Antonio Boccuto and Anna Rita Sambucini, Department of Mathematics, via Vanvitelli 1, 06123 Perugia, Italy, e-mail: tipo@ipguniv.unipg.it, matears@@ipguniv.unipg.it

ON THE DE GIORGI—LETTA INTEGRAL WITH RESPECT TO MEANS WITH VALUES IN RIESZ SPACES

Abstract

A monotone integral is given for scalar function, with respect to Riesz space values means, and also a necessary and sufficient condition to obtain a Radon-Nikodym density for two means.

1 Introduction

Integrals like Kurzweil-Stieltjes, Riemann sums and Bochner have been studied in vector lattices by Duchoň, Riečan and Vrábelová, ([11], [21], [22]), Wright ([26], [27]), McGill ([19]), Šipoš ([24]), Maličký ([18]), Cristescu ([8]), Haluška ([15]), Boccuto ([3], [4]), and others.

In this paper we extend to such spaces the monotone integral, given by Choquet in 1953 ([6]), and developed by De Giorgi-Letta ([9]), Greco ([13]), Brooks-Martellotti ([5]), and others ([10], [12], [16], etc.).

Given a mean $\mu: \mathcal{A} \to R$ and a measurable function $f: X \to \widetilde{\mathbb{R}}_0^+$, we say that f is integrable (in the monotone sense) if the following limit exists in R.

$$(o) - \lim_{a \to +\infty} \int_0^a \mu(\{x \in X : f(x) > t\}) dt.$$

For this integral we obtain some elementary properties and we give some Vitalitype theorems. We note that in general this integral is different from the one

Key Words: monotone integral, convergence theorems, Radon-Nikodym theorem Mathematical Reviews subject classification: Primary: 28A70

Received by the editors November 3, 1995

^{*}Lavoro svolto nell'ambito dello G.N.A.F.A. del C.N.R.

introduced in [5] for Banach spaces. Finally we prove a version of Radon-Nikodym-type theorems for the introduced integral (see also [14]).

Our thanks to Prof. D. Candeloro and A. Martellotti for their helpful suggestions.

2 Preliminaries

We begin with some definitions.

Definition 2.1. A Riesz space R is called Archimedean if the following property holds.

(2.1.1) For every choice of $a, b \in R$, if $na \le b$ for all $n \in \mathbb{N}$, then $a \le 0$.

Definition 2.2. A Riesz space R is said to be Dedekind complete (resp. σ -Dedekind complete) if every nonempty (countable) subset of R, bounded from above, has supremum in R.

The following results are well-known (see [1], [2]).

Proposition 2.3. Every σ -Dedekind complete Riesz space is Archimedean.

Theorem 2.4. Given an Archimedean (Dedekind complete) Riesz space R, there exists a compact Stonian topological space Ω , unique up to homeomorphisms such that R can be embedded as a (solid) subspace of

$$\mathcal{C}_{\infty}(\Omega) = \{ f \in \widetilde{\mathbb{R}}^{\Omega} : f \text{ is continuous, and } \{ \omega : |f(\omega)| = +\infty \}$$

is nowhere dense in Ω }. Moreover if $(a_{\lambda})_{{\lambda}\in\Lambda}$ is any family such that $a_{\lambda}\in R$ $\forall \lambda$ and $a=\sup_{\lambda}a_{\lambda}\in R$ (where the supremum is taken with respect to R), then $a=\sup_{\lambda}a_{\lambda}$ with respect to $\mathcal{C}_{\infty}(\Omega)$ and the set $\{\omega\in\Omega:(\sup_{\lambda}a_{\lambda})(\omega)\neq\sup_{\lambda}a_{\lambda}(\omega)\}$ is meager in Ω .

Definition 2.5. A sequence $(r_n)_n$ is said to be order-convergent (or (o)-convergent) to r, if there exists a sequence $(p_n)_n \in R$ such that $p_n \downarrow 0$ and $|r_n - r| \leq p_n$, $\forall n \in \mathbb{N}$, and we will write (o) $-\lim_n r_n = r$.

As $|r_n| \leq |r| + p_1 \, \forall n$, every (o)-convergent sequence is bounded. We note that, if R is a σ -Dedekind complete Riesz space, (o)-convergence can be formulated in the following equivalent ways (see also [25]).

