
INROADS Real Analysis Exchange
Vol. 39(1), 2013/2014, pp. 219–226

Zsigmond Tarcsay, Department of Applied Analysis, Eötvös L. University,
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A FUNCTIONAL ANALYTIC PROOF OF
THE LEBESGUE–DARST

DECOMPOSITION THEOREM

Abstract

The aim of this paper is to give a functional analytic proof of the
Lebesgue–Darst decomposition theorem [1]. We show that the decom-
position of a nonnegative valued additive set function into absolutely
continuous and singular parts with respect to another derives from the
Riesz orthogonal decomposition theorem employed in a corresponding
Hilbert space.

1 Introduction

Throughout this paper we fix a ring R over a nonempty set T , that is
R is defined to be a nonempty family R ⊆ P(T ) which is closed under the
operations of union, intersection, and difference. For a subset E of T we define
the characteristic function χ

E
by letting

χ
E

(t) =

 1, if t ∈ E,

0, else.

The function lattice of the R-valued R-simple functions (i.e., the R-linear span
of the characteristic functions of R-measurable sets) is denoted by S . If a

Mathematical Reviews subject classification: Primary: 47C05, 28A12; Secondary: 46N99
Key words: Lebesgue–Darst decomposition, orthogonal decomposition, orthogonal pro-

jection, Hilbert space methods, absolute continuity, singularity
Received by the editors March 10, 2013
Communicated by: Luisa Di Piazza

219



220 Zs. Tarcsay

nonnegative valued additive set function ν on R is given, then we set

(ϕ |ψ)ν :=

∫
T

ϕ · ψ dν, (ϕ,ψ ∈ S ),

which defines a semi inner product on S . By factorizing with the kernel of
(· | ·)ν , as usual, S becomes a (real) pre-Hilbert space. The corresponding
equivalence class of a function ϕ ∈ S will be denoted also by the symbol
ϕ. Let L 2(ν) stand for completion of S with respect to the corresponding
Hilbert norm ‖ · ‖ν , so that L 2(ν) becomes a (real) Hilbert space in which S
forms a dense linear manifold by definition. Note that L 2(ν) in fact does not
consist of proper T → R functions. Nevertheless, each element of L 2(ν) can
be approximated with R-simple functions, i.e., for each h ∈ L 2(ν) there is a
sequence (ϕn)n∈N from S such that

‖h− ϕn‖2ν := (h− ϕn |h− ϕn)ν → 0.

We notice here that Darst [1] treated only the case when R is an algebra,
that is when T ∈ R, or equivalently, when the function 1 belongs to S .
Nevertheless, if we assume ν to be bounded, that is

C(ν) := sup
E∈R

ν(E) <∞,

then the linear functional

ϕ 7→
∫
T

ϕ dν, (ϕ ∈ S )

turns out to be continuous with respect to the norm ‖ · ‖ν (by norm bound√
C(ν)), so that the Riesz representation theorem yields a (unique) vector

ν̂ ∈ L 2(ν) such that

(ϕ | ν̂)ν =

∫
T

ϕ dν, (ϕ ∈ S ).

Of course, if S is an algebra, then ν̂ = 1. But in the general case ν̂ must not
belong to S .

Henceforth, we fix another bounded nonnegative additive set function µ
on R, and we define the objects (· | ·)µ and L 2(µ) just as above. We say that
ν is absolutely continuous with respect to µ if for any sequence (En)n∈N from
R µ(En)→ 0 implies ν(En)→ 0. On the other hand, ν is said to be singular
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with respect to µ if for any nonnegative additive set function ϑ inequalities
ϑ ≤ µ and ϑ ≤ ν imply ϑ = 0, see [2].

Let us consider first the following linear submanifold of L 2(µ)×L 2(ν):

J := {(ϕ,ϕ) | ϕ ∈ S }, (1)

that is the identical ”mapping” from S ⊆ L 2(µ) into L 2(ν). Note that
the µ- and ν-equivalence classes of a function ϕ ∈ S can completely differ
from each other, therefore, one concludes that J is only a so called ”multival-
ued operator”, i.e., a linear relation, unless ν is µ-absolutely continuous. In
particular, the following linear manifold

M :=
{
f ∈ L 2(ν)

∣∣ (0, f) ∈ J
}
,

the so called multivalued part of J , can be nontrivial (see e.g. [3]). On the
other hand, one easily verifies that M is closed, and that

M =
{
f ∈ L 2(ν)

∣∣ ∃(ϕn)n∈N ⊂ S such that ‖ϕn‖µ → 0, ‖f − ϕn‖ν → 0
}
.

Therefore we have the following orthogonal decomposition of the Hilbert space
L 2(ν) along M: L 2(ν) = M⊕M⊥, thanks to the classical Riesz orthogonal
decomposition theorem. Let P stand for the orthogonal projection of L 2(ν)
onto M.

