−u′
α(xk(γ)))e−iγ

=
1

2πϕ′(xk(γ))
2πi(−iϕ′(xk(γ))eiϕ(xk(γ)))e−iγ = 1.

�
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Lemma 3.2 For each δ > 0 and each n ∈ N, there exist γn ∈ [0, 2π)
and kn ≥ n such that

ϕ′(xkn(γn))(xkn(γn))3/2 > 1/δ.

Proof. Assume the contrary: there are δ > 0 and n ∈ N such that

(3.5) ϕ′(xk(γ))(xk(γ))3/2 ≤ 1/δ

for all γ ∈ [0, 2π) and all k ≥ n. There is an x0 ≥ 1 such that each number
x ≥ x0 is xk(γ) for some γ ∈ [0, 2π) and some k ≥ n. Thus, (3.5) implies
that ϕ′(x)x3/2 ≤ 1/δ for all x ≥ x0. Integrating this inequality we get

ϕ(x) ≤ ϕ(x0) +
1

δ

∫ x

x0

dξ

ξ3/2
< ϕ(x0) +

1

δ
· 1

2
,

which is impossible because ϕ(x) → +∞ as x → +∞. �

Theorem 3.3 Let bjl be a finite collection of functions in C(T) and let

A =
∑

j

∏
l

T (bjl ◦ eiα), B =
∑

j

∏
l

T (bjl).

Then ‖A‖ ≥ ‖B‖.

Proof. Fix an arbitrary ε > 0. There is an f ∈ H2(T) such that ‖f‖2 = 1
and ‖Bf‖2 ≥ ‖B‖ − ε. For k ∈ N and γ ∈ [0, 2π), define eγ

k by (3.3) and
put ψγ

k = eγ
k(f ◦ uα). By Lemma 2.2(b) and Lemma 3.1, ψγ

k ∈ H2(R) and
‖ψγ

k‖2 = 1. Let Fuα be as in Theorem 1.1 (or Theorem 2.5). Thus,

Fuα(B) =
∑

j

∏
l

T (bjl ◦ uα).

Lemmas 2.3 and 3.1 imply that

Fuα(B)ψγ
k =

∑
j

∏
l

T (bjl ◦ uα)(eγ
k(f ◦ uα))

= eγ
k

(( ∑
j

∏
l

T (bjl)f

)
◦ uα

)
= eγ

k(Bf ◦ uα),

whence, again by Lemmas 2.2(b) and 3.1,

‖Fuα(B)ψγ
k‖2 = ‖Bf‖2 ≥ ‖B‖ − ε.
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Consequently,

‖Aψγ
k‖2 ≥ ‖Fuα(B)ψγ

k‖2 − ‖(A − Fuα(B)ψγ
k‖2

≥ ‖B‖ − ε − ‖(A − Fuα(B))ψγ
k‖2.(3.6)

We claim that there exists a δ > 0 such that if we choose γn ∈ [0, 2π)
and kn ≥ n as in Lemma 3.2, then

(3.7) ‖(A − Fuα(B))ψγn

kn
‖2 < ε

for all sufficiently large n. Clearly, from (3.6) and (3.7) we obtain that
‖A‖ > ‖B‖ − 2ε (recall that ‖ψγn

kn
‖2 = 1), and as ε > 0 is arbitrary, we

arrive at the desired inequality ‖A‖ ≥ ‖B‖.
To prove our claim (3.7), we may without loss of generality assume that

A =
m∏

l=1

T (bl ◦ eiα), B =
m∏

l=1

T (bl).

Let first m = 1 and write A = T (b◦ eiα), B = T (b). Fix δ > 0, let γn and kn

be as in Lemma 3.2, and abbreviate xkn(γn) to xn. Notice that xn ≥ 3 for
all n and that xn → ∞ as n → ∞. We have

‖(A − Fuα(B))ψγn

kn
‖2

2 = ‖P ((b ◦ eiα − b ◦ uα)ψγn

kn
)‖2

2

≤ ‖(b ◦ eiα − b ◦ uα)ψγn

kn
‖2

2

=

∫
R

|b(eiα(x)) − b(uα(x))|2|ψγn

kn
(x)|2dx.(3.8)

