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Abstract

After introducing the concepts of p-derivatives and p-integrals inside
the dual real number algebra, we prove a new generalization of the
fundamental theorem of calculus.

Except for the complex number field and the direct product of two real
number fields, the only remaining 2-dimensional real associative algebra is the
dual real number algebra R(?) which has zero divisors. It turns out that the
well-known theory of Riemann integrals can be rewritten by replacing the real
number field R with the dual real number algebra R(?). The purpose of this
paper is to present a new way of rewriting the fundamental theorem of calculus
inside the dual real number algebra R(?).

Using Fréchet derivatives is a well-known way of introducing differentia-
bility of functions with values in real associative algebras which have zero-
divisors. Fréchet’s way of introducing differentiability avoids the problem pro-
duced from zero-divisors effectively, but it ignores the invertible elements of a
real associative algebra even if the zero-divisors of the real associative algebra
can be controlled easily. Being dissatisfied at this aspect of Fréchet deriva-
tives, we give a new way of introducing differentiability inside real associative
algebras which have zero-divisors. The key idea in this new way is to use
the topology transferred from the topology on a field to introduce differen-
tiability inside real associative algebras which have zero-divisors. Based on
this idea, we get the concept of ¢-derivatives inside the real associative alge-
bra R, which is defined by using both invertible elements of R(?) and the
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topology transferred from the topology on the real number field R. Except
for p-derivatives, another fundamental concept introduced in this paper is the
concept of p-integrals. Unlike the counterparts of Riemann integrals in other
generalizations of single variable calculus such as multivariable calculus, com-
plex analysis and Lebesgue integration, the concept of (p-integrals is defined
by generalizing the order relation on the real number field and replacing the
length function on intervals with a function whose values are not always in
the set of non-negative real numbers. This paper consists of five sections. In
Section 1, we generalize the order relation on the real number field. In Section
2 and Section 3 we introduce the concepts of the p-derivatives and ¢-integrals.
In Section 4, we give the basic properties of the p-integrals. In Section 5, we
prove the new generalization of the Fundamental Theorem of Calculus.

1 Two generalized order relations on R

The multiplication on the dual real number algebra R(?) = R & R (as real
vector space) is defined by

(a1, a2)(by, b2) := (a1by, a1ba + agby) for (a1, az), (b1, ba) € R

We denote the element (1, 0) by 1, and the element (0, 1) by £. Then every
element a = (a1, az) of R can be expressed in a unique way as a linear
combination of 1 and ¢:

a= (a1, az) =a;l+asl =a; +axl foray, as €R,

where Rea := ap is called the real part of a, and Zea := ag is called the
zero-divisor part of a. If S is a non-empty subset of R(?), we defined the real
part Re S and the zero-divisor part Ze S of S by

ReS:={Rex|zeS} and ZeS:={Zex|ze S}

One nice algebraic property of R(?) is that the zero-divisors of R(?) can be
characterized in a convenient way.

Proposition 1. Let z be a non-zero element of R\ . Then
(i) x is a zero-divisor if and only if Rex = 0;

1
(ii) x is invertible if and only if Rex # 0, in which case, the inverse x=1 = —
x
s given by
1 1 Zex

" Rex (Rex)?

T
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PRrROOF. This proposition follows from the definition of the multiplication on
R(3).
O

Unlike the complex field, there are two generalized order relations on R(?)
which are compatible with the multiplication in R().

Definition 1.1. Let z and y be two elements of R,
(i) We say that x is type 1 greater thany ( ory is type 1 less than x) and

1 1
we write x >y (ory < x) if

4 Rex > Rey Rex = Rey
cither Zex > Zey or Zex > Zey

(i1) We say that x is type 2 greater than y ( ory is type 2 less than x) and
2 2
we write x >y (ory < x) if

cither Rex > Rey or Rex = Rey
Zey > Zex Zey > Zex

4 0
We use z > y when © > y or ¢ = y for § = 1, 2. By Definition 1.1, if

1 2 1 2
Rex = Rey, then ¢ > y <=y > z; if Zex = Zey, then z > y < z= > y.
The following proposition gives the basic properties of the two generalized
order relations.

