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TANGENT MEASURES OF TYPICAL
MEASURES

Abstract

We prove that for a typical Radon measure µ in Rd, every non-zero
Radon measure is a tangent measure of µ at µ almost every point. This
was already shown by T. O’Neil in his Ph.D. thesis from 1994, but we
provide a different self-contained proof for this fact. Moreover, we show
that this result is sharp: for any non-zero measure we construct a point
in its support where the set of tangent measures does not contain all non-
zero measures. We also study a concept similar to tangent measures on
trees, micromeasures, and show an analogous typical property for them.

1 Introduction

If X is a complete metric space, then we say that a subset of X is meagre, if it
is a countable union of sets whose closure in X has empty interior. A subset
of X is residual if its complement is meagre. A property P of points x ∈ X is
satisfied for typical x ∈ X if the set

{x ∈ X : x satisfies P}

is residual. Recently, typical properties of measures have gained a lot of atten-
tion. For example, in the recent papers [3, 6, 13, 14, 15] the Lq-dimensions and
multifractal properties of typical measures were studied. This motivated us
to study the tangential properties of typical measures. Our work is somewhat
related to the papers by Buczolich and Ráti [4, 5] where the structure of the
tangent sets of the graphs of typical continuous functions were studied.
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In [18], O’Neil constructed a Radon measure µ in Rd with a very surprising
property: for µ almost every x ∈ Rd the set of tangent measures Tan(µ, x) =
M\{0}, whereM is the space of all Radon measures. In his Ph.D. thesis [17]
O’Neil also extended this result by showing that such a property of measures
is actually typical:

Theorem 1.1. A typical µ ∈ M satisfies Tan(µ, x) = M\ {0} at µ almost
every x ∈ Rd.

In this paper, we provide a different self-contained proof for Theorem 1.1.
O’Neil’s original proof relied on a special property of the measure µ constructed
in [18], but here we do not require O’Neil’s measure in our approach.

As a direct consequence of Theorem 1.1, we notice that a typical measure µ
is non-doubling in Rd; that is, the pointwise doubling condition fails µ almost
everywhere (see Section 4 for details). We also study the sharpness of Theorem
1.1; that is, whether the property Tan(µ, x) = M \ {0} can be extended to
hold at every point x ∈ sptµ for a typical µ. However, such an extension is
not possible since for any given µ ∈M with non-empty support sptµ, we find
a point x ∈ sptµ such that Tan(µ, x) 6=M\ {0} (see Section 5).

Furthermore, we also take a quick look at a similar concept to tangent
measures, the so called micromeasures, which provide a symbolic way to define
“tangent measures” of a measure in a tree. We consider the set of all Borel
probability measures P on the tree IN, where I is some finite set, and prove an
analogous result for micromeasures that we had for tangent measures: for a
typical µ ∈ P the set of micromeasures micro(µ, x) = P at every point x ∈ IN
(see Section 6 for details). Finally, in Section 7 we exhibit some questions
analogous to Theorem 1.1 about the micromeasure distributions of typical
measures and the tangent measures of measures that are generic in the sense
of prevalence instead of typicality.

Remark 1.1. The main result Theorem 1.1 was initially proved indepen-
dently without any knowledge of the existence of O’Neil’s proof in his Ph.D.
thesis [17] from 1994, as the same result there was not published in a jour-
nal. This was only later brought to the author’s attention by O’Neil after the
manuscript was submitted to arXiv article repository on 19th of March 2012
(http://arxiv.org/abs/1203.4221v1).

2 Preliminaries

Throughout this paper, we keep the dimension d ∈ N of the ambient space Rd
fixed. A measure is a Radon-measure on Rd, and their collection is denoted



Tangent Measures of Typical Measures 55

by M. We equip M with the weak topology that is characterized by the
convergence: if µi, µ ∈M, we say that µi → µ, as i→∞ if

ˆ
ϕdµi −→

ˆ
ϕdµ, as i→∞,

for every compactly supported and continuous ϕ : Rd → R. In metric spaces,
the open- and closed balls of center x and radius r are denoted by U(x, r)
and B(x, r). When µ ∈ M, the support of µ is the set sptµ = {x ∈ Rd :
µ(B(x, r)) > 0 for any r > 0}. When x ∈ Rd and r > 0, let Tx,r : Rd → Rd
be the affine homothety that maps B(x, r) onto B(0, 1), that is, Tx,r(y) =
(y − x)/r, y ∈ Rd. Given µ ∈M, we write

Tx,r]µ(A) = µ(rA+ x), A ⊂ Rd;

that is, the push-forward of µ under the map Tx,r. When c > 0, we also write

Tx,r,c(µ) = cTx,r]µ,

which induces a map Tx,r,c : M → M. In the case r = 1, we just have
Tx,1]µ =: µ− x. The following notion was introduced by D. Preiss in [20].

Definition 2.1 (Tangent measures). A measure ν ∈ M \ {0} is a tangent
measure of µ ∈M at x ∈ Rd if there exist ri ↘ 0 and ci > 0 such that

Tx,ri,ci(µ) = ciTx,ri]µ −→ ν, as i→∞.

The set of all tangent measures of µ at x is denoted by Tan(µ, x), which is a
closed subset of M\ {0}.

Next, we introduce some key notations for the proof of Theorem 1.1.

Notations 2.1 (Cube filtrations and weighted cubes). Fix a ∈ Z.

(1) Write
Ia := [−3a/2, 3a/2)d,

and for notational simplicity, let I := I0. Moreover, if ε > 0 is fixed, we
let the ε-expansions and ε-contractions of the cube Ia to be the sets

I+a,ε = [−3a/2− ε, 3a/2 + ε)d and I−a,ε = [−3a/2 + ε, 3a/2− ε)d.

(2) Suppose a > 0. Fix k ∈ Z. Let Qka be the collection of all 3a-adic cubes
Q of side-length `(Q) = 3−ak such that the unit cube I ∈ Q0

a, where k
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is the generation of the cubes in Qka. Write Qa =
⋃
k∈ZQka. If Q ∈ Qka,

we let x(Q) be the central point of Q. Moreover, let Qc be the central
cube amongst all the cubes Q′ ⊂ Q, Q′ ∈ Qk+2

a . That is, Qc ∈ Qk+2
a is

uniquely determined by the requirement x(Qc) = x(Q). Notice that the
central cube Qc is two generations younger than Q.

(3) If Q ∈ Qka, let Qj ∈ Qka, j = 2, . . . , 3d be all the neighbouring cubes of Q
and write Q1 = Q. Let

W = {w = (w1, w2, . . . , w3d) : w1 = 1 and wj > 0, j = 2, . . . , 3d}.

