Zsigmond Tarcsay, Department of Applied Analysis, Eötvös L. University, Pázmány Péter sétány 1/c., Budapest H-1117, Hungary. email: tarcsay@cs.elte.hu

A FUNCTIONAL ANALYTIC PROOF OF THE LEBESGUE–DARST DECOMPOSITION THEOREM

Abstract

The aim of this paper is to give a functional analytic proof of the Lebesgue–Darst decomposition theorem [1]. We show that the decomposition of a nonnegative valued additive set function into absolutely continuous and singular parts with respect to another derives from the Riesz orthogonal decomposition theorem employed in a corresponding Hilbert space.

1 Introduction

Throughout this paper we fix a ring \mathscr{R} over a nonempty set T, that is \mathscr{R} is defined to be a nonempty family $\mathscr{R} \subseteq \mathscr{P}(T)$ which is closed under the operations of union, intersection, and difference. For a subset E of T we define the characteristic function χ_E by letting

$$\chi_{\scriptscriptstyle E}(t) = \left\{ \begin{array}{ll} 1, & \text{if } t \in E, \\ \\ 0, & \text{else.} \end{array} \right.$$

The function lattice of the \mathbb{R} -valued \mathscr{R} -simple functions (i.e., the \mathbb{R} -linear span of the characteristic functions of \mathscr{R} -measurable sets) is denoted by \mathscr{S} . If a

Mathematical Reviews subject classification: Primary: 47C05, 28A12; Secondary: 46N99 Key words: Lebesgue–Darst decomposition, orthogonal decomposition, orthogonal projection, Hilbert space methods, absolute continuity, singularity

Received by the editors March 10, 2013

Communicated by: Luisa Di Piazza

nonnegative valued additive set function ν on \mathscr{R} is given, then we set

$$(\varphi \,|\, \psi)_{\nu} := \int_{T} \varphi \cdot \psi \,\, d\nu, \qquad (\varphi, \psi \in \mathscr{S}),$$

which defines a semi inner product on \mathscr{S} . By factorizing with the kernel of $(\cdot | \cdot)_{\nu}$, as usual, \mathscr{S} becomes a (real) pre-Hilbert space. The corresponding equivalence class of a function $\varphi \in \mathscr{S}$ will be denoted also by the symbol φ . Let $\mathscr{L}^2(\nu)$ stand for completion of \mathscr{S} with respect to the corresponding Hilbert norm $\|\cdot\|_{\nu}$, so that $\mathscr{L}^2(\nu)$ becomes a (real) Hilbert space in which \mathscr{S} forms a dense linear manifold by definition. Note that $\mathscr{L}^2(\nu)$ in fact does not consist of proper $T \to \mathbb{R}$ functions. Nevertheless, each element of $\mathscr{L}^2(\nu)$ can be approximated with \mathscr{R} -simple functions, i.e., for each $h \in \mathscr{L}^2(\nu)$ there is a sequence $(\varphi_n)_{n \in \mathbb{N}}$ from \mathscr{S} such that

$$\|h - \varphi_n\|_{\nu}^2 := (h - \varphi_n \,|\, h - \varphi_n)_{\nu} \to 0.$$

We notice here that Darst [1] treated only the case when \mathscr{R} is an *algebra*, that is when $T \in \mathscr{R}$, or equivalently, when the function 1 belongs to \mathscr{S} . Nevertheless, if we assume ν to be *bounded*, that is

$$C(\nu) := \sup_{E \in \mathscr{R}} \nu(E) < \infty,$$

then the linear functional

$$\varphi\mapsto \int\limits_T\varphi\ d\nu,\qquad (\varphi\in\mathscr{S})$$

turns out to be continuous with respect to the norm $\|\cdot\|_{\nu}$ (by norm bound $\sqrt{C(\nu)}$), so that the Riesz representation theorem yields a (unique) vector $\hat{\nu} \in \mathscr{L}^2(\nu)$ such that

$$(\varphi \,|\, \widehat{\nu})_{\nu} = \int_{T} \varphi \,\, d\nu, \qquad (\varphi \in \mathscr{S}).$$

Of course, if \mathscr{S} is an algebra, then $\hat{\nu} = 1$. But in the general case $\hat{\nu}$ must not belong to \mathscr{S} .