We split the integral (3.7) into the integral over |x| < x
1/4
n and the integral

over |x| > x
1/4
n . The integral over |x| < x

1/4
n does not exceed

(2‖b‖∞)2

∫
|x|<x

1/4
n

|eγn

kn
(x)|2|x + i|2

∣∣∣∣f(uα(x))

x + i

∣∣∣∣2 dx

=
4‖b‖2

∞
2π

∫
|x|<x

1/4
n

|uα(x) − eiγn |2
ϕ′(xn)

∣∣∣∣ x + i

x − xn

∣∣∣∣2 ∣∣∣∣f(uα(x))

x + i

∣∣∣∣2 dx.(3.9)

Clearly, |uα(x) − eiγn|2 ≤ 4. If |x| < x
1/4
n , then

|x + i| < x1/4
n + 1 < 2x1/4

n ,

|x − xn| > xn − x1/4
n = x1/4

n (x3/4
n − 1) > x1/4

n

1

2
x3/4

n =
1

2
xn,

whence |x + i|2/|x − xn|2 < 8/x
3/2
n .
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Thus, (3.9) is at most

4‖b‖2
∞

2π
· 4

ϕ′(xn)
· 8

x
3/2
n

∫
|x|<x

1/4
n

∣∣∣∣f(uα(x))

x + i

∣∣∣∣2 dx

<
64‖b‖2

∞
π

δ

∫
R

∣∣∣∣f(uα(x))

x + i

∣∣∣∣2 dx,(3.10)

the last inequality resulting from Lemma 3.2 (recall also the paragraph be-

fore Lemma 2.2). We now consider the integral over |x| > x
1/4
n . Since

b(eiα(x)) − b(uα(x)) = b(uα(x)c(x)) − b(uα(x))

and b ∈ C(T), c ∈ C(Ṙ), c(∞) = 1, we see that if n is large enough, then

(3.11) |b(eiα(x)) − b(uα(x))| <
ε√
2

for |x| > x1/4
n

and hence the integral over |x| > x
1/4
n is at most

ε2

2

∫
|x|>x

1/4
n

|eγn

kn
(x)f(uα(x))|2dx

≤ ε2

2

∫
R

|eγn

kn
(x)f(uα(x))|2dx =

ε2

2
‖ψγn

kn
‖2

2 =
ε2

2
.(3.12)

Thus, by first choosing δ > 0 so that (3.10) is less than ε2/2 and then
choosing n so that (3.11) and therefore (3.12) is satisfied, we obtain that (3.8)
is smaller than ε2, which gives (3.7).

Now suppose our claim (3.7) is true for k ≤ m. We prove it for m+1. Let

A =
m+1∏
l=1

T (bl ◦ eiα), B =
m+1∏
l=1

T (bl),

fix δ > 0, and pick γn and kn as in Lemma 3.2. Also put

c = bm+1 ◦ eiα − bm+1 ◦ uα.

Then

A − Fuα(B) =

( m∏
l=1

T (bl ◦ eiα) −
m∏

l=1

T (bl ◦ uα)

)
T (bm+1 ◦ uα)

+

m∏
l=1

T (bl ◦ eiα)T (c).

The truth of the claim for k = 1 shows that∥∥∥∥∥
m∏

l=1

T (bl ◦ eiα)T (c)ψγn

kn

∥∥∥∥∥ ≤
m∏

l=1

‖bl‖∞‖T (c)ψγn

kn
‖2 <

ε

2

for all sufficiently large n provided δ > 0 is sufficiently small.
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Furthermore, by Lemma 2.3,

T (bm+1 ◦ uα)ψγn

kn
= eγn

kn
(T (bm+1)f ◦ uα) = ceγn

kn
(f̃ ◦ uα) =: cψ̃γn

kn

with c = ‖T (bm+1)f‖2 and f̃ = c−1T (bm+1)f . Thus,

( m∏
l=1

T (bl ◦ eiα) −
m∏

l=1

T (bl ◦ uα)

)
T (bm+1 ◦ uα)ψγn

kn
(3.13)

= c

( m∏
l=1

T (bl ◦ eiα) −
m∏

l=1

T (bl ◦ uα)

)
ψ̃γn

kn
,(3.14)

and as |c| ≤ ‖bm+1‖∞ and (3.7) was supposed to be true for m, we ar-
rive at the conclusion that the norm of (3.13) is smaller than ε/2 for all n
large enough if only δ > 0 is chosen sufficiently small. This completes
the proof. �

Proof of Theorem 1.3. From Theorem 3.3 we deduce that if∑
j

∏
l

T (bjl ◦ eiα) =
∑
m

∏
n

T (cmn ◦ eiα),

then ∑
j

∏
l

T (bjl) =
∑
m

∏
n

T (cmn).

