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In Memory of Professor Jan Mařik1

Abstract

In this paper the following question is investigated. Given a natural
number r and numbers αj , βj for j = 0, 1, . . . , r satisfying α0 < α1 <
· · · < αr and

r∑
j=0

βjα
k
j =

{
0 if k = 0, 1, . . . , r − 1

r! if k = r

is there a 2π-periodic, r− 1 times continuously differentiable function f
such that

lim sup
h↗0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= lim sup
h↘0

h−r
( r∑

j=0

βjf(x+ αjh)
)

=∞,

lim inf
h↗0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= lim inf
h↘0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= −∞

for every x ∈ R?

1 Introduction
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1.2 Reader’s Motivation

Let r be a natural number and let α0 < α1 < · · · < αr. There are numbers
βj 6= 0, j = 0, 1, . . . , r (see Theorem 1) such that

r∑
j=0

βjα
k
j =

{
0 if k = 0, 1, . . . , r − 1

r! if k = r

(we denote 00 = 1). In this paper the following question is investigated.
Is there a 2π-periodic, r − 1 times continuously differentiable function f such
that

lim sup
h↗0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= lim sup
h↘0

h−r
( r∑

j=0

βjf(x+ αjh)
)

=∞,

lim inf
h↗0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= lim inf
h↘0

h−r
( r∑

j=0

βjf(x+ αjh)
)

= −∞

for every x ∈ R?

For each finite real function f on R = (−∞,∞) and for each pair of real
numbers x, h set (see Notation 1)

Lg(f, x, h) =

r∑
j=0

βjf(x+ αjh).

As a particular case let

Lc(f, x, h) =
1

2r

r∑
j=0

(−1)r+j

(
r

j

)
f
(
x+ (2j − r)h

)
.

The question posed is answered affirmatively for Lc(f, x, h) provided r is odd
(see Corollary 3).
Also let

Lp(f, x, h) =

r∑
j=0

(−1)r+j

(
r

j

)
f(x+ jh).

In this case the answer to the question is also positive provided r ≥ 3 (see
Corollary 4).
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2 Notation and Elementary Theorems.

Theorem 1. Let r be a natural number and let α0 < α1 < · · · < αr. There
are βj such that

r∑
j=0

βjα
k
j =

{
0 if k = 0, 1, . . . , r − 1

r! if k = r.

Furthermore β0 · · ·βr 6= 0.
(If we have k = 0 and αj = 0 for some j then we denote by αk

j = 1.)

Proof. The matrix
(
αk
j

)
is a Van der Monde matrix and hence invertible.

More precisely

βj =
r!

r∏
i=0
i6=j

(αj − αi)

. (1)

Notation 1. Let r, αj , βj , j = 0, 1, . . . , r be as in Theorem 1. For each finite
real function f on R = (−∞,∞) and for each pair of real numbers x, h set

Lg(f, x, h) =

r∑
j=0

βjf(x+ αjh).

Theorem 2. Let M ∈ (0,∞) and let f be a function such that
∣∣f (r)(x)

∣∣ ≤M
for each x ∈ R. Set µ =

M

r!

r∑
j=0

∣∣αr
jβj
∣∣ . Then, |Lg(f, x, h)| ≤ µ |hr| (x, h ∈

R).

Proof. Let x, h ∈ R. Set ak =
f (k)(x)

k!
(k = 0, . . . , r− 1). There are ξj such

that

f(x+ αjh) =

r−1∑
k=0

akα
k
jh

k + αr
jh

rf (r)(ξj)/r!.

Therefore

Lg(f, x, h) =
hr

r!

r∑
j=0

αr
jβjf

(r)(ξj)

which easily implies our assertion.
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The proof of the following assertion is straight forward.

Theorem 3. Let d be real number. Let ω be a bounded function on R, which
is continuous at 0 and such that

ω(2x) = dω(x) for each x ∈ R.

Then, ω is constant.

Note that if d 6= 1, then ω = 0 on R and if d = 1, then ω = ω(0) on R. The
continuity of ω at 0 is needed only in the case |d| = 1.

3 Auxiliary Theorems.

The proof of the following assertion is easy.

Theorem 4. Let q be a natural number, 0 = γ0 < γ1 < γ2 < · · · < γq and let
a0, a1, b1, . . . , aq, bq be real numbers. Set

f(x) =
a0
2

+

q∑
k=1

(ak cos γkx+ bk sin γkx).

