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SUMS AND PRODUCTS OF
QUASI-CONTINUOUS FUNCTIONS

Abstract

In this article two main results are proved. The first one is that
each cliquish function f : Rk → R is the sum of two quasi-continuous
functions. It is also shown that we can moreover require that the sum-
mands preserve points of continuity of f , are bounded provided that f
is bounded and belong to the same class of Baire as f (if f is Borel
measurable). The other main result is that each function f : Rk → R
which can be written as the product of finitely many quasi-continuous
functions, can be expressed as the product of two quasi-continuous func-
tions, and we can require that the factors belong to the same class of
Baire as f (if f is Borel measurable).

1 Introduction

The notion of quasi-continuity for real functions of several real variables was
introduced over sixty years ago by S. Kempisty [8], as a generalization of
the notion of continuity, and it has been intensively studied since then. A
comprehensive survey on this topic can be found in [12].

It is easy to show that the sum of two quasi-continuous functions need
not be quasi-continuous. However, it must be cliquish, as the sum of two
cliquish functions is cliquish. In 1985 Z. Grande proved that each cliquish
function f defined on R can be expressed as the sum of four quasi-continuous
functions, and in the case where f is locally bounded, as the sum of three quasi-
continuous functions [5]. This theorem was generalized by E. Strońska [13], [14],
for cliquish functions defined on a separable, metrizable, dense in itself, Baire
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space. Later J. Borśık and J. Doboš proved that each cliquish function defined
on Rk is the sum of two simply continuous functions, each of which in turn can
be written as the sum of two quasi-continuous functions [3]. The latest result
in this topic is that each cliquish function defined on a separable metrizable
topological space can be written as the sum of three quasi-continuous func-
tions [1].

The story of investigating the family of functions which can be written
as the product of quasi-continuous functions is much shorter. T. Natkaniec
proved the following theorem [11] in 1990.

Theorem 1.1 A function f : R→ R can be factored into a (finite) product of
quasi-continuous functions iff f is cliquish and

(?) each of the sets f−1
(
(−∞, 0)

)
, f−1(0), and f−1

(
(0,∞)

)
is the union of

an open set and a nowhere dense set.

However, in his representation of such functions he uses as many as eight (!)
quasi-continuous functions. Lately J. Borśık proved that each real cliquish
function defined on a separable metrizable topological space which fulfills con-
dition (?) can be written as the product of three quasi-continuous functions [2].
Moreover, he simplified the condition (?) to the following form:

The set f−1(0) is the union of an open set and a nowhere dense set.

(It is possible if the domain is a Baire space.)

It is natural to ask which cliquish functions can be expressed as the sum
(resp. the product) of two quasi-continuous functions. If the domain is Rk,
the answer is all (resp. all satisfying condition (?)).

2 Preliminaries

First we need some notation. The real line (−∞,∞) is denoted by R and the
set of positive integers, by N. Throughout this article, k is a fixed positive
integer. The word function means a mapping from Rk into R unless otherwise
explicitly stated. The words measure, summable etc. refer to Lebesgue measure
and integral in Rk. The Euclidean metric in Rk is denoted by % . For every
set A ⊂ Rk let diamA be its diameter (i.e., diamA = sup

{
% (x, y) : x, y ∈

A
})

, intA its interior, clA its closure, frA its boundary, χA its characteristic
function, and |A| its outer Lebesgue measure. A symbol like

∫
A
f will always

mean the Lebesgue integral. For any function f we write ‖f‖ for sup
{∣∣f(t)

∣∣ :

t ∈ Rk
}

(f need not be bounded) and we denote by D(f) the set of points of
discontinuity of f .
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The oscillation of a function f on a non-empty set A ⊂ Rk will be denoted
by ω (f,A)

(
i.e., ω (f,A) = sup

{∣∣f(x) − f(y)
∣∣ : x, y ∈ A

})
. Similarly, the

oscillation of a function f at a point x ∈ Rk will be denoted by ω (f, x)
(
i.e.,

ω (f, x) = limr→0+ ω
(
f,
{
y ∈ Rk : % (x, y) < r

}))
.

