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A CONSTRUCTIVE DEFINITION OF THE
n-DIMENSIONAL ν(S)-INTEGRAL IN

TERMS OF RIEMANN SUMS

Abstract

In a former paper ([Ju-No 1]) we introduced an axiomatic approach
to the theory of non-absolutely convergent integrals in Rn. A special-
ization of this abstract concept leads to the well-behaved ν(S)-integral
over quite general sets A which yields the divergence theorem in its
presently most general form. (See [Ju-No 3].) While the definition of
the ν(S)-integral is of descriptive type (i.e. in terms of an additive al-
most everywhere differentiable set function) we prove in this paper that
it can equivalently be defined using Riemann sums. As an application
we show that any function being variationally integrable over A in the
sense of [Pf 3] is also ν(S)-integrable over A and both integrals coincide.

1 Introduction

Suppose F : R → R to be differentiable everywhere and assume that we seek
an integration process which always integrates f = F ′ to the expected value.
Since not every derivative is absolutely integrable, we need an extension of
Lebesgue’s integral. Denjoy (1912, 1916, 1917) was the first to solve this
problem by a transfinite construction, and shortly later Lusin (1912, 1916,
1917) and Hincin (1916, 1917, 1918) gave much simpler descriptive definitions
of this integral by characterizing the associated interval function F (b)−F (a).
A partially constructive definition was given by Perron (1914), but a (directly)
constructive definition in terms of Riemann sums was given only much later
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by Kurzweil (1957) and Henstock (1961). A slight modification also yields a
constructive definition of the Lebesgue integral (McShane (1969)).

Analogous results for dimension n > 1 are very desirable, and here we
consider, e.g., a vector field ~v which is differentiable everywhere on Rn and
reasonably general sets A ⊆ Rn. Again we seek an integration process which
always integrates div ~v over A to the expected value.

Ideally we look for a constructive definition (in terms of Riemann sums)
of such an integral, associating with a point function f a single real number,
which also allows an equivalent descriptive definition associating with f an
additive set function whose set derivative equals f almost everywhere. This
occurred first in [Ju-Kn] for intervals A and again in [No 1] for quite general
sets A (i.e. compact sets A with |∂A|n−1 <∞), cf. also [Pf 1-2].

In [Ju-No 1] an axiomatic descriptive theory of non-absolutely convergent
integrals in Rn is introduced, and the resulting ν-integral shows all the usual
properties as linearity, additivity, extension of the Lebesgue integral etc.. Fur-
thermore, a version of the Saks-Henstock-Lemma is proved which characterizes
integrable functions and can be seen in between a descriptive and constructive
definition of the integral.

A first specialization of this abstract concept (See [Ju-No 2].) leads to the
well-behaved ν1-integral over compact intervals which also allows a construc-
tive definition and which yields the divergence theorem in its presently most
general form (with regards to the analytic assumptions), including singular-
ities where ~v is only assumed to fulfill a Lipschitz condition with a negative
exponent (> 1− n), cf. also [Ju-No 4, No 2].

Our second specialization leads to the ν(S)-integral (depending upon a set
S ⊆ Rn of potential singularities) over quite general sets A (See [Ju-No 3].)
and using this integration theory the divergence theorem can be proved in
a form analogous to the one for the ν1-integral but now considering general
sets A not just intervals. It is the aim of this paper to give an equivalent
constructive definition of the ν(S)-integral in terms of Riemann sums. This
will be achieved via the Saks-Henstock-Lemma, and the main ideas first oc-
curred in [No 1]. The proof of our main theorem requires several steps and
is presented in Section 4. In particular, we state an Approximation Lemma,
which essentially says that the ν(S)-integral of a point function over A can
be obtained as the limit of the integrals over certain figures contained in the
interior of A. (See Sec. 2.5.) Since we work with (complete) partitions of the
set A fulfilling various conditions, we establish in Section 3 the existence of
such partitions using the Decomposition Theorem in [Ju]. As an application
of our constructive definition we prove in Section 5 that any function being
variationally integrable over A in the sense of [Pf 3] is ν(S)-integrable over A
with the same value.



218 Dirk Jens F. Nonnenmacher

2 Preliminaries

As usual R (resp. R+) denotes the set of all real (resp. all positive real) num-
bers, n is assumed to be a fixed positive integer, and we work in Rn with the
usual inner product x·y =

∑
xiyi (x = (xi), y = (yi) ∈ Rn) and the associated

norm ‖ · ‖. For x ∈ Rn and r > 0 we let B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}.
If x ∈ Rn and E ⊆ Rn, we denote by E◦, clE, ∂E, d(E) and dist (x,E)

the interior, closure, boundary, diameter of E and the distance from the point
x to the set E.

By | · |s (0 ≤ s ≤ n) we denote the s-dimensional normalized outer Haus-
dorff measure in Rn which coincides for integral s on Rs (⊆ Rn) with the
s-dimensional outer Lebesgue measure (| · |0 being the counting measure).
E ⊆ Rn is called an s-null set if |E|s = 0.

An interval I in Rn is always assumed to be compact and non-degenerate,
and a cube is an interval with all sides having equal length. Finitely many
intervals are said to be non-overlapping if they have pairwise disjoint interiors,
and the union of finitely many non-overlapping intervals is called a figure
(in Rn). Given an interval I we call a finite sequence of non-overlapping
intervals whose union is I a decomposition of I, and we denote by r(I) the
ratio of the smallest and the largest of the edges of I.

Finally, if f is a function defined on a subset E of Rn, we denote for F ⊆ E
the restriction of f to F by f |F or simply by f again.

3 A General Existence Theorem

Throughout the paper we assume S to be an arbitrary but fixed subset of Rn.
The associated ν(S)-integration theory is discussed in detail in [Ju-No 3].

We denote by A the system of all compact subsets A of Rn with |∂A|n−1 <
∞, and given ρ > 0 a set M ⊆ Rn is called ρ-regulated if |B(x, r) ∩M |n−1 ≤
ρrn−1 holds for all x ∈ Rn, r > 0. We letA(S) consist of those A ∈ A for which
there is a ρ > 0 such that for any x ∈ S ∩ ∂A there exists a neighborhood
U of x with U ∩ ∂A being ρ-regulated. For ρ > 0 we set A′ρ = {A ∈ A :
∂A is ρ-regulated} and Aρ(S) = {A ∈ A(S) : d(A)n ≤ ρ|A|n, |∂A|n−1 ≤
ρd(A)n−1}.

Recall ([Ju-No 3, Remark 1.1]) that there is a positive constant ρ∗ (≥ 2nn),
depending only on n, such that each cube belongs to Aρ∗(S), and each interval
belongs to A′ρ∗ . Furthermore, for each ρ > 0 and A ∈ A′ρ we have A ∈
A(S) and |∂A|n−1 ≤ (1 + ρ)d(A)n−1, and if A,B ∈ A(S) with corresponding
parameters ρA, ρB , then A ∪B, A ∩B, A−B◦ ∈ A(S) with a corresponding
parameter ρA + ρB .

