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MYCIELSKI-REGULAR MEASURES

Abstract

Let µ be a Radon probability measure on the Euclidean space Rd

for d ≥ 1, and f : Rd → R a measurable function. Given a sequence in
(Rd)N, for any x ∈ Rd define fn(x) = f(xk), where xk is the first among
x0, . . . , xn−1 that minimizes the distance from x to xk, 0 ≤ k ≤ n − 1.
The measures for which the sequence (fn)∞n=1 converges in measure to
f for almost every sequence (x0, x1, . . .) are called Mycielski-regular.
We show that the self-similar measure generated by a finite family of
contracting similitudes and which up to a constant is the Hausdorff
measure in its dimension on an invariant set C is Mycielski-regular.

1 Introduction

Consider the measure space (X,Σ, ν), where X = Rd, for d ≥ 1, and Σ is
the domain of ν. We say that ν is a topological measure if Σ contains the
open sets. Note that, in this case, Σ contains also all the closed sets and all
Borel sets. We say that ν is locally finite if every bounded set has finite outer
measure. If ν is a topological measure, ν is inner regular with respect to the
compact sets means

ν(E) = sup{ν(K) : K ⊆ E,K is compact} (1)

for all E ∈ Σ. Finally, ν is called a Radon measure if it is a complete, locally
finite topological measure that is inner regular with respect to the compact
sets (a complete measure includes all the subsets of sets of measure 0). Of
course, when we say that ν is a probability measure, we simply mean that
ν(X) = 1 [3].
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In his paper, Learning Theorems [4], Jan Mycielski poses the following
scenario: Given a metric space M and a sequence of points (xk)∞k=0 in M and
an unknown real-valued function f : M → R, for which we have learned its
values for x0, x1, . . . , xn−1 (but perhaps not for xn), we predict the value of
f(xn) by the following algorithm. Let fn : M → R be the function x 7→ f(xk),
where xk is the first term of the first n elements of the sequence that minimizes
the distance from x to xi, for 0 ≤ i ≤ n − 1. To make the dependence of fn
on the sequence ~x = (xk)∞k=0 clear, we denote fn(x) = fn(x; ~x�n−1). In his
paper, Mycielski proves the following theorem:

Theorem 1.1. Let ν be a Radon probability measure on the Euclidean space
Rd, and P = νN the product measure in (Rd)N. If f : Rd → R is ν-measurable,
then

lim
n→∞

P (|fn(xn; ~x�n−1)− f(xn)| < ε) = 1 (2)

for every ε > 0.

In other words, for every ε > 0, there exists N ∈ N and δ > 0 such that
for all n ≥ N ,

νN(En,ε) = P (En,ε) ≥ 1− δ, (3)

where ~x ∈ En,ε if and only if |fn(xn, ~x�n−1)− f(xn)| < ε. So given ε > 0, the
probability that you will choose a sequence in (Rd)N such that fn differs from
f by less than ε at the nth term of that sequence goes to 1 as n→∞.

Mycielski then noted that it would be interesting to estimate the rate of
convergence in Theorem 1.1; and it seems that fn → f in ν measure for P-
almost every sequence (x0, x1, . . .). That is, it seems in the context of Theorem
1.1 that for all ε > 0

lim
n→∞

ν({x ∈ Rd : |fn(x; ~x�n−1)− f(x)| < ε}) = 1 (4)

for P -a.e. sequence in (Rd)N.
In other words, for P -a.e. ~x ∈ (Rd)N, ν(G(n, ~x)) → 1, where x ∈ G(n, ~x)

if and only if |fn(x; ~x�n−1)− f(x)| < ε. We think that both (2) and (4) hold
for Radon probability measures on Rd. Theorem 1.1 certainly shows that for
all Radon probability measures on Rd, (2) holds. We do not know if it can be
shown that (2) implies (4). If it could, then we would have (4) immediately
by virtue of Theorem 1.1. Instead, we have used some results in a note by
David H. Fremlin.