We say that a function f is quasi-continuous (resp. cliquish) at a point
x ∈ Rk if for each ε > 0 and each open set U 3 x we can find a non-empty
open set V ⊂ U such that ω

(
f, {x} ∪ V

)
< ε (resp. ω (f, V ) < ε). We say

that f is quasi-continuous (cliquish) if it is quasi-continuous (cliquish) at each
point x ∈ Rk. Cliquish functions are also known as pointwise discontinuous.

We will use the following well-known (and easy to prove) facts:

• A function f is quasi-continuous at a point x ∈ Rk iff there exists an
open set H ⊂ Rk such that x ∈ clH and f

∣∣({x}∪H) is continuous at x.

• A function f is quasi-continuous iff for each x ∈ Rk there exists a se-
quence x1, x2, . . . /∈ D(f) such that xn → x and f(xn)→ f(x).

• The limit of a uniformly convergent sequence of quasi-continuous func-
tions is quasi-continuous.

• Each quasi-continuous function is cliquish.

• A function f is cliquish iff D(f) is of the first category.

The word interval (resp. cube) will always mean non-degenerate compact
interval (resp. cube) in Rk, i.e., Cartesian product of k non-degenerate compact
intervals (resp. compact intervals of equal length) in R. For every interval
I = [a1, b1]× · · · × [ak, bk] we denote I◦ = [a1, b1)× · · · × [ak, bk).

The proof of the following simple technical lemma is left to the reader.

Lemma 2.1 Whenever A ⊂ Rk is closed there exists a family J of non-
overlapping cubes such that each x /∈ A belongs to the interior of the union of

some finite subfamily of J and |J | ≤
[
% (A, J)

]k
for each J ∈ J .

We say that a sequence of intervals
{
In : n ∈ N

}
is o-convergent to a point

x ∈ Rk if x ∈
⋂

n∈N
In, lim

n→∞
diam In = 0, and lim sup

n→∞
(diam In)k

/
|In| <∞. We

will write In
o⇒ x. (Cf., e.g., [10].)

By an interval function we will mean a mapping from the family of all
intervals into R. For an arbitrary interval function F and a point x ∈ Rk we
define

o-lim sup
I⇒x

F (I) = sup
{

lim sup
n→∞

F (In) : In
o⇒ x

}
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and
o-lim inf

I⇒x
F (I) = inf

{
lim inf
n→∞

F (In) : In
o⇒ x

}
.

If the two above limits coincide, then we denote their value by o- lim
I⇒x

F (I).

We say that x ∈ Rk is an o-Lebesgue point of a function f if f is locally
summable at x and o- lim

I⇒x

∫
I
|f−f(x)|

/
|I| = 0. We say that f is an o-Lebesgue

function if each x ∈ Rk is an o-Lebesgue point of f .

The following theorem is proved in [10].

Theorem 2.2 Assume that A ⊂ Rk is closed, J =
{
Jn : n ∈ N

}
is a family

of non-overlapping cubes and
{
fn : n ∈ N

}
is a family of summable functions

such that the following conditions are satisfied:

(i) each x /∈ A belongs to the interior of the union of some finite subfamily
of J ,

(ii) |Jn| ≤
[
% (A, Jn)

]k
for each n ∈ N,

(iii) fn(x) = 0 if x /∈ Jn, n ∈ N,

(iv) for each x ∈ A and each τ > 0 there exists an η > 0 such that for each
n ∈ N, if % (x, Jn) < η, then

∫
Jn
|fn| ≤ τ · |Jn|.

Put f =
∑∞

n=1 fn. Then the function f is locally summable and moreover,

each x ∈ A is an o-Lebesgue point of f . [10, Proposition 7.5]

3 Auxiliary Lemmas

The following lemma is a multidimensional version of Lemma 2 of [7].