Then for every x0 ∈ R

aj = 2 lim
x→∞

{(x− x0)−1
∫ x

x0

f(t) cos(γjt)dt} (j = 0, . . . , q)

bj = 2 lim
x→∞

{(x− x0)−1
∫ x

x0

f(t) sin(γjt)dt} (j = 1, . . . , q).

If f ≥ 0 on (x0,∞), then |aj | ≤ a0, |bj | ≤ a0 (j = 1, . . . , q).

Theorem 5. Let J,K be intervals such that J is compact. Let f be a contin-
uous function on J ×K, and suppose that for each x ∈ J there is an h ∈ K
such that f(x, h) > 0. Then there is a compact interval M ⊂ K such that

inf
{

max
{
f(x, h); h ∈M

}
;x ∈ J

}
> 0.

Proof. Let K1,K2, . . . be compact intervals,

K1 ⊂ K2 ⊂ · · · ,
∞⋃

n=1

Kn = K.
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For each x ∈ J and for each m ∈ N there is a hm(x) ∈ Km such that
f(x, hm(x)) = max

{
f(x, h);h ∈ Km

}
. Let Gm =

{
x ∈ J ; f(x, hm(x)) > 0

}
.

The sets Gm are easily seen to be open in J. Since J is compact and since the
sets Gm are increasing with m with union equal to J, there is an m0 such that
J ⊂ Gm0

. Then set M = Km0
. It is easy to show that this choice satisfies the

assertion.

Theorem 6. Let αj , βj , j = 0, 1, . . . , r be as in Theorem 1. Define

φ(h) =

r∑
j=0

βj cos(αjh), ψ(h) =

r∑
j=0

βj sin(αjh).

There is a natural number q and real numbers aj , bj , γj such that
0 < γ1 < γ2 < · · · < γq and

φ(h) =
a0
2

+

q∑
j=1

aj cos(γjh), ψ(h) =

q∑
j=1

bj sin(γjh). (2)

Proof. The conclusion of the theorem is clear if either α0 > 0 or α0 =
0. Assume α0 < 0 and let Γ =

{
|αj | ; j = 0, 1, . . . , r

}
. Order the positive

elements of Γ as 0 < γ1 < γ2 < · · · < γq. Let γk ∈ Γ. If there are i < j
such that γk = −αi = αj , then combine the two corresponding terms in φ
into (βi + βj) cos(γkh) and in ψ into (−βi + βj) sin(γkh). That’s the most
difficult case. The other cases are if γk = −αj or if γk = αj . The final case to
consider is if there is a j with αj = 0. Then the corresponding term in φ is
βj cos(αjh) = βj and in ψ is βj sin(αjh) = 0.

It should be mentioned here that, as a consequence of Theorem 4, the set
of functions

{1, sin(γkh), cos(γkh); k = 1, 2, . . . , q}
is a linearly independent set of functions, which is why the representations of
φ and ψ in (2) are more useful than the original definitions.

Theorem 7. Let αj , βj , j = 0, 1, . . . , r, q, a0, aj , bj , j = 1, 2, . . . , q and φ, ψ be
as in Theorem 6. For each finite real function f on R and for each pair of real
numbers x, h let Lg be as in Notation 1.

1) If ψ is constant, then r is even, r = 2q, aj = 2βq−j = 2βq+j 6= 0, bj =
0, γj = −αq−j = αq+j , j = 1, 2, . . . , q, αq = 0 and

Lg(f, x, h) = A0f(x) +

q∑
j=1

Aj

(
f(x+ γjh) + f(x− γjh)

)
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for some Aj ∈ R, j = 0, 1, . . . , q.

2) If φ is constant, then r is odd, r = 2q − 1, aj = 0, j = 0, 1, . . . , q, bj =
−2βq−j = 2βq+j−1, γj = −αq−j = αq+j−1, j = 1, 2, . . . , q and

Lg(f, x, h) =

q∑
j=1

Bj

(
f(x+ γjh)− f(x− γjh)

)
for some Bj ∈ R, j = 1, 2, . . . q.

3) At most one of the functions φ, ψ is constant.

Proof. 1) If ψ = c on R for some c ∈ R, since ψ(0) = 0, we get c = 0.

Therefore ψ(h) =

r∑
j=0

βj sin(αjh) = 0 for every h ∈ R. By differentiation we

get

r∑
j=0

βjα
2i−1
j cos(αjh) = 0, i = 1, 2, . . . for every h ∈ R.