Thus, Gα is well-defined on B0
C(T)(e

iα). It is obvious that Gα preserves scalar

multiples, sums, products and adjoints. As B0
C(T)(e

iα) is dense in BC(T)(e
iα),

Theorem 3.3 implies that Gα extends to a C∗-algebra homomorphism of
BC(T)(e

iα) onto BC(T).

If eiα is an inner function, eiα = u, then Gα is the inverse of the isomor-
phism Fu : BC(T) → BC(T)(u) given by Theorem 1.1. However, if eiα is not
an inner function, then Gα has a nontrivial kernel. Indeed,

Gα(T (eiα)T (eiα) − T (e2iα)) = T (χ1)T (χ1) − T (χ2
1) = 0,

but T (eiα)T (eiα)−T (e2iα) is zero if and only if eiα ∈ H∞(R) or e−iα ∈ H∞(R)
(see [23, Problem 195]). By assumption, eiα /∈ H∞(R). If e−iα were in
H∞(R), then e−iα would be an inner function that is continuous on R. But
the continuous arguments of such functions increase monotonically, which
contradicts the requirement that α(±∞) = ±∞. �
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4. The structure theorem and Fredholm criteria

This section contains the proofs of Theorems 1.4 to 1.6.

We write T ∼= S for operators T and S if T − S is a compact operator.
We will also make repeated use of the well known fact that

T (a)T (b) ∼= T (ab)

if a, b ∈ L∞(R) and at least one of the functions a and b is continuous (see,
e.g., [7], [8] or [17]). Throughout this section we denote by uα and c the
functions given by factorization (3.2).

Lemma 4.1 If ϕ ∈ C(Ṙ) and ϕ(∞) = 0, then

Fuα(B)T (ϕ) ∼= T (((SymB) ◦ uα)ϕ),(4.1)

T (ϕ)Fuα(B) ∼= T (ϕ((SymB) ◦ uα))(4.2)

for every B ∈ BL∞(T).

Proof. We only prove (4.1). The proof of (4.2) is analogous.

Since both sides of (4.1) depend continuously on B (recall Theorem 1.1),
it is sufficient to verify (4.1) for

B =

n∏
l=1

T (bl), bl ∈ L∞(T).

We have

Fuα(B) =
n∏

l=1

T (bl ◦ uα), (Sym B) ◦ uα =
n∏

l=1

bl ◦ uα.

Clearly,
T (bn ◦ uα)T (ϕ) ∼= T ((bn ◦ uα)ϕ).

As ϕ(∞) = 0, it follows that (bn ◦ uα)ϕ is in C(Ṙ) and vanishes at infinity.
Hence

T (bn−1 ◦ uα)T ((bn ◦ uα)ϕ) ∼= T ((bn−1bn ◦ uα)ϕ).

Continuing in this way we obtain

n∏
l=1

T (bl ◦ uα)T (ϕ) ∼= T (((b1 · · · bn) ◦ uα)ϕ).
�
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Proof of Theorem 1.4. By virtue of Theorems 1.1 and 1.3, it suffices to
prove (1.3) in the case where

A =

n∏
l=0

T (bl ◦ eiα), bl ∈ C(T).

In that case

Fuα(B) =

n∏
l=0

T (bl ◦ uα), Sym A =

n∏
l=0

bl ◦ eiα, Sym Fuα(B) =

n∏
l=0

bl ◦ uα.

For n = 0, (1.3) is obviously true with K = 0. Suppose (1.3) is true for n−1.
We prove it for n. Put

c0 = b0 ◦ eiα − b0 ◦ uα, b = b1 · · · bn.