Lemma 3.1 Let a set G ⊂ Rk, a function f and an ε > 0 be such that
ω (f, x) < ε for each x ∈ G. Then there is a continuous function f : G → R
such that

∣∣f − f ∣∣ ≤ ε/2 on G.

Proof. For each x ∈ G define m(x) = min
{
f(x), lim inft→x f(t)

}
and

M(x) = max
{
f(x), lim supt→x f(t)

}
. Then m is lower semicontinuous, M is

upper semicontinuous, and M(x) −m(x) = ω (f, x) < ε for each x ∈ G. By
Theorem 1.N(d) of [4], there is a continuous function f : G→ R such that

f(x)− ε/2 ≤M(x)− ε/2 ≤ f(x) ≤ m(x) + ε/2 ≤ f(x) + ε/2

for each x ∈ G, whence
∣∣f − f ∣∣ ≤ ε/2 on G. �

Lemma 3.2 Assume that A is a nowhere dense closed set which contains all
points of discontinuity of quasi-continuous functions h1 and h2. Then there
exists a family of non-overlapping cubes G =

{
Gn : n ∈ N

}
such that
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(i) each x /∈ A belongs to the interior of the union of some finite subfamily
of G,

(ii) |Gn| ≤
[
% (Gn, A)

]k
for each n ∈ N,

(iii) for i ∈ {1, 2} and each x ∈ A there exists a subfamily
{
Gnl

: l ∈ N
}

such

that x ∈ cl
⋃

l∈NGnl
and hi

∣∣({x} ∪⋃l∈N intGnl

)
is continuous at x.

Proof. First choose a family
{
Ip : p ∈ N

}
of non-overlapping cubes according

to Lemma 2.1. For each p ∈ N, h1 and h2 are uniformly continuous on Ip, so

we can find non-overlapping cubes Gp,1, . . . , Gp,lp such that Ip =
⋃lp

j=1Gp,j

and ω (hi, Gp,j) < % (Ip, A)
(
i ∈ {1, 2}, j ∈ {1, . . . , lp}

)
. Arrange all cubes

Gp,j , p ∈ N, j ∈ {1, . . . , lp}, in a sequence
{
Gn : n ∈ N

}
. Then clearly (i)

and (ii) are satisfied.
To prove (iii), fix an i ∈ {1, 2} and an x ∈ A. Let l ∈ N. Since hi is

quasi-continuous at x, there is an open set H such that diam
(
{x} ∪H

)
< 1/l

and ω
(
hi, {x} ∪ H

)
< 1/l. Then by (i), there exists an nl ∈ N such that

intGnl
∩H 6= ∅, whence %

(
Gnl

, A
)
< 1/l and

ω
(
hi, {x} ∪Gnl

)
≤ ω (hi, Gnl

) + ω
(
hi, {x} ∪H

)
≤ 2/l.

Hence x ∈ cl
⋃

l∈N intGnl
and hi

∣∣({x} ∪⋃l∈N intGnl

)
is continuous at x,

which completes the proof. �

Lemma 3.3 Suppose I is an interval, L, ε > 0 and h : Rk → R is continuous
at each point of a non-empty perfect set K ⊂ int I. Then there is a continuous
function α such that ‖α‖ ≤ L+ ‖h · χK‖, α = 0 outside of I,

∫
I
|α| < ε, and

(h+ α)(K) ∩ (h− α)(K) ⊃ [−L,L]. (1)

Proof. Clearly we may assume that |I| < ε
/(
L + ‖h · χK‖

)
. Find disjoint

non-empty perfect sets K1, K2 ⊂ K and continuous functions ϕ1, ϕ2 such
that ϕi(Ki) = [−L,L] (i ∈ {1, 2}). Then use the Tietze extension theorem
(see [4, Theorem 2.1.7]) to construct a continuous function α such that α = 0
outside of I, ‖α‖ ≤ L+ ‖h · χK‖ and α = (−1)i · h+ ϕi on Ki (i ∈ {1, 2}). It
is obvious that (1) holds. �

4 Sums of Quasi-Continuous Functions

Lemma 4.1 Suppose g, α and g are functions which are continuous on a
dense open set G, and g/2 + α, g/2− α are quasi-continuous on A = Rk \G.
Then we can find an o-Lebesgue function α which is continuous on G and such
that
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(i) α = 0 on A,
(ii) ‖α‖ ≤

∥∥g − g∥∥,

(iii) functions g/2 + α+ α and g/2− α− α are quasi-continuous on A.

Proof. First find a family of non-overlapping cubes
{
Gn : n ∈ N

}
according

to Lemma 3.2 (with hi = g/2 + (−1)i · α, i ∈ {1, 2}). Then for each n ∈ N
apply Lemma 3.3 with I = Gn, L = Ln = min

{
n, ‖g − g‖/2

}
, ε = 2−n and

h =
(
g − g

)/
2, and find a continuous function αn such that ‖αn‖ ≤

∥∥g − g∥∥,
αn = 0 outside of Gn,

∫
Gn
|αn| < 2−n · |Gn| and for i ∈ {1, 2}(g − g

2
+ (−1)i · αn

)
(intGn) ⊃ [−Ln, Ln]. (2)

Define α =
∑

n∈N αn. By Theorem 2.2, each x ∈ A is an o-Lebesgue point
of α and since by condition (i) of Lemma 3.2, α is continuous on G, α is an
o-Lebesgue function. Clearly conditions (i) and (ii) are satisfied.

To prove (iii), take an i ∈ {1, 2} and an x ∈ A. By condition (iii) of
Lemma 3.2, there is a subfamily

{
Gnl

: l ∈ N
}

such that x ∈ cl
⋃

l∈N intGnl

and
(
g/2 + (−1)i · α

)∣∣({x} ∪⋃l∈N intGnl

)
is continuous at x. Put

H =
⋃
l∈N

(
intGnl

∩
(g − g

2
+ (−1)i · α

)−1(
(c− 1/l, c+ 1/l)

))
,

where c =
(
g(x) − g(x)

)/
2. Then H is open and by (2), x ∈ clH. It is clear

that
(
g/2 + (−1)i ·α+ (−1)i ·α

)∣∣({x}∪H) is continuous at x, so (iii) holds.�

Theorem 4.2 Given a cliquish function f and an η > 0 we can find an
o-Lebesgue function α such that the functions f/2 +α and f/2−α are quasi-
continuous, D(α) ⊂ D(f) and ‖α‖ ≤ ‖f‖+ η.

Proof. First use Lemma 3.1 with G =
{
x ∈ Rk : ω (f, x) < η · 2−n

}
to

find a sequence of functions
{
fn : n ∈ N

}
such that for each n ∈ N: the set

An = clD(fn) is contained in D(f), f = fn on An and |f − fn| ≤ η · 2−n−1
on Rk \An.

Set f0 = 0. For each n ∈ N use Lemma 4.1 with g = fn−1, α =
∑

j<n αj ,

g = fn and G = Rk \
⋃

j≤nAj , to find an o-Lebesgue function αn which is
continuous outside of

⋃
j≤nAj , αn = 0 on

⋃
j≤nAj , ‖αn‖ ≤ ‖fn − fn−1‖ and

such that for i ∈ {1, 2} the function fn/2+(−1)i ·
∑

j≤n αj is quasi-continuous.

Set α =
∑∞

n=1 αn. Note that this series is uniformly convergent (so α is
an o-Lebesgue function) and

‖α‖ ≤
∞∑

n=1

‖fn − fn−1‖ ≤ ‖f‖+ η/4 + 3 ·
∞∑

n=2

η · 2−n−1 = ‖f‖+ η.
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Clearly D(α) ⊂ D(f).