Fremlin has called measures that satisfy the condition that fn → f in ν-
measure for P -almost every sequence (x0, x1, . . .), Mycielski-regular. He has
proved that for the the unit cube with the Euclidean metric, Lebesgue measure
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is Mycielski-regular [2]. The purpose of this paper is to extend Fremlin’s result
to other measures on Rd with the Euclidean metric. In particular, we show
in Theorem 3.2 that the self-similar measure generated by a finite family of
contracting similitudes and which up to a constant is the Hausdorff measure in
its dimension on the invariant set C is Mycielski-regular. We begin by defining
the central idea behind our proof. That idea is what Fremlin calls moderated
Voronoi tessellations. He proves in [2] that a measure is Mycielski-regular if
it has moderated Voronoi tessellations. It is this implication which provides
the basic foundation for our method. In particular, we apply this result to
certain self-similar measures. Since the self-similar measures we study have
all their mass on an invariant set which is constructed via similitudes that
obey the open set condition, we then spend some time reminding the reader of
the theory in general of such self-similar measures and the open set condition.

Finally, we present our results in Theorem 3.2, in which we show that if
a self-similar measure µ concentrating its mass on the invariant set C which
is constructed via similitudes which obey the open set condition, then µ is
Mycielski-regular. We note here that our proof includes the case where the
contraction ratios of the similitudes vary. The proof for the case where the
contraction ratios are the same is almost identical, although somewhat cleaner
in the sense that at each level the images of the similitudes have the same size.
This, of course, is no longer true if you allow the contraction ratios to vary.

To begin, however, we provide the proper setting and definitions, and give
a couple of examples of measures - one which is not Mycielski-regular, and one
which is. The first example shows that this is a non-trivial question: there are
measures which do not converge in measure for these sequences of functions.

2 Foundations

We begin with notation. When referring to sets, the absolute value notation
will refer to the diameter of a set (otherwise, it carries its usual meaning). So,
if A is a subset of some metric space (X, ρ), then |A| = sup{ρ(x, y) : x, y ∈ A}.
When referring to the number of elements in a set - its cardinality - we will
simply write Card(A). The interior of a set A will be denoted by intA.

The following definitions are from David Fremlin [2]:

Definition 2.1. Let (X, ρ) be a metric space. Let ω = (xk)∞k=0 be an infinite
sequence in XN and let ω[n] = {x0, . . . , xn−1}. Suppose that z ∈ ω[n]. Define
the Voronoi tile V (ω�n, z) by

V (ω�n, z) = {x ∈ X : ρ(x, z) = ρ(x, ω[n]) and if i < j < n and (5)

z = xj 6= xi, then ρ(x, z) < ρ(x, xi)}.
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We call the collection of such V (ω �n, z) the Voronoi tessellation defined by
ω[n].

That is, x ∈ V (ω �n, z) either if the distance from x to z is smaller than
its distance to any other element of ω[n], or if x is equidistant from two such
points xi and xj , then x belongs to the V (ω�n, z) such that z is equal to the
first of the two elements xi and xj .

It is useful to note the fact that the Voronoi tessellation induces a partition
on the space X. (If a point is repeated in the first n entries of the sequence
ω, say ω(i) = ω(j) for i < j, then V (ω � n, ω(j)) = ∅.) It is also easily
seen that in a Banach space, the Voronoi tiles V (ω�n, z) are convex sets and
that ∅ 6= intV (ω �n, z) ⊆ V (ω �n, z) ⊆ intV (ω�n, z). The next definition is
another way to define the function fn above.

Definition 2.2. Let f : X → R, and ω[n] as above, and write xi = x(i). Let
k(ω[n], x) be the least i such that ρ(x, ω[n]) = ρ(x, x(i)), so that x ∈ V (ω �
n, x(k(ω[n], x))). Define F (ω�n, f)(x) = f(x(k(ω[n], x))).

Definition 2.3. Let (X,Σ, µ) be a measure space with µ a topological prob-
ability measure. Let λ be the product measure µN on Ω = XN. We say that
µ is Mycielski-regular provided for every measurable f : X → R, the sequence
(F (ω�n, f))

∞
n=1 converges in measure to f for λ-almost every ω.