Given E ⊆ Rn and δ : E → R+ a finite sequence of pairs {(xk, Ak)} with
xk ∈ Ak ∈ A(S), A◦i ∩ A◦j = ∅ (i 6= j), xk ∈ E and d(Ak) < δ(xk) is called
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(E, δ)-fine. If additionally E =
⋃
Ak, we call {(xk, Ak)} a δ-fine partition

of E.
A control condition C associates with any positive numbers K and ∆ a

class C(K,∆) of finite sequences {Ak} with Ak ∈ A(S). Furthermore, with C
there is associated a system E(C) of subsets of Rn and the control conditions
Cα1,2 (0 ≤ α < n), Cn we use here are defined as follows, cf. [Ju-No 3, Sec. 1a]:

For 0 ≤ α < n − 1 the control condition Cα1 (resp. Cα2 ) associates with
any positive numbers K and ∆ the system of all finite sequences {Ak} with
Ak ∈ A′K such that each x ∈ S is contained in at most K of the Ak and
such that

∑
d(Ak)α ≤ K (resp.

∑
d(Ak)α ≤ ∆). By E(Cα1 ) (resp. E(Cα2 )) we

denote the system of all E ⊆ S with |E|α <∞ (resp. |E|α = 0).
The condition Cn−1

1 (resp. Cn−1
2 ) associates with K, ∆ > 0 the system

of all finite sequences {Ak} with Ak ∈ A(S) and
∑
|∂Ak|n−1 ≤ K (resp.∑

|∂Ak|n−1 ≤ ∆) and we let E(Cn−1
1 ) (resp. E(Cn−1

2 )) be the system of all
E ⊆ Rn with |E|n−1 <∞ (resp. |E|n−1 = 0).

If n − 1 < α < n, the control condition Cα1 (resp. Cα2 ) associates with
K, ∆ > 0 the system of all finite sequences {Ak} with Ak ∈ AK(S) and∑
d(Ak)α ≤ K (resp.

∑
d(Ak)α ≤ ∆). E(Cα1 ) (resp. E(Cα2 )) consists of all

E ⊆ Rn with |E|α <∞ (resp. |E|α = 0).
Finally the condition Cn associates with any positive K the system of all

finite sequences {Ak} with Ak ∈ AK(S), and we let

E(Cn) = {E ⊆ Rn : |E|n = 0}.

We set Γ = {Cαi : 0 ≤ α ≤ n− 1, i = 1, 2}, Γ̇ = {Cn} ∪ {Cαi : n− 1 < α <
n, i = 1, 2}.

A division of a set A ∈ A(S) consists of a set Ė and a sequence (Ei, Ci)i∈N
such that Ė ⊆ A◦, |A− Ė|n = 0, Ci ∈ Γ∪ Γ̇, Ei ∈ E(Ci) and A is the disjoint
union of all the sets Ei and Ė.

In the proof of Theorem 4.1 we will need the existence of special δ-fine
partitions of any set A ∈ A(S). It’s the aim of this section to establish the
existence of such partitions.

3a. A Modified Version of the Decomposition Theorem

The following theorem is proved in [Ju].

Decomposition Theorem. Suppose an n-dimensional interval I to be the
disjoint union of countably many sets Ei with |Ei|αi < ∞ (0 ≤ αi ≤ n) and
that positive numbers εi and δ : I → R+ are given. Then there are finitely
many intervals Ik, being similar to I and points xk such that {(xk, Ik)} forms

a δ-fine partition of I and
∑

xk∈Ei
d(Ik)αi ≤ c(n)

r(I)n |Ei|αi + εi, i ∈ N, where c(n)

denotes an absolute constant.
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We deduce the following assertion.

Theorem 3.1 Assume I to be an n-dimensional interval, let Ė, (Ei, Ci)i∈N
be a division of I and suppose M ⊆ I with |M |n−1 < ∞, 1 ≥ ε′ > 0, ∆i > 0
and δ : I → R+ to be given. Then there exist finitely many intervals Ik, being
similar to I, and points xk such that {(xk, Ik)} is a δ-fine partition of I with

∑
xk∈M

d(Ik)n−1 ≤ c(n)

r(I)n
|M |n−1 + ε′,

∑
xk∈Ei

d(Ik)α ≤


c(n)
r(I)n (|Ei|n−1 + |M |n−1) + ε′ if Ci = Cα1 , α = n− 1

c(n)
r(I)n |Ei|α + ε′ if Ci = Cα1 , α 6= n− 1

∆i if Ci = Cα2 .

Proof. Of course we want to apply the Decomposition Theorem and we
therefore express I as the disjoint union of the following sets:

Ė \M, Ei \M if Ci ∈ Γ̇ ∪ {Cn−1
1 }, Ei if Ci ∈ Γ \ {Cn−1

1 },
M̃ = M \

⋃
{Ei : Ci ∈ Γ \ {Cn−1

1 }}.

Now, having chosen the εi appropriately and making δ smaller if necessary, the
Decomposition Theorem yields a δ-fine partition {(xk, Ik)} of I having all the
desired properties. For example let us show how the inequality corresponding
to M can be obtained. Obviously∑

xk∈M
d(Ik)n−1 ≤

∑
xk∈M̃

d(Ik)n−1 +
∑

Ci=C
α
1,2

α<n−1

∑
xk∈M∩Ei

δ(xk)n−1−αd(Ik)α

+
∑

Ci=C
n−1
2

∑
xk∈M∩Ei

d(Ik)n−1

≤ c(n)
r(I)n |M̃ |n−1 + ε̃+

∑
Ci=C

α
1,2

α<n−1

δi

(
c(n)
r(I)n |Ei|α + εi

)
+

∑
Ci=C

n−1
2

εi,

where we assumed δ(·)n−1−α ≤ δi on M ∩ Ei (Ci = Cα1,2 : α < n − 1) and
choosing ε̃, δi and εi suitable we get the required inequality. �

3b. The Existence Theorem

We now show the existence of special δ-fine partitions of A ∈ A(S). The
following theorem (as well as its proof) should be compared with the Decom-
position Lemma in our abstract theory [Ju-No 1].
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Theorem 3.2 Let I be a cube in Rn, assume Ė, (Ei, Ci)i∈N to be a division
of I and let A ∈ A(S) be a subset of I. Then there exist positive numbers
K̃i(A) = K̃i(A,Ei) such that for any parameter ρ > 0 corresponding to A ∈
A(S), any choice of numbers ε > 0, 1 ≥ ε′ > 0, ∆i > 0 and any δ : A → R+

there is a δ-fine partition {(xk, Ak)} of A with the following properties:

(i) If xk ∈ A◦, then Ak is a cube contained in A◦, and if xk ∈ ∂A, then Ak
is the intersection of a cube with A;∣∣∣ ⋃

xk∈∂A

Ak

∣∣∣
n
≤ ε,

∣∣∣∂ ⋃
xk∈A◦

Ak

∣∣∣
n−1
≤ ρ∗c(n)|∂A|n−1 + ε′

(ii) if xk ∈ S ∩ ∂A, then Ak ∈ A′ρ+ρ∗ and any x ∈ S is contained in at most
2n of the Ak

(iii)
∑

xk∈∂A
|∂Ak|n−1 ≤ (1 + ρ∗c(n))|∂A|n−1 + ε′

(iv)
∑

xk∈Ei
d(Ak)α ≤

{
K̃i(A) if Ci = Cα1 , α 6= n− 1

∆i if Ci = Cα2 , α 6= n− 1

∑
xk∈Ei

|∂Ak|n−1 ≤

{
K̃i(A) if Ci = Cn−1

1

∆i if Ci = Cn−1
2

.