Proposition 2. Let x, y and z be elements of R and § = 1, 2. Then
(i) one of the following holds:

0 0 0
(ii) if © >y and y > z, then x > z;
T 0 0
(iii) if x >y, thenx + 2z >y + z;
Sy o 0 9
() if x >0 and y > 0, then xy > 0;

.0 0

(v) if x >y, then —x < —y.

PRrROOF. Clear.
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2 p-Derivatives

In the remaining part of this paper, let ¢ be a real-valued function ¢ : R — R.
A set S € R®?) is called a ¢-set if Zex = p(Rex) for all x € S. Clearly,

Ry :={z|zeRP and Zex=gp(Rez)}

is the largest @-set in R(). A @-set S is called an open (or closed ) @-interval if
Re S is an open (or closed) interval in the real number field R. For a, b € R(?)
with Rea < Reb, we use (a, b),, (or [a, b],) to denote the open (or closed) ¢-
interval such that Re (a, b), = (Rea, Reb) (or Rela, b, = [Rea, Reb]). The
topology of the real number field R can be transferred to the largest ¢-set R,
by employing open @-intervals.

The usual matrix norm ||z|| = \/(Rex)? + (Ze x)? with z € R does not
make R(? into a normed algebra, but there are many other norms on R(?)
which make R into a normed algebra. In this paper, we use the tazi norm
||| to make R into a normed algebra, where the taxi norm is defined by

||z||, = |Rex| + |Zex| for xz € RP).
If f:5 — R® is a function with S € R(?, then
f(x) = fre(x) + fzc(x) forz e S,

where fre(z) := Re f(z) and fz.(x) := Ze f(x) are real-valued functions of
x or, equivalently, of Rex and Zex. Sometimes, fg(x) is also denoted by
fa(Rex, Zex) to emphasize that fg is regarded as a real-valued function of
two real variables Rex and Zex for & € { Re, Ze }. We say that a function
f:8—=R® with § € R® is bounded if there exists a positive real number
M such that M > |fa(x)| for all z € S and & € { Re, Ze }.

Definition 2.1. Let I be an open p-interval containing ¢ € R, and let f
be a function defined everywhere on I except possibly at c. We say that an
element L € R is the @-limit of f at ¢, and we write lim  f(z) = L if

Rez B Rec

for every n > 0 there exists a 6 > 0 such that
0<|Rex—Rec| < = ||f(z) — L1 <n. (1)

Since fa(z) = fa(Rex, p(Rex)) is a function of the single variable Rex
on a p-interval, lim  f(z) = Lifand only if lim  fre(xz) = Re(L) and
RexBRec Rex—Rec

lim  fze(x) = Ze(L).

Rex—Rec
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Replacing 0 < |[Rex — Rec| < § by 0 < Rex — Rec < § in (1), we get
the concept of right-hand p-limit lim  f(z) = L of f at c¢. Replacing

RexzBRect

0 < |Rex — Rec|] < by =6 < Rex — Rec < 0 in (1), we get the concept of

left-hand p-limit ~ lim  f(x) = L of f at ¢. Clearly, lim f(x) =L if
RexHRec— RezHRec

and only if both one-sided ¢-limits exist and are equal to L.

Definition 2.2. Let f : S — R®) be a function defined on p-set S C R(3).

We say that f is p-continuous at ¢ € S if for every n > 0 there exists a § > 0

such that

|[Rex — Rec| < and z €S = ||f(z)— f(o)|l1 <n.

If f : S = RO is p-continuous at every point of S, then f is said to be
p-continuous on S.

Using Proposition 1, we now introduce the concept of ¢-derivatives in the
following

Definition 2.3. Let f : I — R® be a function defined on an open p-interval
I containing ¢ € R?). If the p-limit

RezBRec Tr—c
exists as an element of R(?), then we say that f has a p-derivative f;(c) at ¢

(or is p-differentiable at c). If f is p-differentiable at each point of the open
p-interval I, then f is said to be @-differentiable on I.

The next proposition gives one of the basic properties of ¢-derivatives.