When ν ∈ M and w ∈ W are fixed, we will denote for all j = 1, . . . , 3d

the wj-weighted duplication of the restriction νa := νxIa to the neigh-
bouring cube Ija by:

νwj ,j
a = wj [νa + x(Ija)],

which is the same measure as wjT−x(Ija),1]νa = T−x(Ija),1,wj
(νa). Then,

write

νwa =

3d∑
j=1

νwj ,j
a .

Notice that νwa xIa = νa for any w ∈ W. See Figure 3.2 for an example
of this notation in use.

Definition 2.2 (Metric on measures). Fix a ∈ N. Let L(a) be the set of all
Lipschitz functions ϕ : Rd → [0,∞) with Lipschitz-constant Lipϕ ≤ 1 and
support sptϕ ⊂ Ia. For µ, ν ∈M, we write

Fa(µ, ν) = sup
ϕ∈L(a)

∣∣∣ ˆ ϕdµ−
ˆ
ϕdν

∣∣∣
and

d(µ, ν) =

∞∑
a=1

2−a min{1, Fa(µ, ν)}.

Then, (M, d) is a complete separable metric space, and the topology induced
by d agrees with the weak convergence. Note that here we abuse notation: d
also refers to the dimension of the ambient space Rd.

Remark 2.1. (1) A similar metric of measures was used in [11, Remark
14.15], with the difference that the closed ball B(0, a) is used instead
of Ia in the definition of L(a). This changes the value of the metric
d, but still all the properties of d and Fa given in [11] are satisfied.
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Especially, we have the following characterization of weak convergence.
Let µi, µ ∈M, i ∈ N. Then,

µi → µ ⇔ d(µi, µ)→ 0 ⇔ Fb(µi, µ)→ 0, i→∞ for all b ∈ N.

See the proof of [11, Lemma 14.13].

(2) For a fixed a ∈ N, we let the open ball with respect to the metric Fa be

Ua(ν, ε) = {µ ∈M : Fa(µ, ν) < ε}.

It follows immediately that this set is also open with respect to the metric
d.

3 Proof of the main result

In order to prove Theorem 1.1, it is enough to construct a subset

R ⊂ {µ ∈M : Tan(µ, x) =M\ {0} for µ a.e. x ∈ Rd},

which is a countable intersection of open dense sets in M. We will now fix a
number of parameters required to define such a set.

If Q ∈ Q1, we let LQ be the normalized d-dimensional Lebesgue measure
supported on Q. That is, LQ = Ld(Q)−1LdxQ. Write

S =
{
Ldx(Rd\In)+

∑
Q

qQLQ : qQ > 0, qQ ∈ Q where Q ∈ Qn1 , Q ⊂ In, n ∈ N
}
.

Then, S ⊂ M is countable and dense in (M, d). We especially need the
following properties of measures ν ∈ S in our proof:

(1) spt ν = Rd;

(2) ν(∂Ia) = 0 for every a ∈ Z.

Definition 3.1 (Choices of βa, εa and εwa ). Let ν ∈ S. Choose any sequence
βa = βa(ν)↘ 0 with βa < 3−aν(I−a)−1/4 for any a ∈ N. If a ∈ N, we write

εa := βaν(Id−a) ∈ (0, 3−a/4).

Fix a ∈ N and w ∈W. Choose any number ε ∈ (0, εa) such that

max
{
ν(I+−a,ε \ I−−a,ε), νwa (I+a,ε \ I−a,ε)

}
< εa. (3.1)
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We denote εwa := ε to emphasize the dependence on a and w for the choice of
ε. All this is possible because ν ∈ S, and thus, ν(∂I−a) = 0 = ν(∂Ia). Indeed,
this yields

lim
ε→0

ν(I+−a,ε \ I−−a,ε) = 0 = lim
ε→0

νwa (I+a,ε \ I−a,ε).

Recall Notations 2.1(3).

Definition 3.2 (The set R). If a ∈ N and k ∈ N, we let

rka = 3−(k+1)a/2.

This number is half the side-length of a cube in Qk+1
a . We are now planning to

construct a countable intersection R of open and dense sets. For each measure
ν ∈ S, parameter a ∈ N, and generation n ∈ N, we associate a set Rν,a,n ⊂M
as follows. This subset consists of all measures µ ∈M with the property that
for a deep enough generation k ≥ n and for all cubes Q ∈ Qka, Q ⊂ Ia, there
exists a normalization constant c > 0 and a weight vector w ∈ W such that
the blow-up Tx(Q),rka ,c

(µ) = cTx(Q),rka]
µ is εaε

w
a -close (in the Fa+1-distance) to

the w-weighted measure νwa (see also Figure 3.1). In other words,

Rν,a,n :=
⋃
k≥n

⋂
Q∈Qk

a
Q⊂Ia

⋃
c>0

⋃
w∈W

T −1
x(Q),rka ,c

Ua+1(νwa , εaε
w
a ).

There are only countably many Rν,a,n, ν ∈ S, a ∈ N, and n ∈ N, so

R :=
⋂
ν∈S

⋂
a∈N

⋂
n∈N
Rν,a,n

is a countable intersection. See the outline of the proof in below for more
heuristics on the choice of the parameters and the set R.

Outline of the proof. Since S is dense in M and Tan(µ, x) is always
closed in M \ {0}, we only need to verify for each ν ∈ S and µ ∈ R that
ν ∈ Tan(µ, x) for µ almost every x ∈ Rd. The set R has the property that
when ν ∈ S and a ∈ N are fixed, we can find arbitrarily large generations
k ∈ N such that the measure µ ∈ R will look in all cubes Q ∈ Qka like a small
translate of νwa when we blow-up with respect to any point x ∈ Qc (recall
Notation 2.1(2)). Since the relative size of the central cube Qc becomes very
small compared to their ancestor in Qk+1

a when a is large (in the factor of
3−a), the translates of νwa tend to look like ν since νwa restricted to Ia is νxIa.
Here we need to use the measures νwa and the weights w ∈W in order to make
Rν,a,n dense in M.
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Figure 3.1: The map Tx(Q),rka
used in the definition of Rν,a,n maps Q onto

Ia and Qc onto I−a (the small black cube on the right-hand side), respectively.

Hence, we should try to somehow cover µ almost every point of Rd with
such nice cubes. What we will do first, is fix some numbers a, b ∈ N and
then invoke the definition of R to find infinitely many generations k such
that the central cubes Qc of the cubes Q ∈ Qka cover some portion of some
large reference cube Ib with respect to the measure µ. However, verifying this
produces some of the trickier parts of the proof. To this end, we need the
following generalization of the Borel-Cantelli Lemma (see for example [21]),
where the condition on independence is replaced with a more quantitative
statement.