Fix an i ∈ {1, 2}. Observe that f/2 + (−1)i · α is the uniform limit of the
sequence

{
fn/2+(−1)i ·

∑
j≤n αj : n ∈ N

}
(which consists of quasi-continuous

functions), so this function is quasi-continuous. �

5 Products of Quasi-Continuous Functions

We start with a lemma.

Lemma 5.1 Assume that a function g̃ is cliquish and positive on an inter-
val I. Then we can find quasi-continuous functions h̃(1), h̃(2) such that

(a) g̃ = h̃(1) · h̃(2) on I,
(b) for each x ∈ fr I, each i ∈ {1, 2} and each s ≥ 0 there is a sequence

x1, x2, · · · ∈ int I \D
(
h̃(i)
)

such that xn → x and h̃(i)(xn)→ s.

Proof. Define the function f by

f(x) =

{
ln g̃(x) if x ∈ I,
0 otherwise

and apply Theorem 4.2 to find quasi-continuous functions h(1), h(2) such that
f = h(1) + h(2) on Rk. Use Lemma 2.1 with A = Rk \ int I to find a family
I =

{
In : n ∈ N

}
of non-overlapping cubes satisfying its requirements.

For each n ∈ N use Lemma 3.3 (twice) to find a continuous function αn

such that αn = 0 on fr In and for i ∈ {1, 2}(
h(i) + (−1)i · αn

)(
int In \D

(
g̃
))
⊃ [−n, n]. (3)

Define for i ∈ {1, 2} function h̃(i) by

h̃(i)(x) =

{
exp
(
h(i)(x) + (−1)i · αn(x)

)
if x ∈ I◦n, n ∈ N,

exp
(
h(i)(x)

)
otherwise.

Then clearly (a) holds. To prove (b) fix an x ∈ fr I, an i ∈ {1, 2}, and an
s ≥ 0.

First suppose s > 0. Let n ∈ N. Take an arbitrary yn ∈ int I such that
% (x, yn) < min

{
1/n, %

(
x,
⋃

l<|ln s| Il
)}

. Then yn ∈ Iln for some ln ≥ |ln s|
and so by (3), there is an xn ∈ Iln \ D

(
g̃
)

such that h̃(i)(xn) = s. Since
% (x, xn) ≤ 2/n; so xn → x.

The case s = 0 immediately follows from the fact that for every s > 0 we
are done.

Finally note that by (b), the functions h̃(1) and h̃(2) are quasi-continuous
on fr I. Quasi-continuity outside of fr I is evident. �
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Theorem 5.2 For each function g the following conditions are equivalent:
(a) There is an l ∈ N and quasi-continuous functions h(1), . . . , h(l) such that

g = h(1) · · · · · h(l).
(b) There are quasi-continuous functions h(1) and h(2) with g = h(1) · h(2).
(c) Function g is cliquish and it satisfies condition (?) of Theorem 1.1.

Proof. The proof of the implication (a)⇒ (c) is a repetition of the argument
used in [11], while the implication (b)⇒ (a) is obvious; so we need only to prove
(c) ⇒ (b). Set G0 = int

{
x ∈ Rk : g(x) = 0

}
, G1 = int

{
x ∈ Rk : g(x) < 0

}
,

and G2 = int
{
x ∈ Rk : g(x) > 0

}
. For p ∈ {0, 1, 2} apply Lemma 2.1 with

A = Rk\Gp to find a family
{
Ip,n : n ∈ N

}
of non-overlapping cubes satisfying

its conditions. Fix an n ∈ N.
Find continuous functions h

(1)
0,n and h

(2)
0,n such that h

(1)
0,n · h

(2)
0,n = 0 on Rk,

h
(1)
0,n = h

(2)
0,n = 0 on fr I0,n, and

h
(1)
0,n(int I0,n) ∩ h(2)0,n(int I0,n) ⊃ [−n, n].