Proposition 3. Suppose that f : I — R®3 is a function defined on an open
@-interval I containing ¢ € R, where ¢ : Re I — R is differentiable at Rec.

(i) If f(z) = fre(x)+Lfze(x) is p-differentiable at c, then both the function
fre and the function fz. of the single variable Re x are differentiable at
Rec, and their derivatives at Rec are given by

dee ’
)| = e U4l
and i
Ze ’ , ,
A(Rea)|,_ ~ ¥ BealRe(fo(9) + Ze(£o()),
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where fg is regarded as the function of the single variable Rex defined
by

Rex — fa(Rex, p(Rex)) forz € [a, b, and & € { Re, Ze }.

6fRe 8fRe afZe d 6fZe

T ] . o
(i1) If the first-order partial derivatives d(Rex)’ 3(Zex) O(Rex) an 9(Ze 1)

exist in a neighborhood of (Re ¢, Ze c) and are continuous at (Re ¢, Zec),
then f is p-differentiable at c and the p-derivative f},(c) is given by

/ _ OfRe / OfRe
Jole) = (6(Reaz) T (Rex)ﬁ(Zem)> $=C+

” (a(aj:fj;) ¢/ (Rex) %féﬁ; N aféf; —¢/(Rex) a(é)éf?;) )) L_C '

PRrOOF. This proposition follows from Proposition 1 and the Chain Rule in

multivariable calculus.
O

3 Upper and Lower ¢-Sums and p-Integrals

A closed ¢-interval [a, b], is called monotone if ¢ : [Rea, Reb] — R is ei-
ther nondecreasing or nonincreasing. For convenience, we also use ¢ * and
© \, to indicate that the function ¢ : [Rea, Reb] — R is nondecreasing and
nonincreasing, respectively.

Let [a, b], be a monotone closed ¢-interval in R(?). A partition P of [a, b],
is a finite set of points { g, z1, ..., z, } in [a, b], such that

Rea=Rexy < Rex1 <---< Rex,_1 < Rex, = Reb.

If P and P* are two partitions of a monotone closed ¢-interval [a, b, with
P C P*, then P* is called a refinement of P.
In the following, we assume that f : [a, b], — R® is a bounded function,

P ={wo, x1, ..., x, } is a partition of [a, b],, and [a, b], is a monotone closed
p-interval in R Let Azp :=x), —xp_q for h=1,2, ... ,n. Then
b,
xp >0 forh=1,2,...,n,

where the notation 6, is defined by

0 — 1 for ¢ &
) 2 for o\
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Axp, is a generalization of the length function of an interval. Clearly, Axj, is
a positive real number if and only if p(Rexp) = o(Rexp_1).
Since f : [xp—1, Thlp = R is bounded, both

sup fa := sup{ fa(0) [+ € [on-1, 7a] }
and
inf fa o= mf{ fa(2) [ € [tn-1, 22l }

exist for & € {Re, Ze}. We define the upper p-sum U, (P, f) of f with
respect to the partition P to be

n

>~ (sup fre + sup fz.) Ay for o/
h—1 h h
U@(Pa f) =

n

3 (s%p fre + Cinf fZe>Axh for o\,

h=1
and the lower @-sum L, (P, f) of f with respect to the partition P to be

n

3 (i%f fre + Cind fZe>Aash for 7
h=1

LSO(P? .f) =
Z (i%f fRre + £sup fZe) Axp  for ¢\
h=1 h
By the assumption that f : [a, b], — R®?) is bounded, there exist real
numbers m and M such that
M > fa(z) >m forall x € [a, b], and & € { Re, Ze }.
Let P be the set of all partitions of [a, b],, i.e.,
P :={P|P is a partition of [a, b], }.