Lemma 3.1. Let (Ω,F ,P) be a probability space and An ∈ F , n ∈ N such
that

∑∞
n=1 P(An) =∞. Then,

P
(

lim sup
n→∞

An

)
≥ lim sup

N→∞

(∑N
n=1 P(An)

)2
∑N
n=1

∑N
l=1 P(An ∩Al)

.

In the proof of Theorem 1.1, the events An are exactly the unions Aba,n,
n ∈ N, of all 3a-adic central cubes Qc of certain generation kn cubes Q in some
large reference cube Ib. Moreover, P is the normalization of µxIb such that
Fa+1(cTx(Q),rka]

µ, νwa ) < εaε
w
a for some c = c(Q) > 0 and w = w(Q) ∈W. We

need the more general form of Borel-Cantelli’s lemma here since our events
Aba,n, n ∈ N are not, in general, P-independent, but when n→∞, we can say
something about their pairwise correlations.

In order to apply Lemma 3.1, we need to compare the measures µ(Q)
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and µ(Qc) to each other using the comparison of ν measures of the reference
cubes Ia = Tx(Q),rka

(Q) and I−a = Tx(Q),rka
(Qc), which is made possible by the

knowledge of Fa+1(cTx(Q),rka]
µ, νwa ). In this way, we gain the right measures

for the sets Aba,n and Aba,n ∩Aba,l.
However, when we do the µ measure comparison, we end up having some

error terms coming out from the νwa measures of the buffer zones I+a,ε \I−a,ε and

I+−a,ε \ I−−a,ε. However, by the choices we made in Definition 3.1, these errors
are, at most, of the size εa, which is independent of generations n. Then we
apply Lemma 3.1 to see that the µ measure of Aba = lim supnA

b
a,n is nearly

the same as µ(Ib). How near will depend on the numbers βa that arise from
the errors εa. Then, it turns out that the set Ab = lim supaA

b
a covers µ almost

every point of Ib, since as a → ∞ the numbers βa ↘ 0 by their choice. This
way, µ almost every point of the space Rd can be covered by the union of such
sets Ab, b ∈ N.

Figure 3.2: The cube I1a = Ia and its neighbouring cubes Ija, j = 2, . . . , 32.
We have weighted the cubes Ija with weights wj , where the shade of the cube
tells us how big the value of the weight wj is. This illustrates the measure
νwa : on Ija it equals to wjνa translated to Ija. We choose ε = εwa such that the
buffer zone I+a,ε \ I−a,ε in the picture has νwa measure less than a fixed number
εa > 0. The bigger the weights wj are, the smaller ε we have to choose. The
small black cube in the picture is I−a, and we want to choose ε to be small
enough that even the ν measure of the small buffer zone I+−a,ε \ I−−a,ε is less
than εa.

Lemma 3.2. Rν,a,n is open and dense in M.

Proof. (1) Let us first prove that Rν,a,n is open in M. Fix x ∈ Rd, r > 0
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and c > 0. We will now show that T := Tx,r,c :M→M is continuous. This
is enough for our claim since the balls Ua+1 in the definition of Rν,a,n are also
open in (M, d) and the intersection in the definition ofRν,a,n has a finite index
set {Q ∈ Qka : Q ⊂ Ia}. Suppose µi, µ ∈ M are chosen such that µi → µ. We
need to verify for any fixed compactly supported continuous ϕ : Rd → R we
have ˆ

ϕdT (µi)→
ˆ
ϕdT (µ), as i→∞.

Hence, fix a continuous and compactly supported ϕ : Rd → R, which makes
ϕ ◦ Tx,r also continuous and compactly supported. Since µi → µ, we have∣∣∣ˆ ϕdT (µi)−

ˆ
ϕdT (µ)

∣∣∣ = c
∣∣∣ˆ ϕ ◦ Tx,r dµi −

ˆ
ϕ ◦ Tx,r dµ

∣∣∣ −→ 0,

as i→∞. Hence, T (µi)→ T (µ) as i→∞, so T is continuous like we claimed.
(2) Here we prove that Rν,a,n is dense in M. Let µ ∈ M be a measure

with sptµ = Rd. For k ∈ N, we write

µk =
∑
Q∈Qk

a

µ(Q)νQ,

where
νQ := T −1

x(Q),rka ,ν(Ia)
(νa), Q ∈ Qka.

Fix Q ∈ Qka. Notice that νQ(Q) = 1 and spt νQ = Q. Since sptµ = Rd, each
of the numbers ν(Ia)/µ(Qj), j = 1, . . . , 3d is well-defined, where Qj is the jth
neighbouring cube of Q (recall Notations 2.1(3)). Write

c(Q) :=
ν(Ia)

µ(Q)
> 0. (3.2)

Moreover, define weights w1 = 1 and

wj = c(Q) · µ(Qj)

ν(Ia)
, j = 2, . . . , 3d.

Then,
w = (w1, . . . , w3d) ∈W.

Let ϕ ∈ L(a + 1). Since sptϕ ⊂ Ia+1 =
⋃3d

j=1 Ija, we have by the choice (3.2)
and the definition of weights wj that

ˆ
ϕdTx(Q),rka ,c(Q)(µk) =

ˆ
ϕdνwa .
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Since ϕ ∈ L(a+ 1) is arbitrary, we have especially,

Fa+1(Tx(Q),rka ,c(Q)(µk), νwa ) = 0;

so, in particular,
µk ∈ T −1x(Q),rka ,c(Q)

Ua+1(νwa , εaε
w
a ).

Since this is true for every k ∈ N and Q ∈ Qka, we have µk ∈ Rν,a,n whenever
k ≥ n. With this in mind, let us finally verify

µk → µ, as k →∞.

Let ϕ : Rd → R be a compactly supported continuous function. Then, we may
fix b ≥ a such that sptϕ ⊂ Ib. Fix ε > 0. Since ϕ is uniformly continuous,
we can choose kε ∈ N such that for every k ≥ kε and Q ∈ Qka, we have:
|ϕ(y)−ϕ(x)| < ε whenever y, x ∈ Q. On the other hand, νQ(Q) = 1 for every
Q ∈ Qka, so we have:∣∣∣ˆ ϕdµk −

ˆ
ϕdµ

∣∣∣ =
∣∣∣ ∑
Q∈Qk

a
Q⊂Ib

(ˆ
Q

[ϕ− ϕ(x(Q))] dµk +

ˆ
Q

[ϕ(x(Q))− ϕ] dµ
)∣∣∣

≤
∑

Q∈Qk
a

Q⊂Ib

ˆ
Q

|ϕ− ϕ(x(Q))| dµk +
∑

Q∈Qk
a

Q⊂Ib

ˆ
Q

|ϕ(x(Q))− ϕ| dµ

≤
∑

Q∈Qk
a

Q⊂Ib

εµk(Q) +
∑

Q∈Qk
a

Q⊂Ib

εµ(Q) = 2ε
∑

Q∈Qk
a

Q⊂Ib

µ(Q) = 2εµ(Ib),

since µk(Q) = µ(Q)νQ(Q) = µ(Q) for any Q ∈ Qka. Hence, µk → µ, as
k →∞.