Proof. The K̃i(A) will be determined within the proof. We may assume
δ(·) ≤ 1 on A as well as B(x, δ(x)) ⊆ A◦ for x ∈ A◦ and we extend δ to I by
setting δ(x) = dist (x,A) if x ∈ I \A.

Since |∂A|n−1 < ∞, we find an open set G ⊇ ∂A with |G|n ≤ ε and
we may assume B(x, δ(x)) ⊆ G for x ∈ ∂A (making δ smaller if necessary).
Furthermore, if Ci = Cn−1

2 , we choose an open setGi ⊇ Ei with |Gi∩∂A|n−1 <
∆i/2 (cf. [Ju-No 3, Remark 1.3]), and we assume B(x, δ(x)) ⊆ Gi for x ∈ Ei.
Finally, if x ∈ S ∩ ∂A, we assume B(x, δ(x)) ∩ ∂A to be ρ-regulated.

By Theorem 3.1 there is a δ-fine partition {(xk, Ik)} of I, the Ik being
cubes, fulfilling the following inequalities:∑

xk∈∂A

d(Ik)n−1 ≤ c(n)|∂A|n−1 + ε′/ρ∗,

∑
xk∈Ei

d(Ik)α ≤


c(n)(|Ei|n−1 + |∂A|n−1) + ε′/ρ∗ if Ci = Cα1 , α = n− 1

c(n)|Ei|α + ε′/ρ∗ if Ci = Cα1 , α 6= n− 1

∆i/2ρ
∗ if Ci = Cα2 .
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For xk ∈ A we set Ak = A ∩ Ik and obviously {(xk, Ak)} is a δ-fine par-
tition of A. Furthermore, Ak ⊆ B(x, δ(x)) ⊆ G for xk ∈ ∂A what yields
|
⋃
xk∈∂AAk|n ≤ |G|n ≤ ε and since ∂

⋃
xk∈A◦ Ak ⊆

⋃
xk∈∂A ∂Ik, we conclude∣∣∣∂ ⋃

xk∈A◦
Ak

∣∣∣
n−1
≤
∑
xk∈∂A

|∂Ik|n−1 ≤ ρ∗
∑
xk∈∂A

d(Ik)n−1

≤ρ∗c(n)|∂A|n−1 + ε′.

Now take an xk ∈ S ∩ ∂A and observe that ∂Ak ⊆ (I◦k ∩ ∂A) ∪ ∂Ik ⊆
(B(xk, δ(xk)) ∩ ∂A) ∪ ∂Ik; consequently Ak ∈ A′ρ+ρ∗ . Since each x ∈ Rn can
at most be contained in 2n of the Ik, any x ∈ S lies in at most 2n of the Ak,
and it remains to prove the inequalities (iii) and (iv).

For (iii) observe∑
xk∈∂A

|∂Ak|n−1 ≤
∑
xk∈∂A

|I◦k ∩ ∂A|n−1 +
∑
xk∈∂A

|∂Ik|n−1

≤|∂A|n−1 + ρ∗c(n)|∂A|n−1 + ε′.

To establish (iv) let us first treat the case Ci = Cn−1
1 :∑

xk∈Ei

|∂Ak|n−1 ≤|∂A|n−1 + ρ∗
∑
xk∈Ei

d(Ik)n−1

≤|∂A|n−1 + ρ∗c(n)(|Ei|n−1 + |∂A|n−1) + 1 = K̃i(A,Ei).

In case Ci = Cn−1
2 we have∑

xk∈Ei

|∂Ak|n−1 ≤
∣∣∣ ⋃
xk∈Ei

I◦k ∩ ∂A
∣∣∣
n−1

+
∑
xk∈Ei

|∂Ik|n−1 ≤ |Gi ∩ ∂A|n−1

+ ρ∗∆i/2ρ
∗ ≤ ∆i.

The remaining inequalities are obvious when setting K̃i(A,Ei) = c(n)|Ei|α+1
if Ci = Cα1 , α 6= n− 1 and K̃i(A,Ei) = 1 otherwise. �

4 A Definition of the ν(S)-integral in Terms of Riemann
Sums

In this section we prove that the ν(S)-integral (cf. [Ju-No 3]) can equivalently
be defined by using Riemann sums.
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Theorem 4.1 Let A ∈ A(S) and f : A → R be given. Then f is ν(S)-
integrable on A iff there exists a real number J and a division Ė, (Ei, Ci)i∈N
of A with the following property:

∀ ε > 0, K > 0, Ki > 0 ∃ ∆i > 0, δ : A→ R+ such that∣∣∣J − (∑ f(xk)|Ak|n +
∑

f(x′k)|A′k|n
)∣∣∣ ≤ ε (?)

holds for any δ-fine partition {(xk, Ak)} ∪ {(x′k, A′k)} of A with

(i) if xk ∈ Ė, then Ak ∈ AK(S); {Ak : xk ∈ Ei} ∈ Ci(Ki,∆i) (i ∈ N)

(ii) {A′k} ∈ C
n−1
1 (K) and x′k ∈ Ė ∪

⋃
Ci∈Γ̇

Ei for all k,

and in that case J is uniquely determined and J =

∫ν(S)

A

f .

Remark 4.1 The necessity part of the theorem, i.e. starting with the
ν(S)-integrability of f , is a direct consequence of the abstract Saks-Henstock
Lemma ([Ju-No 1, Cor. 6.1] and apply it to the concrete setting in [Ju-No 3]),

and this also yields the uniqueness of J and J =
∫ν(S)

A
f .

To prove the sufficiency part we will deduce the Saks-Henstock Lemma
and since this gives a characterization of integrability, (cf. [Ju-No 1, Sec. 6])
the ν(S)-integrability of f will follow. Here we proceed along the lines of
[Ju-No 2, Theorem 3.1] where the corresponding constructive definition was
given for the ν1-integral. But there we only had to deal with intervals and
now, using general sets, new difficulties must be overcome.

Proof of Theorem 4.1. We assume J ∈ R and a division Ė, (Ei, Ci)i∈N of
A to be given such that property (?) is fulfilled. The remainder of the proof
is accomplished in several steps. In a first step we show that w.l.o.g. the set
A can be assumed to be a cube.