By assumption,

n∏
l=0

T (bl ◦ eiα) = T (b0 ◦ eiα)

n∏
l=1

T (bl ◦ eiα)

∼= T (b0 ◦ eiα)

(
n∏

l=1

T (bl ◦ uα) + T (b ◦ eiα − b ◦ uα)

)

= T (b0 ◦ uα + c0)
n∏

l=1

T (bl ◦ uα) + T (b0 ◦ eiα)T (b ◦ eiα − b ◦ uα)

=

n∏
l=0

T (bl ◦ uα) + T (c0)

n∏
l=1

T (bl ◦ uα) + T (b0 ◦ eiα)T (b ◦ eiα − b ◦ uα).(4.3)

Since c0 ∈ C(Ṙ) and c0(∞) = 0, we deduce from Lemma 4.1 that

T (c0)

n∏
l=1

T (bl ◦ uα) ∼= T

(
c0

n∏
l=1

bl ◦ uα

)
= T (c0(b ◦ uα)) = T ((b0 ◦ eiα)(b ◦ uα) − (b0b) ◦ uα).(4.4)

Finally, as b ◦ eiα − b ◦ uα ∈ C(Ṙ),

T (b0 ◦ eiα)T (b ◦ eiα − b ◦ uα) ∼= T ((b0 ◦ eiα)(b ◦ eiα − b ◦ uα))

= T ((b0b) ◦ eiα − (b0 ◦ eiα)(b ◦ uα)).(4.5)

Inserting (4.4) and (4.5) in (4.3) we get

n∏
l=0

T (bl ◦ eiα) ∼=
n∏

l=0

T (bl ◦ uα) + T ((b0b) ◦ eiα − (b0b) ◦ uα),

which is desired equality. �
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Proof of Theorem 1.5. Suppose A is normally solvable. Since Gα is a
C∗-algebra homomorphism (Theorem 1.3), we can proceed as in the proof
of Theorem 2.6 to conclude that B is also normally solvable.

Put b = Sym B. Then Sym A = b ◦ eiα and Sym Fuα(B) = b ◦ uα.
Theorem 1.4 tells us that

(4.6) A ∼= Fuα(B) + T (b ◦ eiα − b ◦ uα).

Suppose B is left invertible. As BC(T) is a C∗-algebra, B has a left
inverse D in BC(T). With d := Sym D, we have db = 1. By (4.6),

Fuα(D)A ∼= Fuα(D)Fuα(B) + Fuα(D)T (b ◦ eiα − b ◦ uα).

From Theorem 1.1 we know that Fuα(D)Fuα(B) = I. Since b ◦ eiα − b ◦ uα

belongs to C(Ṙ) and takes the value zero at infinity, Lemma 4.1 gives

Fuα(D)T (b◦eiα−b◦uα) ∼= T ((d◦uα)(b◦eiα−b◦uα)) = T ((d◦uα)(b◦eiα))−I.

Thus,
Fuα(D)A ∼= T ((d ◦ uα)(b ◦ eiα)).

The function (d ◦ uα)(b ◦ eiα) is in C(Ṙ) and has no zeros on Ṙ (note that it
equals 1 at infinity). The operator T ((d◦uα)(b◦ eiα)) is therefore Fredholm.
Let L be any inverse modulo compact operators. Then

LFuα(A)A ∼= LT ((d ◦ uα)(b ◦ eiα)) ∼= I,

which proves that A is left Fredholm.

Now let A be left Fredholm. The sum

S := BC(T)(e
iα) + K(H2(R))

is a C∗-subalgebra of L(H2(R)) (see, e.g., [14, pp. 17–18]). Since A is
left Fredholm, the coset A + K(H2(R)) is left invertible in S/K(H2(R)).
Thus, there is an L ∈ BC(T)(e

iα) such that LA ∼= I. Put D = Gα(L) and
d = Sym D. Since Sym K = 0 for every compact operator, the equality
LA = I + K implies that (d ◦ eiα)(b ◦ eiα) = 1, whence db = 1. From (4.6)
and the corresponding representation for L we get

I ∼= LA ∼= Fuα(D)Fuα(B) + Fuα(D)T (b ◦ eiα − b ◦ uα)

+ T (d ◦ eiα − d ◦ uα)Fuα(B) + T (d ◦ eiα − d ◦ uα)T (b ◦ eiα − b ◦ uα),

and Lemma 4.1 therefore gives

I ∼= Fuα(D)Fuα(B) + T ((d ◦ uα)(b ◦ eiα − b ◦ uα))

+T ((d ◦ eiα − d ◦ uα)(b ◦ uα)) + T ((d ◦ eiα − d ◦ uα)(b ◦ eiα − b ◦ uα))

= Fuα(D)Fuα(B) + T ((d ◦ eiα)(b ◦ eiα) − (d ◦ uα)(b ◦ uα))

= Fuα(D)Fuα(B).
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Consequently, Fuα(B) is left Fredholm. Theorem 1.2 now implies that B is
left invertible.