It follows from Proposition 2 that if P € P, then

(M +¢M)(b—a) é Uy (P, f) é L,(P, f) é (m+£€m)(b—a) for e N
and

(M +¢m)(b— a) % U,(P, f) ; L,(P, f) é (m+{EM)(b—a) for o\,
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which imply that the four sets { ReU,(P, f)|P € P}, {ReLy(P, f)|P €
P}, {ZeUy(P, f)|P € P} and { ZeL,(P, f)| P € P} are bounded subsets

b
of the real number field R. We now define the lower @-integral / fz)dyx

b
and upper ga—z'ntegml/ f(z)dyz of f(x) on [a, b], by

b
/f(gc)dwaC
( sup{ReL,(P, f)|PeP}+Lsup{ ZeL (P, f)| PP} for o

sup{ Re L,(P, f)|P € P}+inf{ ZeL, (P, f)|P € P} forp™,

b
/f(f”)alsafl7
inf{ReU,(P, f)|Pe€P}+Linf{ ZeU,(P, f)|P P} fore ~

and

inf{ ReU,(P, f)|P€P}+{sup{ ZeUy(P, f)|P P} for o\
If the lower ¢-integral and the upper ¢-integral of f(x) on [a, b], are equal, i.e.,
b b
if/ f(x)dyx = / f(x)dyx, then we say that f is p-integrable on [a, b],, and
Ja_ a ,
we denote their common value by / f(z)d,x which is called the y-integral
of f on [a, b],. ‘

Proposition 4. Let f : [a, b], — R3) be a bounded function on the monotone
closed p-interval [a, b],,.

(i) If P and P* are partitions of [a, b], and P* is a refinement of P, then

0, o b,

i) [ 1@ [ e
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PROOF. The proof of this proposition is similar to the proof of the correspond-

ing results in calculus.
O

The next proposition will play an important role in determining when a
function is -integrable.

Proposition 5. Let f : [a, b, — R be a bounded function on the monotone
closed p-interval [a, b],,.

(i) Let r € R be a fized real number. If for each positive real number n > 0
there exists a partitions P of [a, b], such that
6
Ug(P. f) = Ly(P. [) < 0+t (3)

then f is p-integrable on [a, b],.

0
(ii) If f is p-integrable on [a, b,, then for each e = 0 with (Ree)(Zee) #0,
6‘/’
there exists a partitions P of [a, b], such that Uy,(P, f) — L,(P, f) < €.

PRrOOF. (i) By Proposition 4 (ii), we have

b b
UL(P, f) 2 / f)dgr = / f@)dya 2 L(P, f), (4)

where P is any partition of [a, b],. If P is a partition of [a, b], such that (3)
holds, then (3) and (4) imply that

0, 0, b b
n+rnl > Uy(P, f) — L,(P, f) > / f(x)dwzz:f/ f(z)dyz. (5)

b 5 b
If ¢ is non-increasing, then 0 > r and / flx)dyx > / f(x)dyx in this

case. It follows from this fact and (5) that

17> Re (/abfd@:r - /abfdwz> = Re (/abfdwx> — Re (/:fdwr) >0

and

—rn > Ze (/abfdwx /abfd@x> = Ze (/abfd@a:> — Ze (/abfd@x> >0
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for any n > 0. Hence, we have
b b i b
Re / fdox ) > Re / fdyx and Ze / fdex | > Ze / fdyx
Ja a a Ja
or

/abf (x)dpx (6)

Similarly, if ¢ is non-decreasing, then (5) implies that

Ve

b
f(x)d,x

—~

[ st [ i@ ™)

b b
By (6) and (7), we get / f(x)dyx = / f(x)dyx, ie., fis p-integrable .

(ii) The proofs of (ii) are similar for ¢ ~ and ¢ \, are similar. Here, we
prove (ii) for ¢ . Since f is p-integrable and ¢ is non-decreasing, we have

sup{ & L (P, )| PP} =inf{&U,(P, )| PP} fordc{Re, Ze}.
(8)
Note that e ; 0 in this case. Hence, it follows from (Ree)(Zee) # 0 that

Ree > 0and Zee > 0. By these facts and (8), there exist four partitions Pge,
Pze, Qre and Qz. of [a, b], such that

inf{ & U, (P, f)|PeP}+? > &U,(Pa, f) 9)
and
sup{ & L (P, )| P e P -2 < ar,(Qa (10)

for each & € {Re, Ze}. Let T = Pre U Pze UQRre U Qz.. Using (8), (9), (10)
and Proposition 4 (i), we get