1. Choose a cube I containing A in its interior and extend f to Ito be zero.
Then a division of I is given by Ė ∪ (I◦ \ A), (∂I, Cn−1

1 ), (Ei, Ci)Ci∈Γ, (Ei ∩
A◦, Ci)Ci∈Γ̇, (∂A ∩

⋃
Ci∈Γ̇Ei, C

n−1
1 ). We prove that property (?) is fulfilled

for I and f corresponding to this division and J .
Given ε > 0, K > 0, K∂I > 0, Ki > 0 (i ∈ N), K∂A > 0 we set K̃ =

|∂A|n−1+K∂A+K and K̃i = Ki+ρ+|∂A|n−1 and we determine ∆̃i > 0 (i ∈ N),
δ : A→ R+ for ε/2, K̃, K̃i because of (?) for A. Here ρ denotes a parameter
corresponding to A ∈ A(S). We let ∆i = ∆̃i/2 (i ∈ N), ∆∂I = 1 = ∆∂A

and we may assume B(x, δ(x)) ⊆ A◦ for x ∈ A◦ and B(x, δ(x)) ∩ ∂A to be
ρ-regulated if x ∈ S ∩ ∂A. Furthermore, if Ci = Cn−1

2 , we choose an open
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set Gi ⊇ Ei with |Gi ∩ ∂A|n−1 ≤ ∆i and we assume B(x, δ(x)) ⊆ Gi for
x ∈ Ei. Finally we set δ(x) = dist (x,A) for x ∈ I \ A and since |∂A|n = 0,
we may assume

∑
|f(zk)||Dk|n ≤ ε/2 for any (∂A, δ)-fine sequence {(zk, Dk)}

(cf. Remark 5.2(iii)).
Now let {(xk, Bk) : 1 ≤ k ≤ p}∪{(x′k, B′k) : p+1 ≤ k ≤ p+m} (p,m ∈ N0)

be a δ-fine partition of I with the following properties:

• If xk ∈ Ė ∪ (I◦ \A), then Bk ∈ AK(S); {Bk : xk ∈ ∂I} ∈ Cn−1
1 (K∂I),

{Bk : xk ∈ Ei} ∈ Ci(Ki,∆i) if Ci ∈ Γ,

{Bk : xk ∈ Ei ∩A◦} ∈ Ci(Ki,∆i) if Ci ∈ Γ̇,

{Bk : xk ∈ ∂A ∩
⋃
Ci∈Γ̇Ei} ∈ C

n−1
1 (K∂A).

• {B′k} ∈ C
n−1
1 (K) and x′k ∈ Ė ∪ (I◦ \A) ∪

⋃
Ci∈Γ̇(Ei ∩A◦), p+ 1 ≤ k ≤

p+m.

Then we define a δ-fine partition {(yi, Ai)} ∪ {(y′i, A′i)} of A as follows:
If xk ∈ A and xk 6∈ ∂A ∩

⋃
Ci∈Γ̇Ei, then we let yk = xk and Ak = A ∩ Bk,

while in case xk ∈ ∂A∩
⋃
Ci∈Γ̇Ei, we set y′k = xk and A′k = A∩Bk; if x′k ∈ A,

we let y′k = x′k and A′k = A ∩ B′k. Now it is easy to see, using the choice of
δ, and recalling that ∂(A ∩B) ⊆ (B◦ ∩ ∂A) ∪ ∂B for any B ∈ A(S), that the
partition {(yi, Ai)}∪{(y′i, A′i)} fulfills the requirements (i) and (ii) of Theorem
4.1 with parameters K̃, K̃i, ∆̃i. Furthermore, since f = 0 on I \A and because
of the δ-function,∣∣∣J − (∑ f(xk)|Bk|n +

∑
f(x′k)|B′k|n

)∣∣∣
≤
∣∣∣J − (∑ f(yi)|Ai|n +

∑
f(y′i)|A′i|n

)∣∣∣+
∑
xk∈∂A

|f(xk)||Dk|n

+
∑
x′k∈∂A

|f(x′k)||D′k|n ≤ ε,

where Dk = Bk ∩ (I \A◦), D′k = B′k ∩ (I \A◦).
Suppose now that the theorem has been established for any cube. Then

it follows that f is ν(S)-integrable on I and by [Ju-No 3, Prop. 1.1] f is

ν(S)-integrable on A with
∫ν(S)

A
f =

∫ν(S)

I
f = J .

Therefore, from now on, we assume A to be a cube, J ∈ R and Ė,
(Ei, Ci)i∈N to be a division of A such that (?) is fulfilled. In the sequel we will
write I instead of A and we will use the letter A to denote subsets of I.

2. Notation. Let A ∈ A(S) be a subset of I. For any positive numbers K,
Ki,∆i and any δ : A→ R+ we denote by P(A,K,Ki,∆i, δ) the system of all
δ-fine partitions Π = {(xk, Ak)} ∪ {(x′k, A′k)} of A fulfilling conditions (i) and
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(ii) of Theorem 4.1. Obviously P(A,K,Ki,∆i, δ) is monotone increasing in K,
Ki, ∆i and δ (since all control conditions Ci = Ci(K,∆) are non-decreasing
in K and ∆) and for Π ∈ P(A,K,Ki,∆i, δ) as above we set S(f,Π, A) =∑
f(xk)|Ak|n +

∑
f(x′k)|A′k|n.

Denoting by ρ a parameter corresponding to A ∈ A(S), we see by Theorem
3.2 that for any K ≥ K∗(A) = (1 + ρ∗c(n))|∂A|n−1 + ρ∗, Ki ≥ K∗i (A, ρ) =
K̃i(A) + ρ + ρ∗, ∆i > 0 and δ : A → R+ there is a Π ∈ P(A,K,Ki,∆i, δ),
where the marked quantities are {(xk, Ak) : xk ∈ ∂A ∩ (Ė ∪

⋃
Ci∈Γ̇Ei)}. In

the sequel we simply write K∗i (A) instead of K∗i (A, ρ), since the considered
parameter ρ will always be clear from the context.

A set function F on I associates with every subset A ∈ A(S) of I a real
number F (A) and we call F additive if F (A) =

∑
F (Ak) holds for any subset

A ∈ A(S) of I and every finite sequence {Ak} with Ak ∈ A(S) having disjoint
interiors and A =

⋃
Ak.

Next we will associate with each subset A ∈ A(S) of I a real number γ(A)
and thereby define an additive set function on I.

Fix a set A ∈ A(S), A ⊆ I:

3. ∀ ε > 0, K > 0, Ki > 0 ∃ ∆i > 0, δ : A→ R+:

|S(f,Π1, A)− S(f,Π2, A)| ≤ ε ∀ Π1,2 ∈ P(A,K,Ki,∆i, δ).

Proof. Choose a common corresponding parameter ρ > 0 for A and B =
I \ A◦ (∈ A(S)), let ε, K, Ki be given and set K̄ = K + K∗(B) and
K̄i = Ki+K

∗
i (B). Then, by our assumption, there are ∆̄i > 0 and δ̄ : I → R+

such that |S(f,Π1, I) − S(f,Π2, I)| ≤ ε ∀ Π1,2 ∈ P(I, K̄, K̄i, ∆̄i, δ̄) and we
let ∆i = ∆̄i/2 and δ = δ̄|A. Fix an Π ∈ P(B,K∗(B),K∗i (B),∆i, δ̄) ( 6= ∅
by 2.) and let Π1,2 ∈ P(A,K,Ki,∆i, δ). Then an easy check shows that
Π1,2 = Π∪Π1,2 ∈ P(I, K̄, K̄i, ∆̄i, δ̄), where the marked parts of Πi is just the
union of the marked parts of Π and Πi. Consequently

|S(f,Π1, A)− S(f,Π2, A)| = |S(f,Π1, I)− S(f,Π2, I)| ≤ ε. �

4. We define the following (extended) real numbers which may be seen as an
upper and a lower integral.

γ(A)+ = sup
(K,Ki)

inf
(∆i,δ)

sup
Π∈P(A,K,Ki,∆i,δ)

S(f,Π, A).

γ(A)− = inf
(K,Ki)

sup
(∆i,δ)

inf
Π∈P(A,K,Ki,∆i,δ)

S(f,Π, A).