At this point we have proved that A is left Fredholm if and only if B
is left invertible. Passage to adjoints shows that A is right Fredholm if and
only if B is right Fredholm. �

Let us apply Theorem 1.5 to pure Toeplitz operators. We denote by
GC(T) the set of all functions in C(T) that have no zeros on T. For b ∈
GC(T), wind b is the winding number of b about the origin.

Corollary 4.2 Let b ∈ C(T), let α : R → R be an orientation preserving
homeomorphism satisfying (1.2), and put a = b ◦ eiα. Then

(a) T (a) is normally solvable if and only if b vanishes identically or b ∈
GC(T);

(b) if b ∈ GC(T) and wind b > 0, then T (a) is left invertible and
dim Coker T (a) = ∞;

(c) if b ∈ GC(T) and wind b < 0, then T (a) is right invertible and
dim KerT (a) = ∞;

(d) if b ∈ GC(T) and wind b = 0, then T (a) is invertible.

Proof. Let b ∈ GC(T) and wind b > 0. Then T (b) is left invertible (see, e.g.,
[17, Theorem I.7.1]) and hence Theorem 1.5 shows that T (a) is left Fredholm.
This implies that T (a) is normally solvable and that dim KerT (a) < ∞.
If T (a) had a finite-dimensional cokernel, then T (a) would be Fredholm and
hence T (b) would be invertible (again Theorem 1.5). But this is not the case
if wind b > 0. Consequently, dim Coker T (a) = ∞. As a nonzero Toeplitz
operator always has a trivial kernel or a dense range (Coburn’s theorem,
see, e.g., [7, Theorem 2.38]), it follows that dim KerT (a) = {0}. The proof
of (b) is complete.

Assertion (c) follows from (b) by passage to adjoints.

Now suppose b ∈ GC(T) and wind b = 0. Then T (a) is Fredholm due to
Theorem 1.5. The function b is homotopic in GC(T) to the function which
is identically 1. Consequently, T (a) is homotopic in the Fredholm operators
to the operator T (1 ◦ eiα) = I. Hence T (a) is Fredholm of index zero, which
implies that T (a) is invertible (by Coburn’s theorem). This completes the
proof of (d).

If T (a) is normally solvable, then, by Theorem 1.5, T (b) is normally solv-
able, which in turn happens if and only if b = 0 or b ∈ GC(T). Conversely,
if b = 0, then T (a) = 0 is normally solvable, and if b ∈ GC(T), then the
normal solvability of T (a) can be deduced from (a), (b), (c). The proof
of (a) is also complete. �
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Proof of Theorem 1.6. For a ∈ L∞(R), the Hankel operator H(a) is de-
fined on H2(R) by H(a)f = P (a(I−P )Jf), where (Jf)(x) := f(−x). Hart-
man’s theorem (see, e.g., [7] or [25]) says that H(a) is compact if and only
if a ∈ C(Ṙ)+H∞

− (R), where H∞
− (R) stands for the functions in L∞(R) that

can be continued to bounded analytic functions in the lower half-plane C−.
Kronecker’s theorem (again see, e.g., [7] or [25]) tells us that H(a) has finite
rank if and only if a ∈ R+ H∞

− (R), where R denotes the set of all bounded
rational functions on R. The adjoint operator to H(a) is given by

(4.7) [H(a)]∗ = H(a#) with a#(x) := a(−x).

Finally, for a and b in L∞(R) we have

(4.8) T (ab) − T (a)T (b) = H(a)H(Jb),

where, as above, (Jb)(x) = b(−x) (see [31]).

Suppose first that eiα ∈ C(Ṙ) + H∞(R) but eiα /∈ R + H∞(R). Put

A = I − T (e−iα)T (eiα).

Then B = Gα(A) = I − T (χ−1)T (χ1) = 0, that is, B is normally solvable.
From (4.7) and (4.8) we infer that

A = H(e−iα)H(Jeiα) = K∗K with K = H(Jeiα).

By Kronecker’s theorem, dim Im K = ∞. Let e1, e2, . . . be linearly
independent elements of Im K. Since KerK∗ ⊥ Im K and hence KerK∗ ∩
Im K = {0}, it follows that the elements K∗e1,K

∗e2, . . . are also linearly
independent. Consequently, dim Im K∗K = ∞. But K∗ and thus K∗K are
compact due to Hartman’s theorem. As compact operators with an infinite-
dimensional image are never normally solvable, we arrive at the assertion.