SL(T, [)+&(e) = dLy(Qu, [) +H(e) = SL,(Qu. )+ *ég) * "'S)
> sup{ &L, (P )| P e P} + 2
&)

= inf{®U(P, /)| P €P}+ == > &Up(Pa, f)
> &UL(T, f).
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That is,
» (U1, )~ L,(T, ) < d(e) for & € {Re, Ze},

which proves that U, (T, f) — L (T, f) é ¢ for the partition T' of [a, b],.
[

4 Basic Properties of p-Integrals
We beginning this section by proving the linearity property of ¢-integrals.

Proposition 6. If f and g are p-integrable on a monotone closed p-interval
[a, b], and k € R, then both kf and f + g are p-integrable on [a, b],, and
following two equations hold

/ab kf(z)d,x = k/ab f(z)dyx (11)

b b b
/ ((2) + g(@))dy = / f(@)dpir + / o(2)dyz. (12)

PRroOF. Clearly, Proposition 6 holds if we can prove that (11) holds for k €
R?) with either Zek =0 or Rek = 0 and (12) holds. Since (11) clearly holds
for k = 0, we assume that k # 0.

First, we prove (11) for &k € R(?) with Zek = 0. In this case, k = r € R.
Then there are four subcases:

Subcase 1: 7 < 0 and ¢ is non-decreasing;
Subcase 2: 7 > 0 and ¢ is non-decreasing;
Subcase 3: r < 0 and ¢ is non-increasing;

Subcase 4: r > 0 and ¢ is non-increasing.

The proofs of (11) are similar for these four subcases. As an example, we
give the proof for Subcase 1. Note that (rf)e = r(fs) for r € R and each
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& € {Re, Ze}. Let P = {x, 1, ... z, } be a partition of [a, b],. We have
Us(P,rf) = Z (s%p (rf)Re +€stip (rf)Ze)Axh
h=1

=3 (5w (7)) + 50 (r(f20)) ) A

=1

= }; (T’H]}bf fre + ETHéf fZe>A:Ch = T}; (1%f fre +€1%f fZe)Axh
:rLQO(P7 f)

or
SU, (P, 1f) =(rLy(P, f)) =& Ly(P. f) (13)
for P € P and & € {Re, Ze}. It follows from (13) that

/ () @)y

=inf{ReU,(P, rf)|PeP}+inf{ ZeU,(P, rf)|P € P}
=inf{rReL, (P, f)|P € P} +Linf{rZeL, (P, f)|P € P}
=rsup{ Re L,(P, f)|P €P}+Lrsup{ ZeL (P, f)|P P}

b
= r/ flx)dyx . (14)

Using the same method, we also have

/ (@) = r/abﬂx)d@m. (15)

By the assumption that f is ¢-integrable on [a, b],, we get from (4) and (15)
that

b b b b
[ en@dee=r [ f@)se=r [ f@)se = [ (5@,
which proves that (11) holds in Subcase 1.

Next, we prove (11) for k € R(?) with Rek = 0. In this case, k = r¢ with
r € R, and
(kf)Re =0 and (kf)Ze = TfRe- (16)
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We also have the four subcases. Let’s prove (11) in Subcase 2: r > 0 and ¢ is
non-decreasing. By (16), we have

AP RN =3 (sup (kf) Rewsup(kf)ze)mh
h=1

= Zé(sup (’I"fRe))AJ?h = Zﬁr(sup fRe)Axh
=1 P h=1 h

n

= };ér<s1}1bp IRe +£51}1Lp fze)Aa:h = érz ( hp fRe +€bup fze)Aa:h

h=1

= LrUp(P, f) = kUy(P, f),

which implies

ReU,(P, kf) = Re(kU,(P, f)) =0 (17)
and
ZeUy(P, kf) = Ze(kUy(P, f)) =1 ReUy,(P, f). (18)
It follows from (17) and (18) that
T b
[ ehrdea

— inf{ ReU,(P, kf)|P € P} + ¢ inf{ Ze U (P, kf) | P € P}
=(inf{rReU,(P, f)|PeP}=Lrinf{ReU,(P, f)|P P}