Obviously γ(A)− ≤ γ(A)+ and by the Cauchy-property 3. one sees that
indeed γ(A)− = γ(A)+ ∈ R. This real number will be denoted by γ(A). As
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an immediate consequence we get

∀ ε > 0, K > 0, Ki > 0 ∃∆i > 0, δ : A→ R+ :

|γ(A)− S(f,Π, A)| ≤ ε ∀ Π ∈ P(A,K,Ki,∆i, δ).

Of course γ(A) is the only real number with this property since P(A,K,Ki,
∆i, δ) is not empty for sufficiently large K, Ki.

By the considerations in 3. and 4. we are in the position to define a
set function F on I by F (A) = γ(A) for each A ∈ A(S), A ⊆ I. Note
that in particular F (I) = J . To prove the additivity of F it suffices to show
that F (A) = F (A1) + F (A2) whenever A,A1, A2 ∈ A(S) are subsets of I
with A◦1 ∩ A◦2 = ∅ and A = A1 ∪ A2. For this let ε > 0 be arbitrary and
choose suitable parameters for A1, A2 and correspondingly for A such that
S(f,Πi, Ai) and S(f,Π, A) approximate F (Ai) (resp. F (A)) up to ε. Taking
Π = Π1 ∪ Π2 yields |F (A) − (F (A1) + F (A2))| ≤ 3ε which implies F (A) =
F (A1) + F (A2).

Before we can show the Saks-Henstock (SH) property, we prove a general
approximation lemma, which seems to be of some interest for itself, as well as
two restricted versions of the (SH)-Lemma.

5. Approximation Lemma. Assume A ∈ A(S) to be a subset of I with
a non-empty interior. Then there exists a sequence of figures Rm (m ∈ N)
fulfilling the following conditions:

(i) Rm ⊆ A◦ for all m and |A \Rm|n → 0 (m→∞)

(ii) |∂Rm|n−1 ≤ (1 + ρ∗c(n))|∂A|n−1 for all m

(iii) F (Rm)→ F (A) (m→∞).

Furthermore, if A ∈ AK(S) for some K > 0, we have in addition {x} ∪Rm ∈
AK(S) for all x ∈ A and all m ∈ N, where K = 2(1 + ρ∗c(n))(K + ρ∗)2.

Proof. Denote by ρ (≥ ρ∗) a corresponding parameter for A and set K̂ =
ρ∗ + 2(2 + ρ∗c(n))2|∂A|n−1, K̂i = K̃i(A) + 1 + 2ρ2 + 2n + ρ∗c(n)|Ei|α + (1 +
ρ∗c(n))2|∂A|n−1 if Ci = Cαj (0 ≤ α ≤ n, j = 1, 2) with the understanding that

Cα1,2 = Cn if α = n. (Here K̃i(A) are the numbers from Theorem 3.2.) Then

by 4. we can determine for ε(m) = 1/m (m ∈ N), K̂, K̂i numbers ∆i(m) > 0
and a δm : A→ R+ such that

|F (A)− S(f,Π, A)| ≤ ε(m) ∀ Π ∈ P(A, K̂, K̂i,∆i(m), δm).

Writing ∂A =
⋃
j∈N Tj with Tj = {x ∈ ∂A : j − 1 ≤ |f(x)| < j}, we

choose open sets Gj ⊇ Tj with |Gj |n ≤ ε(m)/j2j+1 and we may assume
B(x, δm(x)) ⊆ Gj for x ∈ Tj . Since |A|n ≤ d(A)|∂A|n−1 (which holds for
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each set from A; see Remark 5.1), we see that |∂A|n−1 > 0 (A◦ 6= ∅) and
applying Theorem 3.2 with ε = ε(m), ε′ = min(1, |∂A|n−1), ∆i(m)/2 and
δm there is a δm-fine partition Πm = {(xmk , Amk )} of A with the properties
(i)–(iv) stated there. Setting Rm =

⋃
xmk ∈A◦

Amk we see that the Rm are fig-

ures lying in the interior of A, |A− Rm|n ≤ |
⋃
xmk ∈∂A

Amk |n ≤ ε(m) and that

|∂Rm|n−1 ≤ (1 + ρ∗c(n))|∂A|n−1. We proceed by proving F (Rm)→ F (A).

First note that for any figure R we have R ∈ A(S) with a (possible) cor-

responding parameter ρ∗
2

. For, if R is the finite union of the non-overlapping
intervals Ii and if x ∈ S ∩ ∂R there are at most 2n of the intervals Ii contain-
ing x. Denote those by I∗i and choose a neighborhood U of x not intersecting
any of the other intervals. Then for any z ∈ Rn and any r > 0

|U ∩ ∂R ∩B(z, r)|n−1 ≤
∑
|U ∩ ∂I∗i ∩B(z, r)|n−1 ≤ 2nρ∗rn−1 ≤ ρ∗

2

rn−1

since any interval belongs to A′ρ∗ .
Now let ε̃ > 0 be arbitrary, choose an m0 ∈ N with 1/m0 ≤ ε̃/2 and let

m ≥ m0. Again by 4. we determine ∆i > 0 and a δ : Rm → R+ such that

|F (Rm)− S(f,Π, Rm)| ≤ ε̃/4 ∀ Π ∈ P(Rm,K
∗(Rm),K∗i (Rm),∆i, δ)

(cf. 2.). Fix a Π∗ ∈ P(Rm,K
∗(Rm),K∗i (Rm),∆∗i , δ

∗) (6= ∅) where ∆∗i =
min(∆i(m),∆i)/2 and δ∗ = min(δm, δ) and let Π = Π∗ ∪ {(xmk , Amk ) ∈ Πm :

xmk ∈ ∂A}. Then Π ∈ P(A, K̂, K̂i,∆i(m), δm) where the marked quantities are

those of Π∗ unified with those pairs (xmk , A
m
k ) where xmk ∈ ∂A∩(Ė∪

⋃
Ci∈Γ̇Ei).

For example we get for the marked quantities∑
|∂(·)|n−1 ≤

∑
xmk ∈∂A

|∂Amk |n−1 +K∗(Rm)

≤(2 + ρ∗c(n))|∂A|n−1 + (1 + ρ∗c(n))|∂Rm|n−1 + ρ∗ ≤ K̂

by the properties of Πm, by 2. and the upper bound for |∂Rm|n−1.
Analogously one checks the other conditions and thus we obtain

|F (Rm)− F (A)| ≤|F (Rm)− S(f,Π∗, Rm)|+ |F (A)− S(f,Π, A)|

+
∑

xmk ∈∂A

|f(xmk )||Amk |n

≤ ε̃
4

+ ε(m) +
∑
j∈N

∑
xmk ∈Tj

j|Amk |n ≤
3

4
ε̃+

∑
j

j|Gj |n ≤ ε̃.