Measures µ with sptµ = Rd are dense inM. Hence, if µ′ ∈M is any mea-
sure, for any ε > 0 we can choose µ ∈M with d(µ′, µ) < ε/2 and sptµ = Rd.
Then, just choose k ≥ n so large that d(µk, µ) < ε/2, which gives d(µk, µ

′) < ε.
The measure µk ∈ Rν,a,n so Rν,a,n is dense.

Lemma 3.3. If µ ∈ R, then Tan(µ, x) =M\{0} for µ almost every x ∈ Rd.

Proof. Fix µ ∈ R. Since Tan(µ, x) is closed in M \ {0} and S is dense in
M, it is enough to show that S ⊂ Tan(µ, x) for µ almost every x ∈ Rd.

Fix ν ∈ S and a ∈ N. Since µ ∈ R, we can choose for every n ∈ N an
index k := kn ≥ n such that for each Q ∈ Qka, Q ⊂ Ia, there are numbers
c = c(Q) > 0 and weights w = w(Q) ∈W such that

µ ∈ T −1
x(Q),rka ,c

Ua+1(νwa , εaε
w
a ).
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Write
µQ = Tx(Q),rka ,c

(µ) = cTx(Q),rka]
µ.

Especially, this measure satisfies

Fa+1(µQ, ν
w
a ) < εaε

w
a . (3.3)

Consider the sets

Aa,n =
⋃

Q∈Qk
a

Q⊂Ia

Qc, Aa = lim sup
n→∞

Aa,n, andA = lim sup
a→∞

Aa,

keeping in mind that k = kn and Qc ∈ Qk+2 is the central cube of Q (recall
Notations 2.1(2)). Let us first show that

µ(Rd \A) = 0. (3.4)

We may assume that µ(Rd) > 0, since otherwise (3.4) is trivial. Then, we may
choose b0 ∈ N such that µ(Ib0) > 0. Fix b ≥ b0. Then,

P = µ(Ib)−1µxIb

is a well-defined probability measure on Rd and sptP ⊂ Ib. Write

Aba,n = Aa,n ∩ Ib, Aba = lim sup
n→∞

Aba,n, and Ab = lim sup
a→∞

Aba.

We will now show that for any a ≥ b we have

P(Aba) ≥
(1− 2βa

1 + 2βa

)4
, (3.5)

where βa is the number from Definition 3.1. Let us first estimate the measure
of Aba,n in the case of a ≥ b. When Q ∈ Qka is fixed, we will write for notational
simplicity ε := εwa , and

I+a := I+a,ε, I−a := I−a,ε, I+−a := I+−a,ε, and I−−a := I−−a,ε.

Recall the definition of ε-extensions from Notations 2.1(1), but keep in mind
that these cubes depends on the cube Q. Choose ϕ+

a , ϕ
−
a , ψ

+
a , ψ

−
a ∈ L(a + 1)

as follows:

(1) 0 ≤ ϕ+
a ≤ εχI+a , ϕ+|Ia ≡ ε, and 0 ≤ ϕ−a ≤ εχIa , ϕ−a |I−a ≡ ε;

(2) 0 ≤ ψ+
a ≤ εχI+−a

, ψ+
a |I−a ≡ ε, and 0 ≤ ψ−a ≤ εχI−a

, ψ−a |I−−a ≡ ε.
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This is possible, since we have chosen ε = εwa < εa < 3−a/4 = `(Id−a)/4 so
I+a = I+a,ε ⊂ Ia+1, and even in the small cube I−−a there is room to extend

piecewise 1-linearly the characteristic funtion of I−−a times ε to I−a. We will
now prove

|µQ(Ia)− ν(Ia)| < 2βaν(I−a) (3.6)

and

|µQ(I−a)− ν(I−a)| < 2βaν(I−a). (3.7)

Since w1 = 1 (the weight of Ia(1) = Ia is 1), we always have

νwa xIa = νa = νxIa.

Now recall (3.1). If µQ(Ia) > ν(Ia), we have by the estimate (3.3) that

µQ(Ia)− ν(Ia) ≤ 1

ε

ˆ
ϕ+
a dµQ − νwa (I−a )

≤ 1

ε

∣∣∣ˆ ϕ+
a dµQ −

ˆ
ϕ+
a dν

w
a

∣∣∣+
1

ε

ˆ
ϕ+
a dν

w
a − νwa (I−a )

≤ Fa+1(µQ, ν
w
a )

ε
+ νwa (I+a \ I−a ) ≤ εa + νwa (I+a \ I−a )

< 2βaν(I−a),

and if µQ(Ia) ≤ ν(Ia), we have similarly

ν(Ia)− µQ(Ia) ≤ νwa (I+a )− 1

ε

ˆ
ϕ−a dµQ

≤ νwa (I+a )− 1

ε

ˆ
ϕ−a dν

w
a +

1

ε

∣∣∣ˆ ϕ−a dν
w
a −

ˆ
ϕ−a dµQ

∣∣∣
≤ νwa (I+a \ I−a ) +

Fa+1(µQ, ν
w
a )

ε
≤ νwm(I+a \ I−a ) + εa

< 2βaν(Id−a).

Hence, (3.6) holds. If we invoke again the estimates (3.1) and (3.3), and now
additionally the properties νwa xIa = νxIa and I+−a ⊂ Ia. We can prove the
choices of ψ±a (3.7) with a symmetric argument as above. Write

%a =
1 + 2βa
1− 2βa

and pa =
ν(I−a)

ν(Ia)
.
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Since ν(I−a) ≤ ν(Ia), the estimates (3.6) and (3.7), Tx(Q),rka
(Q) = Ia and

Tx(Q),rka
(Qc) = I−a imply

µ(Qc) =
µQ(I−a)

µQ(Ia)
· µ(Q) ≥ (1− 2βa)ν(I−a)

(1 + 2βa)ν(Ia)
· µ(Q) = %−1a paµ(Q),

and in a similar manner,

µ(Qc) ≤ %apaµ(Q).

Since P(Ib) = 1, we have

%−1a pa ≤ P(Aba,n) =
∑

Q∈Qk
a

Q⊂Ib

P(Qc) ≤ %apa.

Fix n, l ∈ N and estimate the P measure of the intersection Aba,n ∩Aba,l. If the
generations kn = kl, which we chose accordingly to n and l, the cube unions
Aba,n = Aba,l, and so

P(Aba,n ∩Aba,l) = P(Aba,n) ≤ %apa.