For h = 0

r∑
j=0

βjα
2i−1
j = 0, i = 1, 2, . . . .

If r is odd, then

r∑
j=0

βjα
r
j = 0 which contradicts

r∑
j=0

βjα
r
j = r!. Thus r is

even. Since ψ(h) = 0 for every h, the linear independence shows that all
the coefficients in the representation of ψ in equation (2) are 0. The only
case of Theorem 6, which does not contradict βj 6= 0, j = 0, 1, . . . , r with
r = 2q, is γj = αq+j = −αq−j , j = 1, 2, . . . , q and αq = 0. For each j =
1, 2, . . . , q, the corresponding term in φ is (βq+j + βq−j) cos(γjh) and in ψ is
(βq+j − βq−j) sin(γjh). Consequently bj = βq+j − βq−j = 0, j = 1, 2, . . . , q,

a0 = 2βq, aj = 2βq+j = 2βq−j , and φ(h) = βq + 2

q∑
j=1

βq+j cos(γjh)).
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Consider now

Lg(f, x, h) =

2q∑
j=0

βjf(x+ αjh)

=

q∑
j=1

βq−jf(x− γjh) + βqf(x) +

q∑
j=1

βq+jf(x+ γjh)

= A0f(x) +

q∑
j=1

Aj

(
f(x+ γjh) + f(x− γjh)

)
where A0 = βq, Aj = βq+j = βq−j , j = 1, 2, . . . , q.

2) The proof is similar to the proof of part 1) with minor modifications.
3) r can’t be both odd and even.

4 Main Results.

In this section Theorem 10 (also see Notation 2) indicates what is sufficient
to obtain a positive answer to the major question dealt with in the paper and
Theorem 8 is the first result, which refers to the methods of succeeding it (see
Corollary 1). Theorem 11 (see Notation 2 and Theorem 9) may also have some
independent interest.

Notation 2. Let r, αj , βj , j = 0, 1, . . . , r be as in Theorem 1. Let V be the
system of all continuous 2π-periodic functions f such that for each x ∈ R there
are h1, h2 ∈ (−∞, 0) and h3, h4 ∈ (0,∞) with

(−1)iLg(f, x, hi) > 0 (i = 1, 2, 3, 4). (3)

Let V ∗ be the system of all 2π-periodic functions f such that f (r−1) is contin-
uous on R and that, for each x ∈ R,

lim sup
h↗0

h−rLg(f, x, h) = lim sup
h↘0

h−rLg(f, x, h) =∞

and

lim inf
h↗0

h−rLg(f, x, h) = lim inf
h↘0

h−rLg(f, x, h) = −∞.
(4)

Let W be the system of all continuous 2π-periodic functions f such that for
each x ∈ R there is an h1 > 0 and an h2 < 0 with

Lg(f, x, hi) 6= 0 (i = 1, 2).
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Let W ∗ be the system of all 2π-periodic functions f such that f (r−1) is con-
tinuous on R and that, for each x ∈ R,

lim sup
h↗0

∣∣h−rLg(f, x, h)
∣∣ = lim sup

h↘0

∣∣h−rLg(f, x, h)
∣∣ =∞.

Theorem 8. Let f1(x) = cosx, f2(x) = cosx+sin(2x). Suppose that ψ(h) 6= 0
for some h. Let aj be as in Theorem 6. If |ak| > |a0| for some k, then f1 ∈ V.
If φ = 0 on R, then f2 ∈ V.

Proof. It is easy to see that

Lg(cos, x, h) = φ(h) cosx− ψ(h) sinx, (5)

Lg(sin, x, h) = φ(h) sinx+ ψ(h) cosx. (6)

1) Let k be a number such that |ak| > |a0| and let x ∈ R. It follows from (5)
that

Lg(f1, x, h) =
a0 cosx

2
+

q∑
j=1

(
aj cosx cos(γjh)− bj sinx sin(γjh)

)
(h ∈ R).

a) If cosx = 0, then |sinx| = 1,

Lg(f1, x, h) = −ψ(h) sinx = −
q∑

j=1

bj sinx sin(γjh)

and Lg(f1, x,−h) = −Lg(f1, x, h) (h ∈ R).

i) If Lg(f1, x, ·) ≥ 0 on (0,+∞), then by Theorem 4 we have |−bj sinx| ≤
0 and consequently bj = 0 for all j = 1, . . . , q. Hence ψ(h) = 0 for
every h contrary to ψ(h) 6= 0 for some h. Therefore Lg(f1, x, h3) <
0 for some h3 ∈ (0,+∞). Setting h2 = −h3, gives Lg(f1, x, h2) > 0
for some h2 ∈ (−∞, 0) .

ii) If Lg(f1, x, ·) ≤ 0 on (0,+∞), then

−Lg(f1, x, h) =

q∑
j=1

bj sinx sin(γjh) ≥ 0 for every h ∈ (0,+∞).