:ér(inf{Rer(P, F)|PePY+Linf{ ZeU,(P, f)|P€P})

= Zr/abfd@x = k/abfdwx. (19)

/a ) = / . (20)

By (4) and (20), we get that (11) with Re k = 0 holds in Subcase 2.
Finally, (12) can be proved by using the following properties of real-valued
functions:

Similarly, we have

sup f1(D) +sup f2(D) = sup ((f1 + f2)(D))
and

inf ((f1 + f2)(D)) > inf fi1(D) + inf fo(D),
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where D is a subset of the real number field R and f; : D — R is a real-valued
function with the range f;(D) for i =1, 2.
O

Next, we give other algebraic properties of p-integrals.
Proposition 7. Let [a, b], be a monotone closed p-interval.
(i) If f is p-integrable on both [a, c|, and [c, b], with c € [a, b],, then f is
@-integrable on [a, b], and /b fdox = /C fdyx + /b fdyx.

9‘?
(1t) If f and g are p-integrable on both [a, bl, and f(x) > g(z) for all x €
b 0 b
la, b],, then/ fdyx §/ gd,.
a a

PROOF. The proof of this proposition is similar to the proof of the correspond-
ing properties of Riemann integrals.
O

Finally, we prove that ¢-continuous functions are -integrable.

Proposition 8. If f : [a, b], — R®3) is @-continuous on a monotone closed
p-interval [a, by, then f is @-integrable on [a, b],.

PROOF. We prove this proposition by cases:

Case 1. ¢ is non-decreasing and Ze(b — a) > 0;
Case 2. ¢ is non-decreasing and Ze(b — a) = 0;
Case 3. ¢ is non-increasing and Ze(b — ;
(b—

Case 4. ¢ is non-increasing and Ze(b

a) < 0;
a) = 0.

The proofs are similar in the four cases. We prove Proposition 8 in Case 1
to explain the way of doing the proof.

In Case 1, Ze(b — a) is a positive real number. Since f is y-continuous
on [a, b],, the real-valued function fg of the single variable Re x is uniformly
continuous on the closed interval [Rea, Reb], where & € {Re, Ze}. Hence,
for any positive real number 7 > 0, there exists a positive real number § > 0
such that
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z,y € [a, b], and |Rex — Rey| < 0

|fRe(®) — fRe(Y)] < %

(21)
2) nZe(b—a)
|fZe( ) fZe(y)| < (Re (b—a))2

Let P = {zo, 1, ... x, } be a partition of [a, b], with ||P|| < d, where
[|P|| := max{ Rexp — Rexp_1|n>h>1}.

By the properties of continuous functions, both fgre(z) and fz.(z) assume

their maximum and minimum on each subinterval [Rexj_1, Rexp]. Thus,
there exist s‘h", t‘}!' € [xh—1, ), such that

s%p fa= f.',(s;?) and i%f fa= f,,(t‘,!’) for & € {Re, Ze}.
Since § > [|P|| > |Re s® — Ret®|, we get from (21) that
Uo(P, f) = Ly (P f)
= }; (s%p fRe + £s1;p fZe) Azp =Y (i%f fre + tint fze>Axh

h=1
=37 (Fre(sF) + £ 2e(s7%) ) A = 37 (Fretfi€) + F7e () ) A
h=1 h=1
=37 (Fre(sF) = Fretfi)) A + €3 (Fre(s7) = Fre(tE)) Aay
h=1 h=1
= 3| FrelsF) = fre@Re) | An + €3 | F2e(5) = fre(t) | A
h=1 h=1

= ([ reoF) = )| + €] (57 — fultf)]) A
h=1

1 o n nZe(b—a) .
<hz::1 (Re(b_a) Jré(Re(b—a))Q) Ao

7 nZe(b—a) )= 2Ze(b—a)
(Re(ba)”me(b_a))?)(b =+ (g oy ) 1
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which proves that f is ¢-integrable by Proposition 5 (i).

5 Fundamental Theorem of Calculus?

Our way of rewriting the First Fundamental Theorem of Calculus is given in
the following proposition.