Example. An easy example of a measure which is not Mycielski-regular is
given by Fremlin [2]. Assume that there exists a countably additive extension
µ of Lebesgue measure to all subsets of X = [0, 1]. Let A = [0, 1/2) and
B = [1/2, 1], and let µA and µB be conditional measure induced by µ on A
and B, respectively.

Let ρ be the zero-one metric on X; that is,

ρ(x, y) =

{
0, if x = y,
1, otherwise.

Given a sequence ω = (xi)
∞
i=0, then for any n, V (ω�n, x0) = X \ ω[n] ∪ {x0},

and has measure 1, while µ{z} = 0 for z ∈ ω[n]. Hence, for almost every
x ∈ X,

F (ω�n, f)(x) = f(x0).

In particular, if f = χA (where χA is the characteristic function on the set A),
then

F (ω�n, f)(x) =

{
1, if x0 ∈ A,
0, otherwise.

It follows that µ{x ∈ X : |F (ω �n, f)(x) − f(x)| ≥ ε} ≥ 1 > 1/2 for every
sequence and for every n, and so F (ω�n, f) never converges in measure to f ,
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and hence is not Mycielski-regular.

We are aware that it is not certain that such a measure exists; however,
in [2] Fremlin gives another example of a measure on a compact metric space
which is not Mycielski-regular. This example does not depend on the question-
able assumption we asked our readers to make in the one above. (The reason
we give it instead of the other is that the above example is more straightfor-
ward.)

Example. An example of a measure that is Mycielski-regular - though it
is rather uninteresting! - is one that concentrates all its mass on a single
point. For example, let (X,Σ, µ) be a measure space and let x0 ∈ X such
that µ{x0} = 1, and µ(X \ {x0}) = 0. If P = µN, then P -almost every
sequence is the constant sequence (x0)∞i=0. Hence, using Mycielski’s notation,
fn(x0) = f(x0) and so µ(x ∈ X : |fn(x) − f(x)| < ε) = µ{x0} = 1 for P -
almost every sequence in XN. Indeed, Fremlin has shown that any probability
measure such that supp(µ) is countable is Mycielski-regular [2].

2.1 The Condition for a Measure to be Mycielski-Regular

The proof that Fremlin gives for Lebesgue measure on the unit cube as well
as the proof we give for self-similar measures is based on the idea of moder-
ated Voronoi tessellations and the relation between them and Mycielski-regular
measures. Following Fremlin, we now define what moderated Voronoi tessel-
lations are, and then state the theorem which will provide the fundamental
tool we use to get our result. Theorem 2.5 is proved by Fremlin in [2].

Definition 2.4. Let X, ρ, µ,Ω, and λ be as defined above. We say that µ has
moderated Voronoi tessellations if for every ε > 0 there exists M ≥ 0 such
that

∞∑
n=1

λ{ω : µ
(⋃
{V

′
(ω�n, z) : z ∈ ω[n], µ(V

′
(ω�n, z)) ≥M/n}

)
≥ ε} <∞,

(6)
where each V

′
(ω�n, z) is the punctured Voronoi tile V (ω�n, z) \ {z}.

Note that if µ has moderated Voronoi tessellations for M then µ has mod-
erated Voronoi tessellations for all M

′ ≥M .

Theorem 2.5. Let (X, ρ) be a separable metric space, µ a topological prob-
ability measure on X which has moderated Voronoi tessellations. Then µ is
Mycielski-regular.
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2.2 Self-Similar Measures and the Open Set Condition

Here we give a quick review of self-similar sets and measures. As stated, the
goal is to extend Fremlin’s results to other measures besides Lebesgue measure.
Our setting is as follows; we begin with some definitions.