Proposition 2.6. A sequence $(r_n)_n$, bounded in R, (o)-converges to r if and only if $r = (o) - \limsup_n r_n = (o) - \liminf_n r_n$, where $(o) - \limsup_n r_n = \inf_n [\sup_{m \ge n} r_m]$, $(o) - \liminf_n r_n = \sup_n [\inf_{m \ge n} r_m]$.

Proposition 2.7. Let R be as above, Ω as in Theorem 2.4. A bounded sequence $(r_n)_n$, $r_n \in R$, (o)-converges to r if and only if the set $\{\omega \in \Omega : r_n(\omega) \not\to r(\omega)\}$ is meager in Ω .

We recall some fundamental properties of the order convergence (see [25]).

Proposition 2.8. If $(r_n)_n(o)$ -converges to both r and s, then $r \equiv s$. If $(r_n)_n(o)$ -converges to r, $(s_n)_n(o)$ -converges to s and $\alpha \in \mathbb{R}$, then $(r_n + s_n)_n$, $(r_n \vee s_n)_n$, $(r_n \wedge s_n)_n$, $(\alpha r_n)_n$, $(|r_n|)_n(o)$ -converge respectively to r + s, $r \vee s$, $r \wedge s$, αr , |r|.

Definition 2.9. A sequence $(r_n)_n$ is said to be (o)-Cauchy if there exists a sequence $(p_n)_n \in R$ such that $p_n \downarrow 0$ and $|r_n - r_m| \leq p_n$, $\forall n \in \mathbb{N}$, and $\forall m \geq n$.

Definition 2.10. A Riesz space R is called (o)-complete if every (o)-Cauchy sequence is (o)-convergent.

The following result holds (see [17], [28]).

Proposition 2.11. Every σ -Dedekind complete Riesz space is (o)-complete.

We note that there are some cases, in which (o)-convergence is not "generated" by a topology. For example, $L^0(X,\mathcal{B},\mu)$, where μ is a σ -additive non-atomic positive \mathbb{R} -valued measure. We recall that, in such spaces, (o)-convergence coincides with almost everywhere convergence. (Also see [25].)

3 The Monotone Integral

Definition 3.1. Let X be any set, R a Dedekind complete Riesz space, $A \subset \mathcal{P}(X)$ an algebra. A map $\mu: A \to R$ is said to be mean if $\mu(A) \geq 0$, $\forall A \in \mathcal{A}$ and $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A \cap B = \emptyset$. A mean μ is countably additive (or σ -additive) if $\mu(\cap_n A_n) = \inf_n \mu(A_n)$, whenever $(A_n)_n$ is a decreasing sequence in A, such that $\cap_n A_n \in A$.

Given a mapping $f: X \to \tilde{\mathbb{R}}_0^+$ and a mean μ as above for all $A \in \mathcal{A}$ and $t \in \mathbb{R}_0^+$, set $E_{t,A}^f$ (or simply $E_{t,A}$, when no confusion can arise) $\equiv \{x \in A : f(x) > t\}$; $E_t^f(E_t) \equiv \{x \in X : f(x) > t\}$; and, for every t > 0, let $u_{A,f}(t) \equiv \mu(E_{t,A}^f)$; $u_f(t) = u(t) \equiv \mu(E_t)$.

Definition 3.2. With the same notation as above, we say that a function $f: X \to \tilde{\mathbb{R}}_0^+$ is measurable if $E_t^f \in \mathcal{A}$, $\forall t \in \mathbb{R}^+$.

Now we define a Riemann (Lebesgue)-type integral, for maps, defined in an interval of the real line and taking values in a Dedekind complete Riesz space. (For similar integrals existing in the literature, also see [21] and [20].)