Henceforth, we fix another bounded nonnegative additive set function μ on \mathscr{R} , and we define the objects $(\cdot | \cdot)_{\mu}$ and $\mathscr{L}^{2}(\mu)$ just as above. We say that ν is absolutely continuous with respect to μ if for any sequence $(E_{n})_{n \in \mathbb{N}}$ from $\mathscr{R} \ \mu(E_{n}) \to 0$ implies $\nu(E_{n}) \to 0$. On the other hand, ν is said to be singular with respect to μ if for any nonnegative additive set function ϑ inequalities $\vartheta \leq \mu$ and $\vartheta \leq \nu$ imply $\vartheta = 0$, see [2].

Let us consider first the following linear submanifold of $\mathscr{L}^2(\mu) \times \mathscr{L}^2(\nu)$:

$$J := \{ (\varphi, \varphi) \mid \varphi \in \mathscr{S} \}, \tag{1}$$

that is the identical "mapping" from $\mathscr{S} \subseteq \mathscr{L}^2(\mu)$ into $\mathscr{L}^2(\nu)$. Note that the μ - and ν -equivalence classes of a function $\varphi \in \mathscr{S}$ can completely differ from each other, therefore, one concludes that J is only a so called "multivalued operator", i.e., a linear relation, unless ν is μ -absolutely continuous. In particular, the following linear manifold

$$\mathfrak{M} := \left\{ f \in \mathscr{L}^2(\nu) \mid (0, f) \in \overline{J} \right\},\$$

the so called *multivalued part* of \overline{J} , can be nontrivial (see e.g. [3]). On the other hand, one easily verifies that \mathfrak{M} is closed, and that

$$\mathfrak{M} = \left\{ f \in \mathscr{L}^2(\nu) \mid \exists (\varphi_n)_{n \in \mathbb{N}} \subset \mathscr{S} \text{ such that } \|\varphi_n\|_{\mu} \to 0, \|f - \varphi_n\|_{\nu} \to 0 \right\}.$$

Therefore we have the following orthogonal decomposition of the Hilbert space $\mathscr{L}^2(\nu)$ along $\mathfrak{M}: \mathscr{L}^2(\nu) = \mathfrak{M} \oplus \mathfrak{M}^{\perp}$, thanks to the classical Riesz orthogonal decomposition theorem. Let P stand for the orthogonal projection of $\mathscr{L}^2(\nu)$ onto \mathfrak{M} .

Our claim in the rest of the paper is to show that the following orthogonal decomposition

$$\widehat{\nu} = P\widehat{\nu} \oplus (I - P)\widehat{\nu}$$

of the functional $\hat{\nu}$ corresponds to the Lebesgue–Darst decomposition of the additive set function ν . More precisely, by letting

$$\nu_s(E) := (\chi_E | P\hat{\nu})_{\nu} \quad \text{and} \quad \nu_a(E) := (\chi_E | (I - P)\hat{\nu})_{\nu} \quad (2)$$

for $E \in \mathscr{R}$, we obtain that $\nu = \nu_s + \nu_a$, where both ν_s and ν_a are nonnegative valued additive set functions such that ν_s is μ -singular, and that ν_a is μ -absolutely continuous.

We also notice that other functional analytic approaches treating the Lebesgue-Darst decomposition can be found in [6] and [7]. The treatment in these papers is based on the Lebesgue-type decomposition of nonnegative hermitian forms, cf. [4]. The approach contained herein does not make use of this general decomposition theorem, moreover, the only tools we employ are (more or less) elementary Hilbert space arguments.

2 Some auxiliary results

In this section we state three technical lemmas that are needed in the proof of our main theorem.

Lemma 1. Let E be any set of \mathscr{R} , and let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence from \mathscr{S} such that $\varphi_n \to P\chi_E$ in $\mathscr{L}^2(\nu)$ and that $\|\varphi_n\|_{\mu} \to 0$. Then we also have