A similitude is a mapping φ : Rn → Rn such that there exists a constant
c > 0 for which |φ(x) − φ(y)| = c|x − y| for all x, y ∈ Rn. If 0 < c < 1,
then we call φ a contracting similitude. Let X be a subset of Rd, ρ the
Euclidean metric, and let φi : X → X for 1 ≤ i ≤ l, be similitudes with
contraction ratios r1, r2, . . . , rl, and for which the open set condition holds (to
be explained shortly). Let

φ(F ) =

l⋃
i=1

φi(F ). (7)

A set C is called an invariant set if C =
⋃l
i=1 φi(C). Moreover, if Hs(C) > 0

for some s > 0 and Hs(φi(C) ∩ φj(C)) = 0 (where Hs is the s-dimensional
Hausdorff measure), then we call C a self similar set. We will be looking at
measures that concentrate their mass on an invariant subset of X which is
compact, and which is constructed via these similitudes. It is shown in [1], for
example, that such a set exists.

The following theorem gives us the existence of the self-similar measure we
are interested in, and is proved in [1].

Theorem 2.6. There exists a Borel measure µ with support contained in C,
such that µ(Rd) = 1 and such that for any measurable set F ,

µ(F ) =

l∑
j=1

rsjµ(φ−1j (F )). (8)

In the sequel, we will assume that the open set condition is satisfied for a
finite family of similitudes {φi}li=1. The open set condition means that there
exists a bounded open set V such that

φ(V ) =

l⋃
j=1

φj(V ) ⊆ V, (9)

and this union is disjoint. Let φj1 ◦ · · · ◦φjk = φj1...jk , and Vj1...jk = φj1 ◦ · · · ◦
φjk(V ). By applying φj1...jk , we can see that the sets Vj1...jk form a net in the
sense that each one is disjoint from the other, contains or is contained in the
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other. We also have that

C =

∞⋂
k=0

φk(V ). (10)

It turns out (see [1]) that if you have the open set condition for the simili-

tudes {φi} with corresponding reduction ratios ri such that
∑l
i=1 r

s
i = 1, then

the set C is an s-set; that is, 0 < Hs(C) < ∞. In this case, we say that the
self-similar measure µ is associated with the s-dimensional Hausdorff measure.
Moreover, if the open set condition holds for the similitudes, then it follows
that C is self-similar, and as µ concentrates its mass on a self-similar set, we
call µ a self-similar measure.

3 Self-Similar Measures and Mycielski-Regularity

In this section, X is a convex and bounded subset of Rd, ρ is the Euclidean
metric, and µ is the self-similar measure which up to a constant is Hausdorff
measure on the invariant set C. The maps φi are similitudes and ri < 1 are the
corresponding contraction ratios, where 1 ≤ i ≤ l. We assume that the open
set condition is satisfied (taking V as the interior of X), so that the results in
the previous paragraphs apply. First, we give an important geometric lemma,
the proof of which is given in [1].

Lemma 3.1. Let {Vi} be a collection of disjoint open subsets of Rd such that
Vi contains a ball of radius c1ζ and is contained in a ball of radius c2ζ. Then
any ball B of radius ζ intersects no more than Γ = (1 + 2c2)dc−d1 of the sets
V i.

We now present our contribution to the question posed by Mycielski. This
theorem, our most general result, will show that any self-similar measure which
is Hausdorff measure (up to a constant) on an invariant set is Mycielski-regular.

Theorem 3.2. Let (X, ρ, µ), φi and ri be as defined above. Then µ has
moderated Voronoi tessellations, and thus is Mycielski-regular.

Proof. Suppose that the open set V given by the OSC contains a ball of
radius c1 and is contained in a ball of radius c2. Let ζ = 1/lt/s, let β = min rj ,
and St be the set of finite sequences obtained in the following way: for each
infinite sequence {j1, j2, . . .}, 1 ≤ ji ≤ l, truncate the sequence at the first
k ≥ 1 for which βζ ≤ rj1rj2 · · · rjk ≤ ζ. It follows from the net property of
the open sets that {Vj1...jk : j1 . . . jk ∈ St} is a disjoint collection. Each such
Vj1...jk contains a ball of radius c1rj1 · · · rjk and hence a ball of radius c1βζ
and similarly is contained in a ball of radius c2ζ. By Lemma 3.1, any ball
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of radius ζ intersects, at most, (1 + 2c2)dc−d1 (min rj)
−d sets of the collection