Suppose kn < kl. Then, for each Q ∈ Qkna , we can decompose the central cube
Qc into the generation kl subcubes:

Qc =
⋃

R∈Q
kl
a

R⊂Qc

R.

In particular, the intersecting cubes

Aba,n ∩Aba,l =
⋃

Q∈Qkn
a

Q⊂Ib

⋃
R∈Q

kl
a

Q⊂Qc

Rc.

See Figure 3.3 for an illustration.
Invoking P(Ib) = 1, we can now estimate

P(Aba,n ∩Aba,l) =
∑

Q∈Qkn
a

Q⊂Ib

∑
R∈Q

kl
a

R⊂Qc

P(Rc) ≤
∑

Q∈Qkn
a

Q⊂Ib

%apaP(Qc) ≤ %2ap2a.

Similarly, if the generations kn > kl, we have the same result, since we can
just change the order of n and l. Fix N ∈ N. Then, by the estimates above,

N∑
n=1

N∑
l=1

P(Aba,n ∩Aba,l) ≤ N [(N − 1)%2ap
2
a + %apa]
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Figure 3.3: Illustration of the intersection Aba,n ∩Aba,l. Estimating the mass
of this intersection is then reduced to estimating the ratios between small black
cubes Rc and Q. This comparison produces an error given by the number %a.

and ( N∑
n=1

P(Aba,n)
)2
≥ N2%−2a p2a.

On the other hand, the sum

∞∑
n=1

P(Aba,n) ≥
∞∑
n=1

%−1a pa = +∞,

since %−1a pa > 0 is a number independent of n. So, we are allowed to apply
Lemma 3.1:

P(Aba) ≥ lim sup
N→∞

(∑N
n=1 P(Aba,n)

)2
∑N
n=1

∑N
l=1 P(Aba,n ∩Aba,l)

≥ lim sup
N→∞

N2%−2a p2a
N [(N − 1)%2ap

2
a + %apa]

= %−4a ,

which is exactly (3.5).
We are now practically finished, since (3.5) implies for any a ≥ b that

P
( ⋃
a′≥a

Aba′
)
≥ P(Aba) ≥ %−4a ,
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so by the convergence of measures and the fact that %a ↘ 1, as a → ∞, we
obtain

P(Ab) = P
( ⋂
a∈N

⋃
a′≥a

Aba′
)

= 1.

Then, recalling that P = µ(Ib)−1µxIb, we have shown

µ(Rd \A) ≤
∞∑
b=b0

µ(Ib \Ab) = 0,

so µ almost every x ∈ Rd is an element of A.
Lemma 3.3 is thus proved if we can show that ν is a tangent measure of

µ at every x ∈ A. Fix an x ∈ A, and choose infinitely many a ∈ N such that
x ∈ Aa. Fix such an a and choose infinitely many n ∈ N such that x ∈ Qc
for the unique Q ∈ Qka for which x ∈ Q. Recall the estimate (3.3) from the
beginning of the proof. That is, the choice of k = kn implies that each of these
cubes have the property

Fa+1(µQ, ν
w
a ) < εaε

w
a ,

for some constant c = c(Q) > 0 and weights w = w(Q) ∈W, where

µQ = Tx(Q),rka ,c
(µ) = cTx(Q),rka]

µ.

Then, after passing to a subsequence, we may find increasing sequences (ai)i∈N
and (ki)i∈N of natural numbers such that ai, ki ↗ ∞, and for any i ∈ N we
have:

(1) the point x ∈ Qi,c, where Qi,c is the central cube of Qi and Qi is the
unique cube in Qkiai containing x;

(2) if xi = x(Qi) and ri = rkiai = 3−(ki+1)ai/2↘ 0, then the distance

Fai+1(ciTxi,ri]µ, ν
wi
ai ) < εaiε

wi
ai

for some weights wi ∈W and constants ci > 0.

We will now show that

cjTx,rj]µ→ ν, as j →∞.

By Remark 2.1(1), it is enough to verify Fb(cjTx,rj]µ, ν) → 0 as j → ∞ for
any fixed b ∈ N. Let b ∈ N and ϕ ∈ L(b). After passing to a subsequence, we
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may assume that Ib+1 ⊂ Iai+1 for all i ∈ N. Write zi := (x − xi)/ri, i ∈ N.
Since

|zi| =
|x− xi|

3−ai`(Qi)/2
≤ `(Qi,c)

3−ai`(Qi)/2
= 2 · 3−ai ,

this particularly implies that spt(ϕ◦Tzi,1) = sptϕ+zi ⊂ Ib+1 ⊂ Iai+1 for every
i ∈ N. On the other hand, by the definition of νwi

ai , we have νwi
ai xIai = νai ,

and so, ˆ
ϕdTzi,1]ν

wi
ai =

ˆ
ϕdTzj ,1]ν =

ˆ
Ib+1

ϕ(x− zi) dνx.

Hence, using the fact that ϕ is 1-Lipschitz, we have shown that∣∣∣∣ˆ ϕdTzi,1]ν
w
ai −

ˆ
ϕdν

∣∣∣∣ =

∣∣∣∣∣
ˆ
Ib+1

ϕ(x− zi) dνx−
ˆ
Ib+1

ϕdν

∣∣∣∣∣
≤
ˆ
Ib+1

|ϕ(x− zi)− ϕ(x)| dνx

≤ |zi|ν(Ib+1)

≤ 2 · 3−aiν(Ib+1).

The mapping ϕ ◦ Tzi,1 is in L(ai + 1). We already had spt(ϕ ◦ Tzi,1) ⊂ Iai+1,
and it is 1-Lipschitz:

|ϕ ◦ Tzi,1(y)− ϕ ◦ Tzi,1(z)| ≤ |Tzi,1(y)− Tzi,1(z)| = |y − z|, y, z ∈ Rd.

Hence, as Definition 3.1 in particular gives ε
|wi|
ai < εai , we have∣∣∣ˆ ϕd(ciTx,ri]µ)−

ˆ
ϕdTzi,1]ν

wi
ai

∣∣∣
=
∣∣∣ˆ ϕ ◦ Tzi,1 d(ciTxi,ri]µ)−

ˆ
ϕ ◦ Tzi,1 dνwi

ai

∣∣∣
≤ Fai+1(ciTxi,ri]µ, ν

wi
ai ) < εaiε

wi
ai < εai · εai .

Since ϕ ∈ L(b) is arbitrary, we have reached our goal:

Fb(ciTx,ri]µ, ν) ≤ εai · εai + 2 · 3−aiν(Ib+1) −→ 0,

as i→∞, finishing the proof of Lemma 3.3.