 $\chi_E \cdot \varphi_n \to P \chi_E \quad in \ \mathscr{L}^2(\nu).$

PROOF. First of all one concludes that $\|\chi_E \cdot \varphi_n - \chi_E \cdot \varphi_m\|_{\nu} \to 0$ and that $\|\chi_E \cdot \varphi_n\|_{\mu} \to 0$. Therefore the sequence $(\chi_E \cdot \varphi_n)_{n \in \mathbb{N}}$ converges in the Hilbert space $\mathscr{L}^2(\nu)$ such that the corresponding limit f belongs to \mathfrak{M} . In order to prove equality $P\chi_E = f$, fix a function $\psi \in \mathscr{S}$ and choose a sequence $(\psi_n)_{n \in \mathbb{N}}$ from \mathscr{S} such that $\psi_n \to P\psi$ and that $\|\psi_n\|_{\mu} \to 0$. We can conclude just as above that $\lim_{n \to \infty} \chi_E \cdot \psi_n \in \mathfrak{M}$. Therefore,

$$\begin{split} (P\chi_E \mid \psi)_\nu &= (\chi_E \mid P\psi)_\nu = \lim_{n \to \infty} (\chi_E \mid \psi_n)_\nu = \lim_{n \to \infty} (\chi_E \mid \chi_E \cdot \psi_n)_\nu \\ &= \lim_{n \to \infty} (P\chi_E \mid \chi_E \cdot \psi_n)_\nu = \lim_{n \to \infty} (\varphi_n \mid \chi_E \cdot \psi_n)_\nu \\ &= \lim_{n \to \infty} (\chi_E \cdot \varphi_n \mid \psi_n)_\nu = (f \mid P\psi)_\nu = (f \mid \psi)_\nu, \end{split}$$

that means that $P\chi_E - f$ is orthogonal to the dense manifold \mathscr{S} of $\mathscr{L}^2(\nu)$. Consequently, $P\chi_E = f$, as it is claimed.

Lemma 2. Let $E, F \in \mathscr{R}$. Then following three assertions hold:

- a) If $E \cap F = \emptyset$ then $P\chi_E \perp P\chi_F$, and likewise $(I P)\chi_E \perp (I P)\chi_F$ in $\mathscr{L}^2(\nu)$.
- b) $\nu_s(E) = \|P\chi_E\|_{\nu}^2$ and $\nu_a(E) = \|(I-P)\chi_E\|_{\nu}^2$.
- c) The functionals $P\chi_E$ and $(I-P)\chi_E$ are positive in the sense that

$$(\varphi \,|\, P\chi_{\scriptscriptstyle E})_{\nu} \ge 0 \qquad and \qquad (\varphi \,|\, (I-P)\chi_{\scriptscriptstyle E})_{\nu} \ge 0$$

for all $\varphi \in \mathscr{S}, \varphi \geq 0$.

PROOF. Statement a) is an easy consequence of Lemma 1. To prove b), let $E \in \mathscr{R}$ and choose a sequence $(\varphi_n)_{n \in \mathbb{N}}$ from \mathscr{S} such that $\varphi_n \to P\chi_E$ and that $\|\varphi_n\|_{\mu}^2 \to 0$. Then, due to Lemma 1 we conclude that

$$\nu_s(E) = (P\chi_E \mid \hat{\nu})_{\nu} = \lim_{n \to \infty} (\chi_E \cdot \varphi_n \mid \hat{\nu})_{\nu} = \lim_{n \to \infty} \int_T \chi_E \cdot \varphi_n \ d\nu$$
$$= \lim_{n \to \infty} (\varphi_n \mid \chi_E)_{\nu} = (P\chi_E \mid \chi_E)_{\nu} = \|P\chi_E\|_{\nu}^2.$$

The second identity of b) follows from the Parseval formula:

$$\nu_a(E) = \nu(E) - \nu_s(E) = \|\chi_E\|_{\nu}^2 - \|P\chi_E\|_{\nu}^2 = \|(I-P)\chi_E\|_{\nu}^2.$$

Finally, if $\varphi \in \mathscr{S}$ is nonnegative, then there is are two finite systems $(c_{\alpha})_{\alpha \in A}$ of nonnegative numbers, and $(E_{\alpha})_{\alpha \in A}$ of some sets from \mathscr{R} such that $\varphi = \sum_{\alpha \in A} c_{\alpha} \chi_{E_{\alpha}}$. Then, according to statement a),

$$(\varphi \,|\, P\chi_{_E})_\nu = \sum_{\alpha \in A} c_\alpha (\chi_{_{E\alpha}} \,|\, P\chi_{_E})_\nu = \sum_{\alpha \in A} c_\alpha (P\chi_{_{E\cap E_\alpha}} \,|\, P\chi_{_{E\cap E_\alpha}})_\nu \geq 0.$$

The second identity of c) is proved analogously.