Proposition 9. Let f : [a, b], — R3) be p-integrable on a monotone closed
p-interval [a, bl,, and let F : [a, b], — R?) be defined by

F(zx):= /m f(t)ydyt  for z € [a, b,.

If ¢ : [Rea, Reb] — R is Lipschitz continuous on the interval [Rea, Rel],
and if f is p-continuous at ¢ € [a, b],, then F is p-differentiable at ¢ and

Fg(c) = f(e).

PROOF. We prove this proposition for the case where ¢ is nondecreasing. The
proof of this proposition for the case where ¢ is nonincreasing can be obtained
in a similar way.

Since ¢ : [Re a, Reb] — R is Lipschitz continuous on the interval [Re a, Reb],
there exists a positive real number M such that

M|Rex—Rey| > |p(Rex)—¢(Rey)| = |Zex—Zey| for z,y € [a, bl,. (22)
If Rex > Rec, by Proposition 6 and Proposition 7 (i), we have

F(x) = F(c)

r—c xic (/j f(t)dwt—/:f(t)dg,t) — f(e)

fle) =
_ ! /If(t)dsat—i/mf(c)dgat: 1 /I(f(t)ff(c))dwt,

Tr—cC r—cC

which implies

1

Tr—cC

Fz) - F(e)

Tr —cC

/ () - £Q)dut (23)

Z ’

— (o)

1

1 1

By the assumption that f is ¢-continuous at ¢, for any 1 > 0 there exists
0 > 0 such that

tela, b, and |Ret— Rec|<d=|f(t)— f(c)1 <n. (24)
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It follows from (24) and Proposition 6 that
tela, bl, and |Ret— Rec| <3¢
= *ﬁ’*nﬂéf(t)*f(f)én+n€ ,.
— [ 2 [0 1@)det 2 [ o=t
— -9 = [ (70~ f0)dst = (o) - o).
which implies

nRe(x —c¢) >

Re </CI (f@t) - f(c))dwt)‘ (25)

" Ze ( / S0 - f(c))dﬂ)‘ (26)

It follows from (22), (23), (25) and (26) that if = € [a, b], and 0 < Rex —
Rec < §, then

nRe(x —c¢)+nZe(x—c) >

x € [a,bl, and 0 < Rex — Rec < 0

= |Ret — Rec| < ¢ for t € [c, z],

— n(243M + M?) = 2n + 3nM + nM?
2

e e
o= (=)

_ 1 Ze(x —c)
— <Re(:v—c) + (Re (a:—c))2> (277Re (x—c)+nZe (:c—c)>

= ! Ze(xfc) e(r —c e(r—c
B < Re (z —c) (Re(a:—c))2 ) (27}3 ( )+ nZe( ))
> || | w0 - ey 2| TR )
which implies
lm L@ =FO) f(c). (27)

Rexz5Rect r—c
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Similarly, we have

li = . 2
Re zé)HI;e c— Tr—C f(C) ( 8)
By (27) and (28), we get F,(c) = lim Flz) — Fle) = f(c).
RezBRec r—c 0

Our way of rewriting the Second Fundamental Theorem of Calculus is given
in the following proposition.

Proposition 10. Suppose that f : [a, b, — R®P s p-differentiable on a
monotone closed p-interval [a, bl,, and f,, is p-integrable on [a, b],. Then

b
/ £ (@) = £(b) — f(a)

if one of the following is true:
(i) ¢ :[Rea, Reb] — R is constant;

(i) Both ¢ and fgre are continuously differentiable on [Rea, Red].

PROOF. The proof of this proposition consists of three parts:
Part 1: Prove that Proposition 10 holds if ¢ : [Re a, Reb] — R is constant;

Part 2: Prove that Proposition 10 holds if both ¢ and fg. are continuously
differentiable on [Rea, Reb] and ¢ is non-increasing;

Part 3: Prove that Proposition 10 holds if both ¢ and fgr. are continuously
differentiable on [Re a, Reb] and ¢ is non-decreasing.

The proofs in these three parts are similar. Here, we use Part 3 to give the
way of doing the proofs. In the following, we assume that both ¢ and fg. are
continuously differentiable on [Re a, Reb] and ¢ is non-decreasing,.