Vt = {V j1...jk : j1 . . . jk ∈ St}. Also, for large n ∈ N, choose t(n) ∈ N such
that

logl n− loglM ≥ t(n) ≥ logl n− loglM − 1. (11)

Note that as n → ∞, so does t(n). Also note that usually we denote t(n) by
t, unless there is a reason to specifically highlight its dependence on n.

Define µj1...jk(F ) = µ((φj1 ◦ · · · ◦φjk)−1(F )) = µ(φ−1jk ◦ · · · ◦φ
−1
j1

(F )). Then
the measure µj1...jk is supported on Cj1...jk and

µj1...jk =
∑
j

rsjµj1...jkj . (12)

By iterating (12) where appropriate, we get that

µ =
∑

j1...jk∈St

(rj1...jk)sµj1...jk . (13)

Now let z ∈ C and let E = B(z, 2c2ζ). Then E intersects at most Γ =
(6c2)dc−d1 (min rj)

−d members of Vt. Let K = {V σ ∈ Vt : V σ ∩E 6= ∅} (where
σ ∈ {1, 2, . . . , l}k for some k). So Card(K) ≤ Γ.

Let W ⊆ X be convex and let y ∈ W \ ∪K; suppose that y ∈ V σ, σ ∈ St
for some V σ 6∈ K. Then V σ ⊆ intB(y, ρ(y, z)), since ρ(y, z) > 2c2ζ. So
y ∈ Vz = W ∩ ∪y∈W {V σ : V σ ⊆ intB(y, ρ(y, z))}. So W \ Vz ⊆ ∪K.

Claim 3.3. ∪K has measure at most Γζs = Γ/lt (and hence so does W \Vz).

Proof. To see this, let V σ ∈ K and let σ ∈ St be such that σ = (a1, a2, . . . , am),
and so

µ(Vσ) =
∑

j1...jk∈St

(rj1 · · · rjk)sµj1...jk(Vσ) (14)

=
∑

j1...jk∈St

(rj1 · · · rjk)sµ(φ−1jk ◦ · · · ◦ φ
−1
j1

(φa1 ◦ · · · ◦ φam(V )))(15)

= (ra1 · · · ram)s (16)

≤ ζs, (17)

since (a1, a2, . . . , am) ∈ St and since µ(φ−1am ◦ · · · ◦φ
−1
a1 (φa1 ◦ · · · ◦φam(V ))) = 1,

whereas every other term in the sum has measure zero, since φ−1i ◦φj(F ) = ∅
when i 6= j and for any F ⊆ X. This shows the claim.
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Let ω ∈ Ω. Define Hn(ω) as before and let

Kω = {Vσ ∈ St : Vσ ∩ ω[n] = ∅}. (18)

Let ε > 0. Suppose that µ(V (ω � n, z)) ≥ 2Γl−t. It follows that if
y ∈ V (ω � n, z), (y 6= z), then intB(y, ρ(y, z)) ∩ ω[n] = ∅ and if Vσ ⊆
intB(y, ρ(y, z)) then Vσ ∈ Kω. By above, we have that µ(V (ω � n, z)\

⋃
Kω) ≤

Γl−t and so µ(V (ω�n, z) ≤ 2µ(V (ω�n, z) ∩
⋃
Kω). Hence, we get

µHn(ω) ≤ 2

lt
· Card(Kω), (19)

and so if Hn(ω) ≥ ε, then

Card(Kω) ≥ εlt

2
≥ m, (20)

where m = b εl
t

2 c. Again, as before, we get that {ω ∈ Ω : µHn(ω) ≥ ε} ⊆ {ω ∈
Ω : Card(K) ≥ m} and so

λ{ω ∈ Ω : Card(K) ≥ m} ≤
∑

K∈[Vt]m
λ{ω : ω[n] does not meet ∪ K}. (21)

Claim 3.4. CardK ≤ lt/βs.