Our claim in the rest of the paper is to show that the following orthogonal
decomposition

ν̂ = P ν̂ ⊕ (I − P )ν̂

of the functional ν̂ corresponds to the Lebesgue–Darst decomposition of the
additive set function ν. More precisely, by letting

νs(E) := (χ
E
|P ν̂)ν and νa(E) := (χ

E
| (I − P )ν̂)ν (2)

for E ∈ R, we obtain that ν = νs + νa, where both νs and νa are nonnegative
valued additive set functions such that νs is µ-singular, and that νa is µ-
absolutely continuous.

We also notice that other functional analytic approaches treating the Le-
besgue-Darst decomposition can be found in [6] and [7]. The treatment in these
papers is based on the Lebesgue-type decomposition of nonnegative hermitian
forms, cf. [4]. The approach contained herein does not make use of this general
decomposition theorem, moreover, the only tools we employ are (more or less)
elementary Hilbert space arguments.
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2 Some auxiliary results

In this section we state three technical lemmas that are needed in the proof
of our main theorem.

Lemma 1. Let E be any set of R, and let (ϕn)n∈N be a sequence from S
such that ϕn → Pχ

E
in L 2(ν) and that ‖ϕn‖µ → 0. Then we also have

χ
E
· ϕn → Pχ

E
in L 2(ν).

Proof. First of all one concludes that ‖χ
E
·ϕn − χ

E
·ϕm‖ν → 0 and that

‖χ
E
·ϕn‖µ → 0. Therefore the sequence (χ

E
·ϕn)n∈N converges in the Hilbert

space L 2(ν) such that the corresponding limit f belongs to M. In order to
prove equality Pχ

E
= f , fix a function ψ ∈ S and choose a sequence (ψn)n∈N

from S such that ψn → Pψ and that ‖ψn‖µ → 0. We can conclude just as
above that lim

n→∞
χ
E
· ψn ∈M. Therefore,

(Pχ
E
|ψ)ν = (χ

E
|Pψ)ν = lim

n→∞
(χ

E
|ψn)ν = lim

n→∞
(χ

E
|χ

E
· ψn)ν

= lim
n→∞

(Pχ
E
|χ

E
· ψn)ν = lim

n→∞
(ϕn |χE · ψn)ν

= lim
n→∞

(χ
E
· ϕn |ψn)ν = (f |Pψ)ν = (f |ψ)ν ,

that means that Pχ
E
− f is orthogonal to the dense manifold S of L 2(ν).

Consequently, Pχ
E

= f , as it is claimed.

Lemma 2. Let E,F ∈ R. Then following three assertions hold:

a) If E ∩ F = ∅ then Pχ
E
⊥ Pχ

F
, and likewise (I − P )χ

E
⊥ (I − P )χ

F
in

L 2(ν).

b) νs(E) = ‖Pχ
E
‖2ν and νa(E) = ‖(I − P )χ

E
‖2ν .

c) The functionals Pχ
E

and (I − P )χ
E

are positive in the sense that

(ϕ |Pχ
E

)ν ≥ 0 and (ϕ | (I − P )χ
E

)ν ≥ 0

for all ϕ ∈ S , ϕ ≥ 0.

Proof. Statement a) is an easy consequence of Lemma 1. To prove b), let
E ∈ R and choose a sequence (ϕn)n∈N from S such that ϕn → Pχ

E
and that

‖ϕn‖2µ → 0. Then, due to Lemma 1 we conclude that

νs(E) = (Pχ
E
| ν̂)ν = lim

n→∞
(χ

E
· ϕn | ν̂)ν = lim

n→∞

∫
T

χ
E
· ϕn dν

= lim
n→∞

(ϕn |χE )ν = (Pχ
E
|χ

E
)ν = ‖Pχ

E
‖2ν .
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The second identity of b) follows from the Parseval formula:

νa(E) = ν(E)− νs(E) = ‖χ
E
‖2ν − ‖PχE‖2ν = ‖(I − P )χ

E
‖2ν .

Finally, if ϕ ∈ S is nonnegative, then there is are two finite systems (cα)α∈A
of nonnegative numbers, and (Eα)α∈A of some sets from R such that ϕ =∑
α∈A

cαχEα . Then, according to statement a),

(ϕ |Pχ
E

)ν =
∑
α∈A

cα(χ
Eα
|Pχ

E
)ν =

∑
α∈A

cα(Pχ
E∩Eα

|Pχ
E∩Eα

)ν ≥ 0.

The second identity of c) is proved analogously.

The last result of this section states that each functional of L 2(ν) which
is positive in the sense of Lemma 2 can be approximated by nonnegative R-
simple functions (with respect to the norm of L 2(ν), of course):

Lemma 3. Assume that f ∈ L 2(ν) is positive in the sense that (ϕ | f)ν ≥ 0
for all ϕ ∈ S with ϕ ≥ 0. Then there is a sequence (ψn)n∈N of nonnegative
R-simple functions such that ψn → f in L 2(ν).