Combining Lemma 3.2 and Lemma 3.3, we have shown that a typical
measure µ ∈ M satisfies Tan(µ, x) =M\ {0} at µ almost every x ∈ Rd, and
thus, Theorem 1.1 is proven.
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4 Measures are typically non-doubling

As a direct consequence of Theorem 1.1 we can say something about the
doubling behavior of typical measures.

Definition 4.1. A measure µ ∈M satisfies the doubling condition at x ∈ Rd
if

lim sup
r→0

µ(B(x, 2r))

µ(B(x, r))
<∞.

Measure µ is non-doubling if the doubling condition fails at µ almost every
x ∈ Rd. Notice that non-doubling measures are always singular with respect
to the Lebesgue measure in Rd.

Corollary 4.1. A typical measure µ ∈M is non-doubling.

Proof. The results of Preiss in [20, Proposition 2.2 and Corollary 2.7] imply
that the doubling condition of µ at x can be characterized by the existence of
a constant C ≥ 1 such that for every ν ∈ Tan(µ, x) and r > 0 we have

ν(B(0, 2r)) ≤ Cν(B(0, r)).

If Tan(µ, x) =M\{0}, then clearly the doubling condition cannot be satisfied.
For example, measures νn = LdxB(0, n)c satisfy

νn(B(0, 2n)) > 0 = Cνn(B(0, n))

for any C ≥ 1, yet νn ∈ Tan(µ, x) for every n ∈ N. Hence, the claim follows
from Theorem 1.1.

Remark 4.1. Bate and Speight proved in [2] that when a measure µ on a
metric space admits a differentiable structure, then µ satisfies the doubling
condition µ almost everywhere. Hence, Corollary 4.1 also says that with re-
spect to the Euclidean metric a typical µ in Rd does not admit a differentiable
structure in Rd. It would be interesting to see if Corollary 4.1 could be gener-
alized to other interesting classes of complete metric spaces.

5 Sharpness of the result

A natural question to ask further is if the property Tan(µ, x) =M\ {0} can
be made to hold at every point x ∈ sptµ of a typical measure µ. However, this
is not possible by the following observation. Here, L is the Lebesgue-measure
on R and L+ is the Heaviside-measure Lx[0,∞).
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Proposition 5.1. If µ is a measure on R with non-empty support, then there
exists x ∈ sptµ such that L /∈ Tan(µ, x) or L+ /∈ Tan(µ, x).

Remark 5.1. Even though the statement of Proposition 5.1 is in R, it could
be extended to Rd with a similar proof. More precisely, we can use nearly
similar techniques to show that for any µ ∈M with non-empty support there
exists x ∈ sptµ such that either the Lebesgue-measure Ld /∈ Tan(µ, x) or
Ld,+ /∈ Tan(µ, x), where the measure Ld,+ is Ld restricted to the set

Rd,+ = {(x1, x2, . . . , xd) : xi ≥ 0 for all i = 1, . . . , d}.

Before we state the proof, let us first observe the following.

Remark 5.2. If µ is a measure, x ∈ sptµ, and for some ci > 0 and ri ↘ 0,
we would have ciTx,ri]µ → L+. Then, we can choose a subsequence (ij)j∈N
such that

µ(B(x, rij ))−1Tx,rij ]µ→ L
+, as j →∞.

This is verified in [11, Remark 14.4(1)] if we use it in the case R = 1 and
ν = L+ and notice that L+(U(0, 1)) = L+(B(0, 1)) = 1.

Proof of Proposition 5.1. Write A = sptµ. We have two separate cases.
1◦ Suppose A is a proper subset of R. Since A is closed and non-empty,

we can choose x ∈ A and ε > 0 such that either (x − ε, x) ∩ A = ∅ or
(x, x+ ε) ∩A = ∅. Let us prove that

L /∈ Tan(µ, x).

We may assume that (x, x+ε)∩A = ∅; the other case is symmetric. Contrarily,
suppose that there exists ci > 0 and ri ↘ 0 such that ciTx,ri]µ→ L as i→∞.
Fix i0 ∈ N such that ri < ε for each i ≥ i0. Fix a continuous ϕ : R→ R such
that sptϕ ⊂ (0, 1) and

´
ϕdL = 1. Then, for each i ≥ i0 we have

ˆ
ϕdL = 1 6= 0 =

ˆ
ϕd(ciTx,ri]µ),

which is a contradiction with ciTx,ri]µ→ L. Hence, L /∈ Tan(µ, x).
2◦ Suppose A = R. Let us now find x ∈ R such that

L+ /∈ Tan(µ, x).

If x ∈ R and r > 0, denote cx,r = µ(B(x, r))−1. Fix any number 0 < ε < 1/20.
Then, the constant ε′ := ε/16− 5ε2/4 > 0. Fix any y0 ∈ R. Pick some r0 > 0
such that

F3(cy0,r0Ty0,r0]µ,L+) < ε2.
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Recall the definition of F3 in Definition 2.2. If we cannot choose such r0,
Remarks 2.1(1) and 5.2 would imply that L+ /∈ Tan(µ, y0), which finishes the
proof. Write ri = 4−ir0, i ∈ N. Let us now construct a sequence of points
x0, x1, x2, · · · ∈ R. First, we let x0 = y0 +r0. Fix i ≥ 1 and suppose the points
x0, . . . , xi−1 have already been constructed. If there exists yi ∈ [xi−1, xi−1+ri]
and si ∈ (ri+1, ri] such that

F3(cyi,siTyi,si]µ,L+) < ε2, (5.1)

we let xi = yi + ri (see Figure 5.1). Otherwise, if such a choice cannot be
made, we let xi = xi−1.

Figure 5.1: The choice of the point xi when we can choose yi ∈ [xi−1, xi−1 +
ri] and si ∈ (ri+1, ri] such that (5.1) is satisfied. Since cyi,siTyi,si]µ is close
to the Heaviside-measure L+, we move to the right in the construction since
here cxi,rTxi,r]µ is quite far from L+ with respect to the distance F3 for all
scales r ∈ (ri+1, ri] by the choice of si. Furthermore, the limit x = limi→∞ xi
is then quite close to the point xi, and thus, cx,rTx,r]µ is also quite far from
L+ for all scales r ∈ (ri+1, ri].