As in i), Lg(f1, x, h4) > 0 for some h4 ∈ (0,+∞) and setting h1 =
−h4 yields Lg(f1, x, h1) < 0 for some h1 ∈ (−∞, 0).
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b) If cosx 6= 0, then from (5) it follows that

Lg(f1, x, h) =
a0 cosx

2
+

q∑
j=1

(
aj cosx cos(γjh)−bj sinx sin(γjh)

)
(h ∈ R).

i) If Lg(f1, x, ·) ≥ 0 on (0,+∞), then by Theorem 4 we have a0 cosx ≥
0 and |aj cosx| ≤ a0 cosx = |a0| |cosx| for j = 1, 2, · · · , q. Because
cosx 6= 0, |aj | ≤ |a0| for j = 1, 2, · · · , q contrary to the assumption
that for some k, |ak| > |a0|. Therefore Lg(f1, x, h3) < 0 for some
h3 ∈ (0,+∞).

ii) If Lg(f1, x, ·) ≤ 0 on (0,+∞), then −Lg(f1, x, ·) ≥ 0 on (0,+∞).
As in i), Lg(f1, x, h4) > 0 for some h4 ∈ (0,+∞) .

iii) If Lg(f1, x, ·) ≥ 0 on (−∞, 0), then setting h′ = −h we have

a0 cosx

2
+

q∑
j=1

(
aj cosx cos(γjh

′) + bj sinx sin(γjh
′)
)
≥ 0

for every h′ ∈ (0,+∞). As in i), Lg(f1, x, h1) < 0 for some h1 ∈
(−∞, 0).

iv) If Lg(f1, x, ·) ≤ 0 on (−∞, 0), then setting h′ = −h we have

−a0 cosx

2
+

q∑
j=1

(
− aj cosx cos(γjh

′)− bj sinx sin(γjh
′)
)
≥ 0

for every h′ ∈ (0,+∞). As in i), Lg(f1, x, h2) > 0 for some h2 ∈
(−∞, 0).

Now it is easy to see that f1 ∈ V .

2) If ψ is not constant, then ψ(x), ψ(2x) are linearly independent. Indeed,
let for some c1, c2 ∈ R, c1ψ(x) + c2ψ(2x) = 0 for each x ∈ R. If c2 6= 0,

then ψ(2x) = −c1
c2
ψ(x) and by Theorem 3, ψ is constant contrary to the

assumption that ψ is not constant. Thus c2 = 0 and c1ψ(x) = 0, but
ψ(x) 6= 0 for some x. Therefore c1 = 0.

Suppose that φ = 0 on R; let x ∈ R. First Lg(f2, x, h) must be written in
a form that satisfies the hypothesis of Theorem 4. By (5) and (6) and the
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property Lg(f(2·), x, h) = Lg(f, 2x, 2h)

Lg(f2, x, h) = −ψ(h) sinx+ ψ(2h) cos(2x) (Apply Theorem 6)

=
( q∑

j=1

−
(
bj sin(γjh)

))
sinx+

( q∑
j=1

bj sin(2γjh)
)

cos(2x)

=

q∑
j=1

(−bj sinx) sin(γjh) +

q∑
j=1

(
bj cos(2x)

)
sin(2γjh). (7)

Let 0 < δ1 < δ2 < · · · < δq′ be the ordering of the set {γj : j = 1, . . . , q} ∪
{2γj : j = 1, . . . , q}. Combining terms from the two sums in (7) having the
same angle yields

Lg(f2, x, h) =

q′∑
j=1

b′j sin(δjh) =
a′0
2

+

q′∑
j=1

a′j cos(δjh) +

q′∑
j=1

b′j sin(δjh)

where a′0 = a′1 = · · · = a′q′ = 0. Also it is easy to see that

Lg(f2, x,−h) = −Lg(f2, x, h) (h ∈ R).