Definition 3.3. Let $a, b \in \mathbb{R}$, a < b, and R be as above. We say that a map $g: [a,b] \to R$ is a step function if there exist n+1 points $x_0 \equiv a < x_1 < \ldots < x_n \equiv b$ such that g is constant in each interval of the type $]x_{i-1}, x_i[$ ($i = 1, \ldots, n$). We say that g is simple if there exist n elements of R, a_1, \ldots, a_n , and n pairwise disjoint measurable sets E_i such that $g = \sum_{i=1}^n a_i \chi_{E_i}$. If g is a step (simple) function, we put $\int_a^b g(t) dt \equiv \sum_{i=1}^n (x_i - x_{i-1}) \cdot g(\xi_i) \left[\sum_{i=1}^n |E_i| \cdot g(\xi_i)\right]$, where ξ_i is an arbitrary point of $]x_{i-1}, x_i[$ $[E_i]$.

Definition 3.4. Let $u:[a,b] \to R$ be a bounded function. We call the upper integral (resp. lower integral) of u the element of R given by

$$\inf_{v \in V_u} \int_a^b v(t) dt \left[\sup_{s \in S_u} \int_a^b s(t) dt \right],$$

where

$$V_u \equiv \{v : v \text{ is a step (simple) function, } v(t) \geq u(t), \ \forall t \in [a, b]\}$$

 $S_u \equiv \{s : s \text{ is a step (simple) function, } s(t) \leq u(t), \ \forall t \in [a, b]\}.$

We say that u is Riemann (Lebesgue) integrable (or (R), resp. (L)-integrable) if its lower integral coincides with its upper integral and, in this case, we call integral of u (and write $\int_{a}^{b} u(t) dt$) their common value.

It is easy to check that this integral is well-defined, and is a linear monotone functional, with values in ${\cal R}.$

The following result holds.

Proposition 3.5. Every bounded monotone map $u : [a,b] \to R$ is Riemann integrable.

PROOF. The proof is almost identical to the classical one.

Now we define an integral for extended real-valued functions with respect to R-valued means.

Definition 3.6. Let X, R, μ , $f: X \to \mathbb{R}_0^+$, $u = u_f$ be as above. We say that f is integrable if the quantity

(3.6.1)
$$\int_{0}^{+\infty} u(t) dt \equiv \sup_{a>0} \int_{0}^{a} u(t) dt = (o) - \lim_{a\to+\infty} \int_{0}^{a} u(t) dt$$
,

exists in R where the integral in (3.6.1) is intended as in Definition 3.4. If f is integrable, we denote the element in (3.6.1) by $\int_X f d\mu$. A measurable function $f: X \to \mathbb{R}$ is integrable if both f^+ , f^- are integrable and, in this case we set $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$.

Remark 3.7. We can extend Definition 3.6 when $\mu : A \to R$ is any finitely additive bounded map. A measurable function f is integrable if and only if f is integrable with respect to μ^+ , μ^- , where for every $A \in A$

$$\mu^{+}(A) \equiv \forall_{B \subset A, B \in \mathcal{A}} \, \mu(B),$$

$$\mu^{-}(A) \equiv - \land_{B \subset A, B \in \mathcal{A}} \mu(B),$$

and $\mu=\mu^+-\mu^-$. In this case, we set $\int_X f d\mu \equiv \int_X f d\mu^+ - \int_X f d\mu^-$. (Also see [7].)

An immediate consequence of Definition 3.6 and monotonicity of μ is the following assertion.

Proposition 3.8. If f is integrable, then for each $A \in \mathcal{A}$, $\sup_{a>0} \int_0^a u_{A,f}(t) dt$ exists in R and is denoted by $\int_A f d\mu$.

Proposition 3.9. With the same notation as above, if f is integrable, then

$$\int_{A} f \, d\mu = \int_{X} f \cdot \chi_{A} \, d\mu, \quad \forall \, A \in \mathcal{A}.$$

PROOF. For each fixed t > 0 and $x \in X$, we have $[f \cdot \chi_A(x) > t]$ if and only if $[x \in A]$ and [f(x) > t]. So, $u_{X,f \cdot \chi_A} \equiv u_{A,f}$. Thus, the assertion follows. \square

It is easy to check that this integral is a linear R-valued functional and that, for every positive integrable map f, $\int_{\Gamma} f d\mu$ is a mean.

We now list a number of technical results.

Proposition 3.10. If f is integrable, then $(o) - \lim_{t \to +\infty} \mu(E_t) = 0$ and hence $\mu(E_{\infty}) = 0$, where $E_{\infty} \equiv \{x \in X : f(x) = +\infty\}$.