Now choose an n0 ∈ N such that |Rm|n ≥ |A|n/2 for all m ≥ n0 and assume in
addition that A ∈ AK(S) for some K > 0 (which always holds for sufficiently
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large K). Take any x ∈ A, let R̃m = {x}∪Rm (∈ A(S)), m ≥ n0, and observe
that d(R̃m)n ≤ d(A)n ≤ K|A|n ≤ 2K|R̃m|n ≤ K|R̃m|n. To derive the second
desired inequality assume n ≥ 2 (the case n = 1 being trivial); consequently

|∂R̃m|n−1 ≤|∂Rm|n−1 ≤ (1 + ρ∗c(n))|∂A|n−1

≤K(1 + ρ∗c(n))d(A)n−1 ≤ K2(1 + ρ∗c(n))|A|n/d(R̃m)

≤2K2(1 + ρ∗c(n))d(R̃m)n−1 ≤ Kd(R̃m)n−1

(Note that |B|n ≤ d(B)n holds for each B ∈ A.) and this implies R̃m ∈ AK(S)
for m ≥ n0. Thus the sequence Rm, m ≥ n0 fulfills all the desired conditions.
�

6. Fix a j ∈ N such that Cj = Cα1 resp. Cα2 with 0 ≤ α < n − 1. Then the
following holds.

∀ ε > 0, Kj > 0 ∃ ∆j > 0, δ : Ej → R+ :
∑
|F (Ak)− f(xk)|Ak|n| ≤ ε

for each (Ej , δ)-fine sequence {(xk, Ak)} with Ak ⊆ I and {Ak} ∈ Cj(Kj ,∆j).

Proof. Given ε and Kj set K̂ = (1 + ρ∗c(n))(1 + |∂I|n−1) + ρ∗, K̂i =

1+K̂+ρ∗+Kj+K2
j +ρ∗c(n)|Ei|α for Ci = Cα1,2 (again with the understanding

that Cn1,2 = Cn) and choose ∆̂i > 0, δ : I → R+ such that

|F (I)− S(f,Π, I)| ≤ ε/4 ∀ Π ∈ P(I, K̂, K̂i, ∆̂i, δ).

Let ∆j = min(1, ∆̂j/2). Assume δ(·)n−1−α ≤ 1/(1 + Kj)
2 on Ej and let

{(xk, Ak) : 1 ≤ k ≤ m} be a (Ej , δ)-fine sequence with Ak ⊆ I and {Ak} ∈
Cj(Kj ,∆j). After rearranging (if necessary) we find a 0 ≤ µ ≤ m such that
f(xk)|Ak|n ≥ F (Ak) if 1 ≤ k ≤ µ and f(xk)|Ak|n < F (Ak) otherwise and we
let B1 = I \ (

⋃µ
k=1Ak)◦ and B2 = I \ (

⋃m
k=µ+1Ak)◦. Since all Ak ∈ A′Kj , we

have |∂Ak|n−1 ≤ (1 +Kj)d(Ak)n−1 and thus∑
|∂Ak|n−1 ≤ (1 +Kj)

∑
δ(xk)n−1−αd(Ak)α ≤

∑
d(Ak)α/(1 +Kj) ≤ 1

by the choice of ∆j and δ. Consequently |∂Bj |n−1 ≤ 1 + |∂I|n−1.
Furthermore,

⋃µ
k=1Ak ∈ A(S) with a corresponding parameter K2

j . For,

if x ∈ S ∩ ∂(
⋃µ
k=1Ak), there are at most Kj of the Ak containing x and we

choose a neighborhood U of x intersecting at most these Ak; consequently for
z ∈ Rn and r > 0 we have∣∣∣U ∩ ∂( µ⋃

k=1

Ak

)
∩B(z, r)

∣∣∣
n−1
≤

∑
U∩Ak 6=∅

|B(z, r) ∩ ∂Ak|n−1 ≤ K2
j r
n−1.
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Since the same is true for
⋃m
k=µ+1Ak, we see that Bj ∈ A(S) with a corre-

sponding parameter K2
j + ρ∗.

Next we choose ∆∗i > 0 and δ∗ : B1 → R+ such that

|F (B1)− S(f,Π1, B1)| ≤ ε/4 ∀ Π1 ∈ P(B1,K
∗(B1),K∗i (B1),∆∗i , δ

∗),

we fix a Π1 ∈ P(B1,K
∗(B1),K∗i (B1),min(∆∗i , ∆̂i)/2,min(δ∗, δ)) ( 6= ∅ by 2.)

and we let Π = Π1 ∪ {(xk, Ak) : 1 ≤ k ≤ µ}. Then, recalling the defini-
tion of the numbers K∗(B1) and K∗i (B1), one immediately sees that Π ∈
P(I, K̂, K̂i, ∆̂i, δ) and consequently

ε

4
≥ S(f,Π, I)− F (I) =

µ∑
k=1

|F (Ak)− f(xk)|Ak|n|+ S(f,Π1, B1)− F (B1)

and thus
∑µ
k=1 |F (Ak)− f(xk)|Ak|n| ≤ ε/2. Analogously it follows that

m∑
k=µ+1

|F (Ak)− f(xk)|Ak|n| ≤ ε/2. �

7. Set Γ̃ = Γ̇ ∪ {Cn−1
1 , Cn−1

2 }. Then the following holds:

∀ ε > 0, K > 0, Ki > 0 (Ci ∈ Γ̃) ∃ ∆i > 0 (Ci ∈ Γ̃), δ : I → R+ :∑
|F (Rk)− f(xk)|Rk|n| +

∑
|F (R′k)− f(x′k)|R′k|n| ≤ ε

for each finite sequence of pairs {(xk, Rk)} ∪ {(x′k, R′k)}, where the Rk and
R′k are figures contained in I with pairwise disjoint interiors, xk, x

′
k ∈ I and

d(R̃k) < δ(xk), d(R̃′k) < δ(x′k) with R̃k = {xk}∪Rk, R̃′k = {x′k}∪R′k, fulfilling
the following conditions:

(i) xk ∈ Ė ∪
⋃

Ci∈Γ̃

Ei for all k, and if xk ∈ Ė, then R̃k ∈ AK(S);

{R̃k : xk ∈ Ei} ∈ Ci(Ki,∆i) (Ci ∈ Γ̃)

(ii) {R̃′k} ∈ C
n−1
1 (K) and x′k ∈ Ė ∪

⋃
Ci∈Γ̇

Ei for all k.

Proof. The proof is closely related to what has been shown in 3. within the
proof of Theorem 3.1 in [Ju-No 2].

Recall the following well-known facts:

Given 0 ≤ α ≤ n and M ⊆ Rn the inequality
∑
i |M ∩ Ii|α ≤ 2n|M |α holds

for any finite sequence of non-overlapping intervals, {Ii}. Furthermore, if {Ii}
denotes any finite sequence of non-overlapping intervals each x ∈ Rn can at
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most be contained in 2n of the Ii. For any interval J and any 0 < r < 1 there
exists a decomposition {Ik} of J with r(Ik) ≥ r for all k. Now let ε, K and
Ki (Ci ∈ Γ̃) be given, let Ki = 1 for Ci 6∈ Γ̃, set K̄ = max(K, ρ∗),

K̄i =

{
1 + K̄ +Ki + 2nc(n)2n

rn |Ei|α if Ci = Cα1

K̄ +Ki otherwise
, where r =

√
n

n
√
K̄

(< 1),

and choose ∆i > 0 and δ : I → R+ such that

|F (I)− S(f,Π, I)| ≤ ε/2 ∀ Π ∈ P(I, K̄, K̄i, 2∆i, δ) .