This way we have constructed a sequence of reals x0, x1, x2, . . . such that
for any i ≥ 1 either we could choose yi ∈ [xi−1, xi−1 + ri] and si ∈ (ri+1, ri]
such that (5.1) is satisfied and xi := yi + ri or xi := xi−1, whence

F3(cy,sTy,s]µ,L+) ≥ ε2 for all y ∈ [xi−1, xi−1 + ri] and s ∈ (ri+1, ri]. (5.2)

Now fix i, j ∈ N, j > i. By construction, for any k ∈ N, we have xk ∈
[xk−1, xk−1 + 2rk], so

xj ∈ [xi, xi + 2ri+1 + 2ri+2 + · · ·+ 2rj ] ⊂ [xi, xi + ri],
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since
∑∞
i=1 4−i = 1/3 < 1/2. Thus, the limit x = limi→∞ xi exists and

x ∈ [xi, xi + ri] for every i ∈ N.
Fix a radius 0 < r ≤ r0, and choose i ∈ N such that ri+1 < r ≤ ri. Suppose

(5.1) holds. Define a map Hi : R→ R by

Hi(z) =
si
r
z + Tx,r(yi), z ∈ R.

Then, by definition, Hi ◦Tyi,si = Tx,r. Let ϕ : R→ [0, ε] be any Lipschitz-map
with

Lipϕ ≤ 1/4, sptϕ ⊂ [−1, 0], andϕ|[−1 + ε,−ε] = ε/4,

and let ψ : R→ [0, ε] be any Lipschitz-map with

Lipψ ≤ 1/4, sptψ ⊂ [−1− ε, 1 + ε], andψ|[−1, 1] = ε/4.

Now, in particular, spt(ϕ ◦Hi), spt(ψ ◦Hi) ⊂ [−12, 12] ⊂ I3, and

Lip(ϕ ◦Hi),Lip(ψ ◦Hi) ≤
si
r
· 1

4
< 1,

since si ≤ ri and r > ri+1 = ri/4. Hence, ϕ ◦Hi, ψ ◦Hi ∈ L(3), so by (5.1),
we have

cyi,si

ˆ
ψ ◦Hi dTyi,si]µ ≤

ˆ
ψ ◦Hi dL+ + ε2.

Hence,

µ(B(x, r)) ≤ 4

ε

ˆ
ψ dTx,r]µ =

4µ(B(yi, si))

ε
· cyi,si

ˆ
ψ ◦Hi dTyi,si]µ

≤ 4µ(B(yi, si))

ε
·
( ˆ

ψ ◦Hi dL+ + ε2
)

≤ 4µ(B(yi, si))

ε
(εL+([−12, 12]) + ε2)

≤ 52µ(B(yi, ri)).

If I = H−1i [−1 + ε,−ε], then I is an interval and of the length

`(I) = (1− 2ε)r/si ≥ 1/4− ε.

Moreover, the choice of ϕ yields (ϕ ◦Hi)|I = ε/4. Thus, by (5.1), we have

ˆ
ϕ ◦Hi dL+ − ε2 ≤ cyi,si

ˆ
ϕ ◦Hi dTyi,si]µ.
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Hence, ∣∣∣ ˆ ϕd(cx,rTx,r]µ)−
ˆ
ϕdL+

∣∣∣ = cx,r

ˆ
ϕdTx,r]µ

= cx,r

ˆ
ϕ ◦Hi dTyi,si]µ

≥ cx,r
cyi,si

(ˆ
ϕ ◦Hi dL+ − ε2

)
≥ cx,r
cyi,si

(ε
4
L+(I)− ε2

)
≥ cx,r
cyi,si

ε′ ≥ ε′/52.

Therefore,
F2(cx,rTx,r]µ,L+) ≥ ε′/52.

On the other hand, if (5.2) holds for the index i ∈ N, we immediately have

F2(cx,rTx,r]µ,L+) ≥ ε2

since x ∈ [xi, xi+ri] = [xi−1, xi−1+ri] in this case. Hence, for any 0 < r ≤ r0,
we have

F2(cx,rTx,r]µ,L+) ≥ min{ε′/52, ε2},

yielding that L+ /∈ Tan(µ, x) by Remarks 2.1(1) and 5.2.

6 Micromeasures

The notion of micromeasures is a symbolic way to define local blow-ups of
measures in trees, and in this setting we can also obtain a similar result to
Theorem 1.1. Micromeasures have just recently been considered in [9, 22], for
instance. Let I = {1, 2, . . . , b}, where b ∈ N is fixed. If n ∈ N, we write

In = {(x1, x2, . . . , xn) : xi ∈ I}, I∗ =
⋃
n∈N

In and IN = {(x1, x2, . . . ) : xi ∈ I}.

Then, IN is a compact metric space with the metric d(x, y) = 2−(x∧y), x, y ∈
IN, where x ∧ y is the first index i ∈ N when xi differs from yi. When
x = (x1, x2, . . . ) ∈ IN or x ∈ Im with m ≥ n, we let x|n ∈ In be the n:th cut
of x; that is, x|n = (x1, x2, . . . , xn). If y ∈ In, we let the cylinder generated
by y be

[y] := {x ∈ IN : xi = yi, i = 1, . . . , n}.
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Let P = P(IN) be the set of all Borel probability measures on IN. If µ ∈ P
and y ∈ In with µ[y] > 0, we denote

µy[z] =
µ[yz]

µ[y]
, z ∈ I∗;

that is, the normalized restriction of µ to [y] shifted back to IN. This notion
defines a Borel probability measure on IN. We can metrize P with the following
distance:

π(µ, ν) = sup
ϕ∈L

∣∣∣ˆ ϕdµ−
ˆ
ϕdν

∣∣∣, µ, ν ∈ P,

where L is the set of all Lipschitz-maps ϕ : IN → R with Lipϕ ≤ 1 and
maximal value ‖ϕ‖∞ ≤ 1. The set P can be equipped with the weak topology,
which agrees with the topology induced by π. Moreover, the compactness of
IN yields that (P, π) is a compact metric space.

Definition 6.1. A probability measure ν ∈ P is a micromeasure of µ ∈ P at
x ∈ IN if there exists ni ↗∞ such that

µx|ni
−→ ν, as i→∞.

The set of micromeasures of µ at x is denoted by micro(µ, x), which is a closed
subset of P.

We obtain the following theorem.

Theorem 6.1. A typical µ ∈ P satisfies micro(µ, x) = P at every x ∈ IN.

Proof. The proof below resembles the proof of Theorem 1.1, but the steps
are dramatically simpler. Namely, here we do not have to worry about the
measures of boundaries, nor how to fit balls and cubes to each other and at
the same time worry about µ almost every point. The core is similar, so we
will leave out some of the details.

First of all, choose a countable dense S ⊂ P such that ν[y] > 0 for every
ν ∈ S and y ∈ I∗. When y ∈ I∗ and µ[y] > 0, we denote

Ty(µ) = µy.