PROOF. For every t > 0, we have

$$0 \le \mu(E_{\infty}) \le \mu(E_t) = \frac{\int_{E_t} t \, d\mu}{t} \le \frac{\int_{E_t} f \, d\mu}{t} \le \frac{\int_X f \, d\mu}{t}.$$

Taking the infimum, we obtain $0 \le \mu(E_t) \le \inf_{t>0} \frac{\int_X f d\mu}{t} = 0$.

Proposition 3.11. Let $f: X \to \widetilde{\mathbb{R}}_0^+$ be measurable. Then, f is integrable if and only if $\sup_n \int_X (f \wedge n) d\mu \in R$, and in this case $\sup_n \int_X (f \wedge n) d\mu = \int_X f d\mu$.

PROOF. Fix $n \in \mathbb{N}$ and pick t < n. Then $f(x) \wedge n > t$ if and only if f(x) > t and so $\int_0^n u_f(t) \, dt = \int_0^n u_{f \wedge n}(t) \, dt = \int_0^{+\infty} u_{f \wedge n}(t) \, dt = \int_X (f \wedge n) \, d\mu$. So the first part of the assertion follows immediately. Moreover taking the suprema, we get $\sup_n \int_X (f \wedge n) \, d\mu = (o) - \lim_{n \to +\infty} \int_0^n u_f(t) \, dt = \int_X f \, d\mu$.

Proposition 3.12. Let $f: X \to \mathbb{R}_0^+$ be measurable and bounded and set S_f (resp. V_f) $\equiv \{g: X \to \mathbb{R}: g \leq f, g \text{ is simple}\}$, (resp. $\{h: X \to \mathbb{R}: h \geq f, h \text{ is simple}\}$). Then $\int_X f d\mu = \sup_{g \in S_f} \int_X g d\mu = \inf_{h \in V_f} \int_X h d\mu$, and f is integrable.

PROOF. It suffices to prove the part involving S_f . Let $L = \sup_{x \in X} f(x)$ and, for every fixed $n \in \mathbb{N}$, let $s_n(0) \equiv u(0)$, and $s_n(t) \equiv u\left(\frac{L}{2^n}\right)$ whenever $t \in \left] \frac{L(i-1)}{2^n}, \frac{L}{2^n} \right]$ $(i = 1, \dots, 2^n)$. We have $\int_0^L s_n(t) dt = \sum_{i=1}^{2^n} \frac{L}{2^n} u\left(\frac{L}{2^n}i\right)$. Put

$$U_i^{(n)} \equiv \left\{ x \in X : f(x) > \frac{Li}{2^n} \right\};$$

$$g_n \equiv \sum_{i=1}^{2^n} \frac{L}{2^n} \chi_{U_i^{(n)}}, \forall n \in \mathbb{N}, i = 1, 2, \dots, 2^n.$$

Then (Also see [9].) $\int_X g_n d\mu = \sum_{i=1}^{2^n} \frac{L}{2^n} \mu(U_i^{(n)}) = \sum_{i=1}^{2^n} \frac{L}{2^n} u\left(\frac{L}{2^n}i\right)$. Taking the supremum, we get

$$\int_{X} f \, d\mu = \int_{0}^{L} u(t) \, dt = \sup_{n} \int_{X} g_{n} \, d\mu = (o) - \lim_{n} \int_{X} g_{n} \, d\mu.$$

If $g \in S_f$, then $\int_X g \, d\mu \leq \int_X f \, d\mu$, and so $\int_X f \, d\mu = \sup_{n \in \mathbb{N}} \int_X g_n \, d\mu \leq \sup_{g \in S_f} \int_X g \, d\mu \leq \int_X f \, d\mu$, which completes the proof.

Proposition 3.13. If $f: X \to \widetilde{\mathbb{R}}_0^+$ is integrable, then $\int_X f \, d\mu = \sup_{g \in S_f} \int_X g \, d\mu$. Conversely, if $f \geq 0$ is such that the quantity $\sup_{g \in S_f} \int_X g \, d\mu$ exists in R, then f is integrable and $\int_X f \, d\mu = \sup_{g \in S_f} \int_X g \, d\mu$.