Denote by {(xk, Rk)} ∪ {(x′k, R′k)} a finite non-empty sequence according to
7. and assume w.l.o.g., cf. [Ju-No 2], f(xk)|Rk|n ≥ F (Rk) and f(x′k)|R′k|n ≥
F (R′k) for all k.

We can express each Rk, R′k as a finite union of non-overlapping intervals,
and if necessary we add intervals J1, . . . , Jp (p ∈ N0) with r(Ji) ≥ r such that
all occurring intervals form a decomposition of I.

Fix a subinterval J of I with r(J) ≥ r and let

Ki(J) =

{
2nc(n)
rn |Ei ∩ J |α + K̄ if Ci = Cα1

K̄ otherwise.

By 4. we may determine ∆i(J) > 0 and δ(J) : J → R+ such that

|F (J)− S(f,Π, J)| ≤ ε/2(p+ 1) ∀ Π ∈ P(J, K̄,Ki(J),∆i(J), δ(J)).

Setting ∆∗i (J) = min(∆i(J),∆i)/2n(p + 1), δ∗(J) = min(δ(J), δ) there is, by
the Decomposition Theorem, a δ∗(J)-fine partition Π(J) = {(yk, Lk)} of J ,
the Lk being intervals with r(Lk) = r(J) (≥ r) and with∑

yk∈Ei∩J
d(Lk)α ≤

{
c(n)
rn |Ei ∩ J |α + 1

2n(p+1) if Ci = Cα1

∆∗i (J) if Ci = Cα2 .

Now it is easy to see that Π(J) ∈ P(J, K̄,Ki(J),∆i(J), δ(J)) without any
marked quantities (Note, e.g., that all Lk ∈ AK̄(S) by the choice of r.) and
therefore

|F (J)− S(f,Π(J), J)| ≤ ε/2(p+ 1). (?)

Setting Π = {(x′k, R̃′k)} ∪ {(xk, R̃k)} ∪
⋃p
i=1 Π(Ji), where the only marked

quantities are given by {(x′k, R̃′k)}, one easily verifies that Π ∈ P(I, K̄, K̄i,
2∆i, δ). Thus

ε

2
≥S(f,Π, I)− F (I) =

∑
|F (Rk)− f(xk)|Rk|n|

+
∑
|F (R′k)− f(x′k)|R′k|n|+

p∑
i=1

[S(f,Π(Ji), Ji)− F (Ji)]
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and using (?) completes the proof. �

The final step gives the (SH) property for our set function F and the
division Ė, (Ei, Ci)i∈N of I.

8. ∀ ε > 0, K > 0, Ki > 0 ∃ ∆i > 0, δ : I → R+ such that∑∣∣∣F (Ak)− f(xk)|Ak|n
∣∣∣+
∑∣∣∣F (A′k)− f(x′k)|A′k|n

∣∣∣ ≤ ε
holds for any (I, δ)-fine sequence {(xk, Ak)} ∪ {(x′k, A′k)} with Ak, A′k being
subsets of I and

(i) if xk ∈ Ė, then Ak ∈ AK(S); {Ak : xk ∈ Ei} ∈ Ci(Ki,∆i) (i ∈ N)

(ii) {A′k} ∈ C
n−1
1 (K) and x′k ∈ Ė ∪

⋃
Ci∈Γ̇

Ei for all k.

Proof. Let ε,K,Ki be given positive numbers and if Ci = Cα1 (resp. Cα2 ) with
0 ≤ α < n−1 determine ∆i > 0 and δi : Ei → R+ for ε/2i+2 and Ki according
to 6.. Furthermore, we can find positive numbers ∆̄i > 0 (Ci ∈ Γ̃) and δ : I →
R+ by 7. for ε/4, K̄ = 2(1+ρ∗c(n))(K+ρ∗)2 and K̄i = 2(1+ρ∗c(n))(Ki+ρ

∗)2

(Ci ∈ Γ̃). We may assume δ ≤ δi, and we set ∆i = ∆̄i/(2+ρ∗c(n)) for Ci ∈ Γ̃.
Let {(xk, Ak)} ∪ {(x′k, A′k)} be a (I, δ)-fine sequence having the properties

stated in 8.. We obviously may assume A◦k, A
′◦
k 6= ∅ for all k since for an n-null

set A ⊆ I (A ∈ A(S)), we have F (A) = 0 by the additivity of F . By 6. we
have ∑

xk∈Ei

∣∣∣F (Ak)− f(xk)|Ak|n
∣∣∣ ≤ ε/2i+2 for Ci 6∈ Γ̃. (1)

For the remaining Ak (resp. all the A′k) we can determine corresponding figures
Rk (resp. R′k) according to 5. such that

|Ak −Rk|n ≤
ε|Ak|n

4(1 + |f(xk)|)|I|n
, |F (Ak)− F (Rk)| ≤ ε|Ak|n

4|I|n(
resp. |A′k −R′k|n ≤

ε|A′k|n
4(1 + |f(x′k)|)|I|n

, |F (A′k)− F (R′k)| ≤ ε|A′k|n
4|I|n

.
)

Obviously∣∣∣F (Ak)− f(xk)|Ak|n
∣∣∣

≤
∣∣∣F (Ak)− F (Rk)

∣∣∣+
∣∣∣F (Rk)− f(xk)|Rk|n

∣∣∣+ |f(xk)||Ak −Rk|n

≤
∣∣∣F (Rk)− f(xk)|Rk|n

∣∣∣+ ε|Ak|n/2|I|n
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and since the same inequality holds for all marked sets A′k, we have∑∣∣∣F (Ak)− f(xk)|Ak|n
∣∣∣+
∑∣∣∣F (A′k)− f(x′k)|A′k|n

∣∣∣ (2)

≤ ε/2 +
∑∣∣∣F (Rk)− f(xk)|Rk|n

∣∣∣+
∑∣∣∣F (R′k)− f(x′k)|R′k|n

∣∣∣,
where we only sum over those (xk, Ak) not occurring in (1).

Now, using further properties of the Rk and R′k as stated in 5., it is easy
to see that the sequence {(xk, Rk)} ∪ {(x′k, R′k)} fulfills the requirements of 7.

with parameters K̄, K̄i, ∆̄i (Note, e.g., that |∂R̃′k|n−1 ≤ (2 +ρ∗c(n))|∂A′k|n−1,
since in case n = 1, we have |∂A′k|n−1 ≥ 1.) and thus∑∣∣∣F (Rk)− f(xk)|Rk|n

∣∣∣+
∑∣∣∣F (R′k)− f(x′k)|R′k|n

∣∣∣ ≤ ε/4. (3)

Consequently, considering (1)–(3), we get∑∣∣∣F (Ak)− f(xk)|Ak|n
∣∣∣+
∑∣∣∣F (A′k)− f(x′k)|A′k|n

∣∣∣ ≤ ε
as desired. �

5 Every Variationally Integrable Function is
ν(S)-integrable

In this section we assume A ∈ A(S) and f : A → R to be fixed and using
Theorem 4.1 we will show that if f is v-integrable in the sense of [Pf 3, Def. 5.1],
then f is ν(S)-integrable and both integrals coincide.