Now suppose that eiα ∈ R + H∞(R) but eiα /∈ H∞(R). Pick any
irrational number µ ∈ (0, 1) and let ζµ be the branch of the function which
is analytic in C \ (−∞, 0] and takes the value 1 at ζ = 1. The function b
defined by b(t) = (1 − t/2)µ (t ∈ T) belongs to H∞(T) and is invertible in
H∞(T). Moreover, both b and b−1 have absolutely convergent Fourier series.
We consider the operator

A = I − T (b ◦ eiα)T (b−1 ◦ eiα).

Again B = Gα(A) = I −T (b)T (b−1) = 0 is normally solvable. The assertion
will follow once we have shown that A is a compact operator with an infinite-
dimensional image. By (4.8),

(4.9) A = H(b ◦ eiα)H(J(b−1 ◦ eiα)).
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Since

(b−1 ◦ eiα)(x) =
∞∑

n=0

(b−1)n(eiα(x))n and
∞∑

n=0

|(b−1)n| < ∞,

we see that b−1 ◦eiα ∈ C(Ṙ)+H∞(R). Hartman’s theorem therefore implies
that H(J(b−1 ◦ eiα)) and thus A is compact.

As eiα ∈ R + H∞(R), we can write eiα = r + q with r ∈ R and
q ∈ H∞(R). Let z1, . . . , zn be the poles of r in C+, repeated according
to their multiplicities. Since eiα /∈ H∞(R), we have n ≥ 1. The function r
can be continued analytically to C+ \ {z1, . . . , zn}, and q can be continued
analytically to all of C+. Hence, eiα can be continued to some function F
analytic in C+ \{z1, . . . , zn}. The point z1 is a pole of F , which implies that
(b−1 ◦F )(z) = (1−F (z)/2)−µ is not analytic in a punctured disk of the form
0 < |z − z1| < ε. Consequently, b−1 ◦ eiα cannot be in R + H∞(R). This in
conjunction with Kronecker’s theorem shows that

(4.10) dim Im H(J(b−1 ◦ eiα)) = ∞.

We now prove that

(4.11) KerH(b ◦ eiα) = {0}.
Let H(b ◦ eiα)h = 0 with some nonzero h ∈ H2(R) and put h− = Jh. Then
h− belongs to H2

−(R), the orthogonal complement of H2(R) in L2(R). By
the definition of H(b ◦ eiα), there is a function g− ∈ H2

−(R) such that

(4.12) b(eiα(x))h−(x) = g−(x)

for almost all x ∈ R. Put

B(z) =

n∏
j=1

z − zj

z − zj

.

Then Beiα = u with some function u that is analytic and bounded in C+

and of modulus 1 on the real line. Thus, u ∈ H∞(R) is an inner function.
Moreover, u is continuous on R. Let w1, w2, . . . be the zeros of u in C+.
Then u can be continued analytically to C\{w1, w2, . . .} (see, e.g., [15]). As
B−1, h−, g− can be continued analytically to C−, we deduce from (4.12) that

(4.13) b(u(z)B−1(z))h−(z) = g−(z)

for all z ∈ C− \ {w1, w2, . . .}. At the point z = wk, the function u(z) has
a pole. This implies that the left-hand side of (4.13) is not analytic in a
neighborhood of zk unless h−(z) = 0 for all z in a neighborhood of zk.
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As h− is not identically zero by assumption, we arrive at the conclusion
that in fact {w1, w2, . . .} = ∅. Thus, u is a singular inner function of the
form u(x) = γeiλx with |γ| = 1 and λ > 0 (the case λ = 0 is ruled out by the
requirement that α be monotonically increasing). If z = x − iy with x ∈ R

and large y ∈ (0,∞), then u(z)B−1(z) is close to γeiλxeλy, and hence, as x
moves from −∞ to +∞, u(z)B−1(z) necessarily meets the cut [2,∞) along
which b(z) = (1 − z/2))µ is not analytic. Thus, again we conclude from
the analyticity of the left-hand side of (4.13) in C− that h− must vanish
identically. We have proved (4.11) completely.

Combining (4.10) and (4.11) we see that the operator (4.9) has an infinite-
dimensional image. This completes the proof. �
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