a) If Lg(f2, x, ·) ≥ 0 on (0,∞), then by Theorem 4
∣∣b′j∣∣ ≤ a′0 = 0 (j =

1, 2, . . . , q′) and Lg(f2, x, h) = 0 for each h, but ψ(h), ψ(2h) are linear
independent. Thus sinx = cos(2x) = 0, a contradiction. Therefore
Lg(f2, x, h3) < 0 for some h3 ∈ (0,+∞). Setting h2 = −h3 yields
Lg(f2, x, h2) > 0 for some h2 ∈ (−∞, 0).

b) If Lg(f2, x, ·) ≤ 0 on (0,∞), then −Lg(f2, x, ·) ≥ 0 on (0,∞). As in
a), Lg(f2, x, h4) > 0 for some h4 ∈ (0,+∞) and setting h1 = −h4 gives
Lg(f2, x, h1) < 0 for some h1 ∈ (−∞, 0).

Now it is easy to see that f2 ∈ V .

Theorem 9. Let f1, f2 be as in Theorem 8. Let f3(x) = sinx+cos(2x). Then
at least one of the functions f1, f2, f3 is in W.

Proof. On account of Theorem 7 at most one of the functions φ and ψ is
constant. If φ(h) = 0 for every h, then by Theorem 8 f2 ∈ V . So f2 ∈ W.
Thus we may assume φ(h) 6= 0 for some h.

1) Suppose ψ(h) 6= 0 for some h and let x ∈ R. If Lg(cos, x, h) = 0 for each
h > 0, then by (5) and Theorem 4, a0 cosx = 0 and if cosx 6= 0, the
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function φ = 0, otherwise cosx = 0 in which case ψ = 0; i.e., one of the
functions φ, ψ is identically zero contrary to the assumption φ 6= 0 and
ψ 6= 0. Now we can see easily that f1 = cos ∈W.

2) Suppose ψ(h) = 0 for all h ∈ R and let x ∈ R. Then, by (5) and (6),
Lg(f3, x, h) = φ(h) sinx + φ(2h) cos(2x). As was shown in the proof of
Theorem 8, the functions ψ(h) and ψ(2h) are linearly independent. Sim-
ilarly, the functions φ(h) and φ(2h) are linearly independent. This easily
implies that f3 ∈W.

Theorem 10. If V 6= ∅, then V ∗ 6= ∅.

Proof. Let Φ ∈ V. Theorem 5 (where we take J = [0, 2π]) implies that
there are positive numbers η, δ and H such that for each x ∈ R there are
h1, h2 ∈ [−H,−δ] and h3, h4 ∈ [δ,H] such that

(−1)iLg(Φ, x, hi) ≥ η (i = 1, 2, 3, 4). (8)

Set δ =
η

2(|β0|+ · · ·+ |βr|)
. There is a trigonometric polynomial P such that

|Φ− P | < δ on R. There are positive numbers λ, µ (see Theorem 2) such that

|Lg(P, x, h)| ≤ min(µ |h|r , λ) for all x, h. Set A = 6
µHr

η
, B = 6

λ

η
. Choose a

natural number a > 1 +A such that

ar > (1 +A)(1 +B) (9)

and define

b =
(1 +A)

ar
. (10)

Obviously ar−1b =
(1 +A)

a
< 1 and for s = 0, . . . , r − 1,

bk(ak)s =
(1 +A

ar−s

)k
≤
(1 +A

a

)k
.

Since

∞∑
k=0

(1 +A

a

)k
<∞, we have

∞∑
k=0

bk(ak)s <∞, for s = 0, . . . , r−1. Thus,

taking s = 0 we may define

f(x) =

∞∑
k=0

bkP (akx) (x ∈ R).
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Because the sum defining f converges uniformly on R and because each term
is 2π-periodic, f is 2π-periodic on R.

To prove that f is r − 1 times continuously differentiable, first note that
for each s = 0, 1, . . . , r−1 there is a number Ms > 0 such that

∣∣P (s)(x)
∣∣ ≤Ms

for all x ∈ R. Thus for each k ∈ N∣∣∣∣ dsdxs bkP (akx)

∣∣∣∣ =
∣∣∣bkaksP (s)(akx)

∣∣∣
≤ bkaksMs ≤ (bar−1)kMs ≤

(
1 +A

a

)k

Ms.