For p ∈ {1, 2} do the following. Find non-overlapping intervals Ip,n,1
and Ip,n,2 such that Ip,n = Ip,n,1 ∪ Ip,n,2. For j ∈ {1, 2} use Lemma 5.1

with g̃ = |g| and I = Ip,n,j to get quasi-continuous functions h̃
(1)
p,n,j , h̃

(2)
p,n,j

satisfying its conditions.

Now for i ∈ {1, 2} define the function h(i) by

h(i)(x) =


h
(i)
0,n(x) if x ∈ I◦0,n, n ∈ N,

(−1)j ·
[
sgn f(x)

]i · h̃(i)p,n,j(x) if x ∈ I◦p,n,j , n ∈ N, p, j ∈ {1, 2},
(2− i) ·

(
f(x)− 1

)
+ 1 otherwise.

Then it is easy to prove that for each x /∈ G0 ∪ G1 ∪ G2, i ∈ {1, 2} and
s ∈ R there is a sequence x1, x2, · · · ∈ Rk \ D

(
h(i)
)

such that xn → x and

h(i)(xn) → s. (Note that G0 ∪ G1 ∪ G2 is dense in Rk, by (?).) So the
functions h(1) and h(2) are quasi-continuous. �

6 Remarks

Remark 6.1 If f is a function which is discontinuous on a nowhere dense
set, then by Lemma 4.1, we can find quasi-continuous functions h1, h2 such
that ‖hi‖ ≤ 3‖f‖/2 for i ∈ {1, 2} and h1 + h2 = f . On the other hand, it
is easy to show that ‖h1‖+ ‖h2‖ ≥ 3 whenever quasi-continuous functions h1
and h2 are such that h1 + h2 = 2χ{0} − 1. However, I do not know whether
the following assertion is true:
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Whenever f is a bounded cliquish function we can find quasi-con-
tinuous functions h1, h2 such that ‖h1‖ + ‖h2‖ ≤ 3‖f‖ and h1 +
h2 = f .

Remark 6.2 Since each o-Lebesgue function belongs to the first class of Baire
(cf. [9]), the following assertion holds:

Let A be the family of all measurable functions or Baire class α.
Then for each cliquish function f ∈ A and each η > 0 we can
find quasi-continuous functions h1, h2 ∈ A such that f = h1 + h2,
D(h1) ∪D(h2) ⊂ D(f) and ‖hi‖ ≤ 3‖f‖/2 + η for i ∈ {1, 2}.

Though o-Lebesgue functions need not be Baire one star functions (f is a Baire
one star function if for each non-empty perfect set P there is an interval I
with P ∩ int I 6= ∅ such that f |(P ∩ int I) is continuous), the above assertion
remains true if A is the family of all Baire one star functions, by Lemma 4.1.
(Cf. also [6].)

Remark 6.3 Suppose that a system of functions A satisfies the following pos-
tulates:

• A is a vector space containing all o-Lebesgue functions,

• for any function f if there are a closed set A, functions h, h1, h2, · · · ∈ A
and a family

{
In : n ∈ N

}
of non-overlapping cubes satisfying require-

ments of Lemma 2.1 such that f = h on A and f = hn on I◦n for each
n ∈ N then f ∈ A,

• A is closed with respect to outer compositions with continuous functions.

Then in the condition (b) of Theorem 5.2 we can moreover require that the
functions h(1), h(2) ∈ A provided that g ∈ A. (The proof remains unchanged.)

Remark 6.4 It is easy to prove that each Baire one star function is cliquish
and satisfies condition (?) of Theorem 1.1. So the following assertion holds.

Each Baire one star function can be factored into a product of two
Baire one star quasi-continuous functions.

(In the proof of the analogue of Lemma 5.1 we use Lemma 4.1 in place of
Theorem 4.2.) On the other hand, not every Darboux Baire one star function
is a product of Darboux Baire one star functions [6].
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