For x = (xi) ∈ Rn and r > 0 set C(x, r) = {y = (yi) ∈ Rn : |xi − yi| < r,
1 ≤ i ≤ n}. Let E ⊆ Rn be | · |n-measurable, x ∈ Rn. Then we call x a density
(resp. a dispersion) point of E if

lim inf
r→0

|E ∩ C(x, r)|n
(2r)n

= 1 (resp. lim sup
r→0

|E ∩ C(x, r)|n
(2r)n

= 0).

We denote the set of all density points of E by inteE and cleE denotes the
complement of the set of all dispersion points of E. By [Saks] the sets E,
inteE, cleE differ at most by n-null sets, we obviously have the inclusions
E◦ ⊆ inteE ⊆ cleE ⊆ clE and we set ∂eE = cleE \ inteE ⊆ ∂E.

A bounded | · |n-measurable set B ⊆ Rn is called a BV set if |∂eB|n−1

is finite (cf. [Fed]) and for any BV set B we define its regularity by r(B) =
|B|n/d(B)|∂eB|n−1 if d(B)|∂eB|n−1 > 0 and by r(B) = 0 otherwise. We
denote by BVA the system of all BV sets contained in A. (Note that A itself
is a BV set.) A function F : BVA → R is called continuous if for every ε > 0
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there is a δ > 0 such that |F (B)| < ε for any B ∈ BVA with |B|n < δ and
|∂eB|n−1 < 1/ε. Furthermore, a function F : BVA → R is called additive if
F (B) =

∑
F (Bk) for any B ∈ BVA and any finite sequence of disjoint BV

sets {Bk} whose union is B (compare with Section 4, Subsection 2).

Remark 5.1 According to [Fed] we can associate with any BV set B a Borel
vector function ~nB : Rn → Rn (‖~nB‖ ≤ 1), the so called exterior normal of B,
such that

∫
∂eB

~v · ~nB d| · |n−1 =
∫
B

div~v holds for any vector function ~v which
is continuously differentiable in a neighborhood of clB. From this we deduce
at once for any B ∈ A the inequality |B|n ≤ d(B)|∂eB|n−1.

Remark 5.2 Let F : BVA → R be a continuous additive function, E ⊆ A.

(i) Observe that, because of the continuity, F (B) = 0 for any B ∈ BVA
with |B|n = 0. Consequently F is additive in the sense of Section 4,
Subsection 2.

(ii) ∀ ε > 0, K > 0 ∃ δ : E → R+ such that
∑
|F (Bk)| ≤ ε for any

(E, δ)-fine sequence {(xk, Bk)} with Bk ⊆ A and {Bk} ∈ Cn−1
1 (K), i.e.∑

|∂Bk|n−1 ≤ K. (In the language of [Ju-No 3, Sec. 1c] we would say
that F satisfies N (Cn−1

1 , E).) For, if ε > 0, K > 0 are given, we set ε′ =
1
2 min(ε, 1/K), and we determine for ε′ a δ′ > 0 according to the conti-
nuity of F . Now we let δ(·) = δ′/2K on E and we assume {(xk, Bk)}
to be a (E, δ)-fine sequence with Bk ⊆ A and

∑
|∂Bk|n−1 ≤ K. Then

|
⋃
Bk|n ≤

∑
d(Bk)|∂Bk|n−1 ≤

∑
δ(xk)|∂Bk|n−1 < δ′, |

⋃
∂Bk|n−1 ≤∑

|∂Bk|n−1 ≤ K < 1/ε′. Hence∑
|F (Bk)| = F (

⋃
F (Bk)≥0

Bk)− F (
⋃

F (Bk)<0

Bk) ≤ 2ε′ ≤ ε.

(iii) Assume in addition |E|n = 0 and let ε > 0 be given. Write E =
⋃
j∈NEj

with Ej = {x ∈ E : j − 1 ≤ |f(x)| < j}, choose open sets Gj ⊇ Ej with
|Gj |n ≤ ε/j2j and determine for x ∈ Ej a δ(x) > 0 with B(x, δ(x)) ⊆ Gj
what defines a function δ : E → R+. Then we have for any (E, δ)-fine
sequence {(xk, Bk)} with Bk ⊆ A the inequality∑

|f(x)||Bk|n ≤
∑
j∈N

∑
xk∈Ej

j|Bk|n ≤
∑
j∈N

j|Gj |n ≤ ε.

Proposition 5.1 Suppose the function f to be v-integrable on A. Then f is
ν(S)-integrable on A and both integrals coincide.
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Proof. Since f is v-integrable on A, there is according to [Pf 3, Def. 5.1,
Cor. 5.5] a uniquely determined continuous additive function F : BVA → R
and F (A) is called the v-integral of f on A. Furthermore, by [Pf 3, Prop. 5.15]
there is a certain set T ⊆ Rn which can be expressed as a countable union
of sets with finite outer | · |n−1-measure and consequently, we may write A ∩
(T ∪ ∂A) =

⋃
i∈NEi with disjoint sets Ei, |Ei|n−1 < ∞. Hence a division

of A is obviously given by Ė = A \ (T ∪ ∂A), (Ei, C
n−1
1 )i∈N and we assume

ε > 0, K > 0, Ki > 0 to be given according to Theorem 4.1. We set ∆i = 1,
ε′ = 1

5 min(ε, 1/K2) and for ε′ we choose a δ : Ė → R+ according to [Pf 3,

Prop. 5.15]. (Note that Ė = A◦\T ⊆ cleA\T .) By Remark 5.2(iii) we can find
for ε/5 a δ : A\ Ė → R+ and we obviously may assume δ(·) ≤ ε/5K(1+ |f(·)|)
on A. Finally we determine for ε/5 2i, Ki (resp. for ε/5), K a δi : Ei → R+

(resp. δ̇ : Ė → R+) according to Remark 5.2(ii), and again we may assume
δ(·) ≤ δi(·) on Ei (resp. δ(·) ≤ δ̇(·)) on Ė. Thus a function δ : A → R+ is
determined and we assume {(xk, Ak)} ∪ {(x′k, A′k)} to be a δ-fine partition of
A fulfilling the following two conditions:

(i) if xk ∈ Ė, then Ak ∈ AK(S); {Ak : xk ∈ Ei} ∈ Cn−1
1 (Ki) (i ∈ N)

(ii) {A′k} ∈ C
n−1
1 (K) and all x′k ∈ Ė.

Then, using Remark 5.2(i) and the choice of δ, we get∣∣∣F (A)−
(∑

f(xk)|Ak|n +
∑

f(x′k)|A′k|n
)∣∣∣

≤
∑
xk∈Ė

|F (A◦k)− f(xk)|A◦k|n|+
∑
i∈N

∑
xk∈Ei

|F (Ak)|+
∑
|F (A′k)|

+
∑

xk∈A−Ė

|f(xk)||Ak|n +
∑
|f(x′k)||A′k|n

≤ε′ +
∑
i∈N

ε

5 2i
+
ε

5
+
ε

5
+
∑
|f(x′k)|δ(x′k)|∂A′k|n−1 ≤ ε.

Here we applied [Pf 3, Prop. 5.15] to the pairs {(xk, A◦k) : xk ∈ Ė, A◦k 6= ∅}
and it suffices to see that ∂e(A

◦
k ∪{xk}) = ∂eAk. Hence using Remark 5.1 and

the fact that Ak ∈ AK(S), we have r(A◦k ∪ {xk}) ≥ 1/K2 > ε′. �
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