Because

(
1 +A

a

)
< 1,

∞∑
k=0

ds

dxs
bkP (akx) converges uniformly to a continuous

function and hence, f (s) exists and is continuous for s = 0, 1, . . . , r − 1.
Now let x ∈ R. By (8) for n ∈ N there is a Tn ∈ [δ,H] such that

Lg(Φ, anx, Tn) ≥ η.

Set tn = Tn/a
n. Then

0 < tn ≤
H

an
. (11)

It follows from the choice of δ that |Lg(Φ, ξ, h)− Lg(P, ξ, h)| < η

2
for all ξ and

h; thus

Lg(P, anx, Tn) ≥ η

2
. (12)

Now fix an n and set

S1 =

n−1∑
k=0

bkLg(P, akx, aktn),

Z = bnLg(P, anx, Tn), and

S2 =

∞∑
k=n+1

bkLg(P, akx, aktn).

It is easy to see that Lg(f, x, tn) = S1 +Z+S2. Hence, we have (see (10), (11)
and (12))

|S1| ≤
n−1∑
k=0

bkµakrtrn = µtrn

n−1∑
k=0

(1 +A)k

=
µ

A
trn
(
(1 +A)n − 1

)
<
µ

A
Hr
(1 +A

ar

)n
=
η

6
bn,
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Z ≥ η

2
bn, and |S2| ≤ λ

∞∑
k=n+1

bk =
λbn+1

1− b
.

By (9) and (10) we have 1 > b(1 + B); whence
b

1− b
<

1

B
, |S2| <

λ

B
bn =

η

6
bn. It follows that Lg(f, x, tn) ≥ Z−|S1 + S2| ≥

η

6
bn. As (see (11) and (10))

bn

trn
≥ bn a

nr

Hr
=

(1 +A)n

Hr
, we have t−rn Lg(f, x, tn)→∞. This shows that

lim sup
h↘0

h−rLg(f, x, h) =∞.

The remaining equalities in (4) can be proved similarly.

Corollary 1. If ψ(h) 6= 0 for some h and if either φ = 0 on R or |ak| > |a0|
for some k, then V ∗ 6= ∅.

Proof. This follows from Theorems 8 and 10.

Corollary 2. Let r, αj , βj , j = 0, 1, . . . , r be as in Theorem 1. If αj 6= 0 for
all j = 0, 1, . . . , r, then the corresponding V ∗ 6= ∅.

Proof. If ψ(h) = 0 for every h, then from Theorem 7, r is even, r = 2q, and
αq = 0, a contradiction. Therefore

ψ(h) 6= 0 for some h.

Because αj 6= 0 for all j = 0, 1, . . . , r, it follows that a0 = 0. If there is a k
with |ak| > 0, then by Theorem 10, V ∗ 6= ∅. If ak = 0 for all k, then φ(h) = 0
for all h and hence by Theorem 10, V ∗ 6= ∅.

Corollary 3. Let r be odd and let αj = 2j − r, j = 0, 1, . . . , r. Then the
corresponding V ∗ 6= ∅.

Proof. This follows from Corollary 2.

Remark 1. If r = 1, 3, then Corollary 3 is a generalization of [1] and [2]
respectively.

Corollary 4. Let r be natural number r ≥ 3, let αj = j, j = 0, 1, . . . , r. Then
the corresponding V ∗ 6= ∅.
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Proof. From Theorem 1

βj =
r!

r∏
i=0
i 6=j

(αj − αi)

=
r!

r∏
i=0
i 6=j

(j − i)
= (−1)r+j

(
r

j

)
.

Then

φ(h) =

r∑
j=0

βj cos(αjh) =
2β0
2

+

r∑
j=1

βj cos(αjh) =
a0
2

+

r∑
j=1

aj cos(γjh),

ψ(h) =

r∑
j=0

βj sin(αjh) =

r∑
j=1

bj sin(γjh),

with

a0 = 2β0 = 2(−1)r
(
r

0

)
= 2(−1)r, aj = βj = (−1)r+j

(
r

j

)
, j = 1, 2, . . . , r

and

γj = αj = j, j = 1, 2, . . . , r, bj = βj = (−1)r+j

(
r

j

)
, j = 1, 2, . . . , r.

Since r ≥ 3, we have |a1| > |a0| and

ψ(h) =

r∑
j=1

βj sin(αjh) =

r∑
j=1

(−1)r+j

(
r

j

)
sin(jh).

Theorem 11. We always have W ∗ 6= ∅.

Proof. By Theorem 9 we have W 6= ∅. Now we proceed as in the proof of
Theorem 10.
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