With this in mind, define

R =
⋂
ν∈S

⋂
n∈N
Rν,n and Rν,n =

⋃
k≥n

⋂
y∈Ik
T −1y U(ν, 1/k),

where the ball U(ν, 1/n) is taken with respect to the metric π. Suppose ν ∈ S
and n ∈ N. Let us first verify that Rν,n is open and dense in P.
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(1) Since ∂[y] = ∅ for any y ∈ I∗, the map Ty : {µ ∈ P : µ[y] > 0} → P is
continuous. Moreover, the set {µ ∈ P : µ[y] > 0} ⊂ P is open, which
yields that for any open U ⊂ P the pre-image T −1y U is open in P. In
particular, Rν,n is open in P.

(2) If µ′ ∈ P and ε > 0, we may choose µ ∈ P such that µ[y] > 0 for every
y ∈ I∗ and π(µ, µ′) < ε/2. Fix k ∈ N and denote

µk =
∑
y∈Ik

µ[y]νy,

where νy[z] = ν[z]/ν[y] for each z ∈ Im, m ≥ k, with z|k = y and
νy[z] = 0 otherwise. Then, Ty(µk) = ν for each y ∈ Ik, k ∈ N, so
µk ∈ Rν,n if k ≥ n. Moreover, as in the proof of Lemma 3.2, we have
µk → µ, as k → ∞ (we just replace Q by y). Thus, we can fix k ≥ n
such that π(µk, µ) < ε/2, yielding π(µk, µ′) < ε. In particular, Rν,n is
dense in P.

In order to finish the proof, we fix µ ∈ R and verify that for a fixed x ∈ IN we
have micro(µ, x) = P. Since micro(µ, x) is closed in P, and S ⊂ P is dense,
we only need to check that ν ∈ micro(µ, x) for a fixed ν ∈ S. By the definition
of R, there exists ni ↗∞, i→∞, such that

µ ∈
⋂

y∈Ini

T −1y U(ν, 1/ni), i ∈ N.

Especially, µ ∈ T −1x|ni
U(ν, 1/ni) for any i ∈ N. This is exactly what we wanted:

π(µx|ni
, ν) < 1/ni, i ∈ N,

so µx|ni
→ ν as i→∞.

7 Further problems

7.1 Micromeasure distributions

Micromeasure distributions provide a probabilistic way to describe which mea-
sures tend to occur more often as local blow-ups µx|n of µ ∈ P, and thus tell
us what the “expected” micromeasures of µ are. Let us first expand some of
the notation in Section 6.1. This notation was used in [22]. Write

Ξ = {(µ, x) ∈ P(IN)× IN : µ[x|n] > 0 for all n ∈ N}.
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Let σ : IN → IN be the shift; that is, σ(x1, x2, . . . ) = (x2, x3, . . . ), if x =
(x1, x2, . . . ) ∈ IN. Define the map ZOOM : Ξ→ Ξ by

ZOOM(µ, x) = (µx1
, σx), (µ, x) ∈ Ξ.

If n ∈ N, let ZOOMn be the n-fold composition of the mapping ZOOM. Notice
that by definition, ZOOMn(µ, x) = (µx|n, σ

nx).

Definition 7.1. Fix (µ, x) ∈ Ξ; that is, µ ∈ P and x ∈ sptµ. We say that a
Borel probability measure P on Ξ is a micromeasure distribution of µ at x if
there exists Ni ↗∞, i→∞, such that

1

Ni

Ni∑
n=1

δZOOMn(µ,x) −→ P, as i→∞,

where the convergence is taken with respect to the weak topology on P(Ξ).

We already know that any measure is a micromeasure of a typical measure
µ ∈ P, but could we say something more about their distribution?

Problem 7.1. What are the micromeasure distributions of a typical measure
µ ∈ P?

Similarly, one could ask an analogous question for tangent measure distri-
butions (see for example [12]).

7.2 Prevalence

Prevalence is a notion of genericity that was originally motivated by the need
to have a “translation-invariant” measure theoretical form of genericity in
infinite dimensional vector spaces. The natural finite dimensional analogue of
it could be the notion of “Lebesgue almost every” in Rd. The ideas surrounding
prevalence were introduced by Christensen in [7, 8], and the name “prevalence”
was suggested by Hunt, Sauer, and Yorke in [10]. The notion of prevalence
was originally only defined for elements in a topological vector space, but in
[1], Anderson and Zame also gave an analogous definition for convex subsets
of topological vector spaces.

Definition 7.2. LetX be a topological vector space, and let C be a completely
metrizable convex subset of X. We say that a set E ⊂ C is shy in C at the
point c ∈ C if for every δ ∈ (0, 1) and open neighbourhood U of the origin in
X, there exists a Borel measure Λ on X with Λ(X) > 0 such that

(1) spt Λ is compact, spt Λ ⊂ U + c, and spt Λ ⊂ δC + (1− δ)c;
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(2) Λ(x+ E) = 0 for every x ∈ X.

If E is shy in C at every point c ∈ C, then we say E is shy in C. A property
P of points in x ∈ C is satisfied for prevalent x ∈ C if the set

{x ∈ C : x does not satisfy P}

is shy in C.

In our case, we could consider the set P(K) of all Borel probability mea-
sures on K, where K is some compact subset of Rd andM(K) is the set of all
signed Borel measures on K. Then, P(K) is a completely metrizable convex
subset of the topological vector spaceM(K). This setting was already consid-
ered by Olsen in [16] when the Lq-dimension of prevalent measures µ ∈ P(K)
was studied. Moreover, in the case of trees IN, the set P(IN) is a complete
convex subset of M(IN), the set of signed Borel measures on IN.

Problem 7.2. What are the tangent measures of prevalent measures in P(K)?
What are the micromeasures and micromeasure distributions of prevalent mea-
sures in P(IN)?
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[14] L. Olsen, Typical Rényi dimensions of measures. The cases: q = 1 and
q =∞, J. Math. Anal. Appl., 331 (2007), 1425–1439.

[15] L. Olsen, Typical upper Lq-dimensions of measures for q ∈ [0, 1], Bull.
Sci. Math., 132 (2008), 551–561.

[16] L. Olsen, Prevalent Lq-dimensions of measures, Math. Proc. Cambridge
Phil. Soc., 149 (2010), 553–571.

[17] T. O’Neil, A local version of the Projection Theorem and other results
in Geometric Measure Theory, Ph.D. Thesis, University College London,
1994.

[18] T. O’Neil, A measure with a large set of tangent measures, Proc. Amer.
Math. Soc., 123 (1995), no. 7, 2217–2220.

[19] T. Orponen, T. Sahlsten, Tangent measures of non-doubling measures,
Math. Proc. Cambridge Philos. Soc., 152 (2012), 555–569.

[20] D. Preiss, Geometry of measures in Rd: distribution, rectifiability, and
densities, Ann. of Math., 125 (1987), no. 3, 537–643.



Tangent Measures of Typical Measures 79
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