The last result of this section states that each functional of $\mathscr{L}^2(\nu)$ which is positive in the sense of Lemma 2 can be approximated by nonnegative \mathscr{R} simple functions (with respect to the norm of $\mathscr{L}^2(\nu)$, of course):

Lemma 3. Assume that $f \in \mathscr{L}^2(\nu)$ is positive in the sense that $(\varphi \mid f)_{\nu} \geq 0$ for all $\varphi \in \mathscr{S}$ with $\varphi \geq 0$. Then there is a sequence $(\psi_n)_{n \in \mathbb{N}}$ of nonnegative \mathscr{R} -simple functions such that $\psi_n \to f$ in $\mathscr{L}^2(\nu)$.

PROOF. Let $(\varphi_n)_{n \in \mathbb{N}}$ be any sequence from \mathscr{S} that converges to f in $\mathscr{L}^2(\nu)$. For fixed integer n, let φ_n^+ (resp., φ_n^-) denote the positive (resp., the negative) part of φ_n . Clearly, that both φ_n^+ and φ_n^- are nonnegative \mathscr{R} -simple functions, and that the sequences $(\varphi_n^+)_{n \in \mathbb{N}}$, $(\varphi_n^-)_{n \in \mathbb{N}}$ also converge in $\mathscr{L}^2(\nu)$. Let f^+ and f^- stand for the corresponding limit vectors. Since $\varphi_n = \varphi_n^+ - \varphi_n^-$ for all integer n, it suffices to show that $f^- = 0$. Indeed, since $\varphi_n^- \ge 0$, we have that $(\varphi_n^- \mid f)_{\nu} \ge 0$. Consequently,

$$0 \le (f^- \mid f)_{\nu} = \lim_{n \to \infty} (\varphi_n^- \mid \varphi_n)_{\nu} = \lim_{n \to \infty} (\varphi_n^- \mid -\varphi_n^-)_{\nu} = -\|f^-\|_{\nu}^2 \le 0,$$

which means just that $f^- = 0$, i.e., $\lim_{n \to \infty} \varphi_n^+ = f$.

3 The Lebesgue–Darst decomposition theorem

We are now in position to prove the main result of the paper, the Lebesgue– Darst decomposition theorem.

Theorem 4. Assume that μ and ν are nonnegative valued bounded additive set functions on the ring \mathscr{R} . Then

$$\nu = \nu_s + \nu_a$$

is according to the Lebesgue-Darst decomposition, that is ν_s and ν are both nonnegative valued additive set functions such that ν_s is μ -singular, and ν_a is μ -absolutely continuous.

PROOF. The nonnegativity of the set functions in question is clear from Lemma 2 b). We prove first the absolute continuity of ν_a : consider a sequence $(E_n)_{n \in \mathbb{N}}$ from \mathscr{R} such that $\mu(E_n) \to 0$. We need to show that $\nu_a(E_n) \to 0$ as well. According to the boundedness of ν , the sequence $(\nu_a(E_n))_{n \in \mathbb{N}}$ is also bounded. Assume indirectly that there is a subsequence $(E_{n_k})_{k \in \mathbb{N}}$ such that

$$\nu_a(E_{n_k}) \to \alpha \neq 0.$$

According to the boundedness of $(\chi_{E_n})_{n\in\mathbb{N}}$ in $\mathscr{L}^2(\nu)$, we may also assume that $(\chi_{E_{n_k}})_{k\in\mathbb{N}}$ converges weakly in $\mathscr{L}^2(\nu)$, namely to a vector $\chi \in \mathscr{L}^2(\nu)$. Hence the pair $(0,\chi)$ belongs to the weak closure of the linear relation J defined in (1). Since weak and norm closures of a linear manifold in a normed space are the same, we obtain that $(0,\chi) \in \overline{J}$ as well, and therefore that $\chi \in \mathfrak{M}$. Consequently,

$$\alpha = \lim_{k \to \infty} \nu_a(E_{n_k}) = \lim_{k \to \infty} (\chi_{E_{n_k}} \mid (I - P)\widehat{\nu})_{\nu} = (\chi \mid (I - P)\widehat{\nu})_{\nu} = 0,$$

which is a contradiction.