Since ¢’ is continuous on the closed interval [Rea, Reb], there exists a
positive real number M such that

M > |¢'(Rex)| for all z € [a, b],.
Let n > 0 be any fixed positive real number. By Proposition 3 (i), both

fRe
d(Re x)

is continuous

fre and fz. are differentiable on [Rea, Reb]. Since
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dfRe
on [Rea, Reb], d(}élza?)

exists § > 0 such that

is uniformly continuous on [Re a, Reb]. Hence, there

s, t € [a, b, and |[Res — Ret| <6

dee dee
d(Re x) d(Re x)

n

- <M(Reb—Rea)'

(29)

T=s =t

Let @ be any partition of [a, b],, and let P = {xg, x1, ... , } be a re-
finement of the partition @ such that ||P|| < §. After using Proposition 3 and
applying the mean value theorem to each subinterval [Re zj,—1, Rex,] twice,
we obtain points ts, s, € [@p—1, Zn], such that

fre(xn) = fre(zn-1) = Re ((f,(tn)) Re (xh — zp-1) (30)

and

fZe(xh) - fZe(mhfl)
= Re ((f;(th))Ze (zh —xp_1) + Ze (f;(sh))Re (zh —xp_1) +

df Re dfRe
+ < d(Re x)

d(Rex)
where n > h > 1. Tt follows from (30) and (31) that

> ¢ (Resp)Re (xp, — zp_1), (31)

r=sp =ty

flan) = f(zn-1) = [fre(wn) = fre(wn—1)] + [ fze(wn) — fze(zn-1)]
= {Re ((f(tn) Re (o — zpo1) +

+0[Re ((f1(tn)) Ze (xn — 1) + Ze (f1(sn)) Re (xn — x5 1)) } ¥

df e dfre ,
+/ (d(RIZx) w—sp, N d(RIZm) $_th> ¢ (Resp)Re (xn, — Th-1)
= [Re ((f,(tn)) +(Ze (f.(sn))] [Re (zn — 2h-1) + €Ze (zh — Th—1)] +
/e dfre ,
+4 (d(RIZx) o—s, o d(RIZx) m—th> ¢ (Re sp)Re (xp, — Tp—1)
= [Re ((fL(tn)) + £Ze (fL(sn))] (xn — xn_1) +
+/ (d(d]é}zex) o - d(dgzex) I_th> ¢ (Resp)Re (zp, —xp_1). (32)
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By (30), we have

- 77
= —M — XTh_
K ’;M(Reb—Rea) Re (@n = 2n-1)

S dee dee ,
(e Afe ,
> B - .
}; ( d(Rex)|, —s d(Re ) m_th> ¢ (Resp)Re (v, — Th—1) (33)
Note that

(P, fL) éz Re ( fgp th)) +{0Ze (f;(sh))](xh—xh—l) éLw(Pa 1) (34)
h=1

and

h=1
Z ) +€Ze (f1(s1))] (xn — 1)+
i ] Jomam s

It follows from (5), (34) and (5) that

Ua(P, 1) + 1 > f(b) = f(a) > Ly(P, f,) —n¢ for any n >0,

which implies that

U (P, 1) > f(b) - f(a) > Lo(P, £1). (36)

Since P is a a refinement of the partition @, we get from (5) and Proposi-
tion 4 that

U (Q, ) > f(b) — f(a) > L(Q, f,) for any partition Q of [a, bl,. (37)

Using (37), for each & € {Re, Ze}, we get
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inf{ & Uy (T, f,)|T €P} > (f(b) — f(a)) > sup{ & Ly(T, f;) |T € P}

b 1 1 /b
/ fidpz > f(B) — fla) > / fidge. (38)

By the assumption that f/, is ¢-integrable on [a, b],, we get from (38) that

£b) - f(a):/abf;dwa:: /b fhdgr = / s

O

Since a closed ¢-interval is the union of monotone closed p-intervals, the
concept of p-integrals can be introduced on any closed @-interval, and the
results about -integrals in this paper are also true for the p-integrals on any
closed p-interval.
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