Proof. Let (ϕn)n∈N be any sequence from S that converges to f in L 2(ν).
For fixed integer n, let ϕ+

n (resp., ϕ−n ) denote the positive (resp., the negative)
part of ϕn. Clearly, that both ϕ+

n and ϕ−n are nonnegative R-simple functions,
and that the sequences (ϕ+

n )n∈N, (ϕ−n )n∈N also converge in L 2(ν). Let f+

and f− stand for the corresponding limit vectors. Since ϕn = ϕ+
n −ϕ−n for all

integer n, it suffices to show that f− = 0. Indeed, since ϕ−n ≥ 0, we have that
(ϕ−n | f)ν ≥ 0. Consequently,

0 ≤ (f− | f)ν = lim
n→∞

(ϕ−n |ϕn)ν = lim
n→∞

(ϕ−n | − ϕ−n )ν = −‖f−‖2ν ≤ 0,

which means just that f− = 0, i.e., lim
n→∞

ϕ+
n = f .

3 The Lebesgue–Darst decomposition theorem

We are now in position to prove the main result of the paper, the Lebesgue–
Darst decomposition theorem.

Theorem 4. Assume that µ and ν are nonnegative valued bounded additive
set functions on the ring R. Then

ν = νs + νa
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is according to the Lebesgue-Darst decomposition, that is νs and ν are both
nonnegative valued additive set functions such that νs is µ-singular, and νa is
µ-absolutely continuous.

Proof. The nonnegativity of the set functions in question is clear from Lemma
2 b). We prove first the absolute continuity of νa: consider a sequence (En)n∈N
from R such that µ(En)→ 0. We need to show that νa(En)→ 0 as well. Ac-
cording to the boundedness of ν, the sequence (νa(En))n∈N is also bounded.
Assume indirectly that there is a subsequence (Enk)k∈N such that

νa(Enk)→ α 6= 0.

According to the boundedness of (χ
En

)n∈N in L 2(ν), we may also assume that
(χ

Enk
)k∈N converges weakly in L 2(ν), namely to a vector χ ∈ L 2(ν). Hence

the pair (0, χ) belongs to the weak closure of the linear relation J defined in
(1). Since weak and norm closures of a linear manifold in a normed space
are the same, we obtain that (0, χ) ∈ J as well, and therefore that χ ∈ M.
Consequently,

α = lim
k→∞

νa(Enk) = lim
k→∞

(χ
Enk
| (I − P )ν̂)ν = (χ | (I − P )ν̂)ν = 0,

which is a contradiction.
In order to prove the µ-singularity of νs fix a nonnegative valued additive

set function ϑ on R such that ϑ ≤ µ and ϑ ≤ ν. We need to show that ϑ = 0.
First of all observe that

ϕ 7→
∫
T

ϕ dϑ, (ϕ ∈ S ), (3)

defines a continuous linear functional on the dense linear manifold S of L 2(ν).
Therefore, thanks to the Riesz representation theorem, there is a (unique)

vector ϑ̂ in L 2(ν) such that

(ϕ | ϑ̂)ν =

∫
T

ϕ dϑ, (ϕ ∈ S ).

We show first that ϑ̂ ∈ M. Let E ∈ R, and choose a sequence (ψn)n∈N of
nonnegative R-simple functions tending to (I−P )χ

E
in L 2(ν). The existence

of such a sequence is due to Lemma 2 c) and Lemma 3. Since 0 ≤ ϑ ≤ νs by
assumption, we obtain that

0 ≤ (χ
E
| (I − P )ϑ̂)ν = ((I − P )χ

E
| ϑ̂)ν = lim

n→∞
(ψn | ϑ̂)ν

≤ lim
n→∞

(ψn |P ν̂)ν = ((I − P )χ
E
|P ν̂)ν = 0,
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which means that (I−P )ϑ̂ ∈ {χ
E
| E ∈ R}⊥ = {0}, i.e., ϑ̂ ∈M. On the other

hand, since ϑ ≤ µ, the functional in (3) is continuous also with respect to the
norm ‖ · ‖µ. Therefore, according again to the Riesz representation theorem,
there is a (unique) vector Θ ∈ L 2(µ) such that

(ϕ |Θ)µ =

∫
T

ϕ dϑ = (ϕ | ϑ̂)ν , (ϕ ∈ S ).

Finally, by considering a sequence (ϕn)n∈N from S such that ϕn → ϑ̂ and
that ‖ϕn‖µ → 0, it follows that

‖ϑ̂‖2ν = lim
n→∞

(ϕn | ϑ̂)ν = lim
n→∞

(ϕn |Θ)µ = 0,

which completes the proof.
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