In order to prove the μ -singularity of ν_s fix a nonnegative valued additive set function ϑ on \mathscr{R} such that $\vartheta \leq \mu$ and $\vartheta \leq \nu$. We need to show that $\vartheta = 0$. First of all observe that

$$\varphi \mapsto \int_{T} \varphi \, d\vartheta, \qquad (\varphi \in \mathscr{S}), \tag{3}$$

defines a continuous linear functional on the dense linear manifold \mathscr{S} of $\mathscr{L}^2(\nu)$. Therefore, thanks to the Riesz representation theorem, there is a (unique) vector $\hat{\vartheta}$ in $\mathscr{L}^2(\nu)$ such that

$$(\varphi \,|\, \widehat{\vartheta})_{\nu} = \int_{T} \varphi \,\, d\vartheta, \qquad (\varphi \in \mathscr{S})$$

We show first that $\widehat{\vartheta} \in \mathfrak{M}$. Let $E \in \mathscr{R}$, and choose a sequence $(\psi_n)_{n \in \mathbb{N}}$ of nonnegative \mathscr{R} -simple functions tending to $(I-P)\chi_E$ in $\mathscr{L}^2(\nu)$. The existence of such a sequence is due to Lemma 2 c) and Lemma 3. Since $0 \leq \vartheta \leq \nu_s$ by assumption, we obtain that

$$0 \le (\chi_E \mid (I-P)\widehat{\vartheta})_{\nu} = ((I-P)\chi_E \mid \widehat{\vartheta})_{\nu} = \lim_{n \to \infty} (\psi_n \mid \widehat{\vartheta})_{\nu}$$
$$\le \lim_{n \to \infty} (\psi_n \mid P\widehat{\nu})_{\nu} = ((I-P)\chi_E \mid P\widehat{\nu})_{\nu} = 0,$$

which means that $(I-P)\widehat{\vartheta} \in \{\chi_E \mid E \in \mathscr{R}\}^{\perp} = \{0\}$, i.e., $\widehat{\vartheta} \in \mathfrak{M}$. On the other hand, since $\vartheta \leq \mu$, the functional in (3) is continuous also with respect to the norm $\|\cdot\|_{\mu}$. Therefore, according again to the Riesz representation theorem, there is a (unique) vector $\Theta \in \mathscr{L}^2(\mu)$ such that

$$(\varphi \mid \Theta)_{\mu} = \int_{T} \varphi \, d\vartheta = (\varphi \mid \widehat{\vartheta})_{\nu}, \qquad (\varphi \in \mathscr{S}).$$

Finally, by considering a sequence $(\varphi_n)_{n\in\mathbb{N}}$ from \mathscr{S} such that $\varphi_n \to \widehat{\vartheta}$ and that $\|\varphi_n\|_{\mu} \to 0$, it follows that

$$\|\widehat{\vartheta}\|_{\nu}^{2} = \lim_{n \to \infty} (\varphi_{n} \,|\, \widehat{\vartheta})_{\nu} = \lim_{n \to \infty} (\varphi_{n} \,|\, \Theta)_{\mu} = 0,$$

which completes the proof.

References

- R. B. Darst, A decomposition of finitely additive set functions, J. for Angew. Math., 210 (1962), 31–37.
- [2] N. Dunford and J. Schwarz, *Linear operators*, Interscience, New York, 1958.
- [3] S. Hassi, Z. Sebestyén, H. S. V. de Snoo, and F. H. Szafraniec, A canonical decomposition for linear operators and linear relations, Acta Math. Hungar., 115 (2007), 281–307.
- [4] S. Hassi, Z. Sebestyén, and H. de Snoo, Lebesgue type decompositions for nonnegative forms, J. Funct. Anal., 257 (2009), 3858–3894.
- [5] F. Riesz and B. Sz.-Nagy, *Leçons d'analyse fonctionnelle*, Académie des Sciences de Hongrie, Akadémiai Kiadó, Budapest, 1952.
- [6] Z. Sebestyén, Zs. Tarcsay and T. Titkos, *Lebesgue decomposition theo*rems, Acta Sci. Math. (Szeged), **79** (2013), 219–233.
- T. Titkos, Lebesgue decomposition of contents via nonnegative forms, Acta Math. Hungar., 140 (2013), 151–161.

ZS. TARCSAY