Proof. This follows because

1 ≥ µ(∪K) =
∑
Vσ∈K

µ(Vσ) ≥
∑
Vσ∈K

(βζ)s ≥
∑
Vσ∈K

βs

lt
= CardKβ

s

lt
. (22)
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Let M = β−1(1 + ln(10dβ−se/ε)). Then,

λ{ω ∈ Ω : Card(K) ≥ m} ≤
(
dlt/βse
m

)(
1− mβ

lt/s

)n
(23)

≤

(
d l

t

βs e
)m

m!

(
1− mβ

lt/s

)n
(24)

≤
d l

t

βs e
m

m!

(
1− mβ

lt/s

)Mlt/s

(25)

≤ emdβ−sltem

mm

(
1− 1

lt/s

)Mmβlt/s

(26)

≤ emdβ−sltem

mm

(
1

e

)Mmβ

(27)

=

(
edβ−slte
meMβ

)m
(28)

=

(
edβ−slte
b εlt2 ceMβ

)m
(29)

≤ 1

2m
(30)

≤ 1

2εlt/2
. (31)

By (11), we have that lt ≥ n/Ml and so

1

2εlt/2
≤
(

1

2ε/2Ml

)n
. (32)

Note that
1

2ε/2Ml
< 1, (33)

and so, letting γ = 1
2ε/2Ml

, we have that

λ{ω ∈ Ω : Card(K) ≥ m} <
∞∑
n=1

γn. (34)

Let n0 be such that for all n ≥ n0, (11) holds. Then,
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∞∑
n=1

λ{ω : µ(Hn(ω)) ≥ ε} ≤ n0 +

∞∑
n=n0

λ{ω : µHn(ω) ≥ ε} (35)

≤ n0 +

∞∑
n=n0

γn <∞. (36)

Of course, the definition of moderated Voronoi tessellations is that for every
ε > 0 there exists M ≥ 0 such that

∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε} <∞,

(37)
but this is true if and only if

∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 2Γl−t}

)
≥ ε} <∞.

(38)
Note that if we call

An = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε} (39)

and

Bt(n) = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 2Γl−t(n)}

)
≥ ε},

(40)
then for every n ∈ N, we have that Bt(n) ⊆ An since M/n ≤ 2Γl−t(n) by (11),
and it follows that if

∑
λ(An) <∞, then

∑
λ(Bt(n)) <∞.

Now suppose that
∑
λ(Bt(n)) <∞. By (11), we also have that An ⊆ Bt(n)

since 2ΓMl/n ≥ 2Γl−t(n) (letM in (39) be replaced byM
′

= 2ΓMl). It follows
that

∑
λ(An) <∞. It follows that µ has moderated Voronoi tessellations.

Example. Let (X, ρ, µ) be defined as follows: Let X be the two-dimensional
unit square, let ρ be the Euclidean metric, and let µ be the self-similar measure
described above and which concentrates its mass on the the two-dimensional
Cantor set (with similarity dimension = Hausdorff dimension = ln 4/ ln 3). In
this case, the similitudes are φ1(x, y) = (x/3, y/3), φ2(x, y) = ((x+ 2)/3, y/3),
φ3(x, y) = (x/3, (y + 2)/3), and φ4(x, y) = ((x + 2)/3, (y + 2)/3). Note that
the contraction ratios are obviously all the same and are equal to 1/3. As the
above theorem implies, this measure is Mycielski-regular.
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3.1 Conclusion

The question as to which measures are Mycielski-regular was posed for ar-
bitrary Radon probability measures on Rd for d ≥ 1. Fremlin proved it for
Lebesgue measure on the unit cube. Actually, for the one-dimensional case,
he has proved it for all Radon probability measures [2]. In this paper, we have
shown that it is true for those self-similar measures which up to a constant
are equal to Hausdorff measure in its dimension on an invariant subset of Rd.
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