PROOF. The assertion follows by Propositions 3.11 and 3.12. \Box

The following result is easy also.

Proposition 3.14. Let $f: X \to \widetilde{\mathbb{R}}_0^+$ be an integrable map, $g: X \to \widetilde{\mathbb{R}}_0^+$ measurable such that $0 \leq g(x) \leq f(x)$, $\forall x \in X$. Then g is integrable, and $\int_X g \, d\mu \leq \int_X f \, d\mu$.

Now we note that if $\mu: X \to R$ is a mean and $\mathcal{C}_{\infty}(\Omega)$ is as in Theorem 2.4, then there exists a nowhere dense set $\Omega' \subset \Omega$ such that $\mu(A)(\omega)$ is real, $\forall \omega \notin \Omega', \forall A \in \mathcal{A}$.

Proposition 3.15. Let $R \subset \mathcal{C}_{\infty}(\Omega)$ be a Dedekind complete Riesz space where Ω' is as above and set $\mu_{\omega}(A) \equiv \mu(A)(\omega)$, $\forall \omega \notin \Omega'$. Assume that $f: X \to \mathbb{R}$ is an integrable map. Then there exists a meager set $N \subset \Omega$ such that f is integrable with respect to μ_{ω} and $\int_A f d\mu_{\omega} = \left(\int_A f d\mu\right)(\omega)$, $\forall \omega \in N^c$, $\forall A \in \mathcal{A}$.

PROOF. Without loss of generality, we can assume that f is nonnegative. First suppose that f is bounded. There exists a sequence of simple functions $(s_n)_n$ such that $s_n \uparrow f$ and $\int s_n d\mu \uparrow \int f d\mu$. So we have, for every $n \in \mathbb{N}$, up to the complement of a meager set, depending only on X

$$0 \leq \left| \int_{A} f \, d\mu_{\omega} - \left(\int_{A} f \, d\mu \right) (\omega) \right|$$

$$\leq \left| \int_{A} f \, d\mu_{\omega} - \int_{A} s_{n} \, d\mu_{\omega} \right| + \left| \int_{A} s_{n} \, d\mu_{\omega} - \left(\int_{A} f \, d\mu \right) (\omega) \right|$$

$$= \left| \int_{A} f \, d\mu_{\omega} - \int_{A} s_{n} \, d\mu_{\omega} \right| + \left| \left(\int_{A} s_{n} \, d\mu \right) (\omega) - \left(\int_{A} f \, d\mu \right) (\omega) \right|$$

$$\leq \int_{X} f - s_{n} \, d\mu_{\omega} + \left(\int_{X} f - s_{n} \, d\mu \right) (\omega).$$

Then

$$0 \le \left| \int_{A} f \, d\mu_{\omega} - \left(\int_{A} f \, d\mu \right) (\omega) \right|$$

$$\le \limsup_{n} \int_{X} f - s_{n} \, d\mu_{\omega} + \limsup_{n} \left(\int_{X} f - s_{n} \, d\mu \right) (\omega)$$

$$= \inf_{n} \int_{X} f - s_{n} \, d\mu_{\omega} + \inf_{n} \left(\int_{X} f - s_{n} \, d\mu \right) (\omega) = 0.$$

Assume now that f is integrable. By the previous step, there exists a meager set N^* such that, $\forall n \in \mathbb{N}, \forall \omega \notin N^*, \forall A \in \mathcal{A}$

$$\int_{A} (f \wedge n) d\mu_{\omega} = \left(\int_{A} f \wedge n d\mu \right) (\omega).$$

The proof is now analogous to the first part. It will be enough to replace s_n with $f \wedge n$.

Now we prove the following theorem.

Theorem 3.16. Let $f: X \to \tilde{\mathbb{R}}_0^+$ be an integrable map. Then there exists a meager set N such that for every $A \in \mathcal{A}$ and for every $\omega \notin N$,

$$\left(\int_{A} f \, d\mu\right)(\omega) \in (\mu(A)\,\overline{\operatorname{co}}\,\{f(x): x \in A\})(\omega).$$

PROOF. By Proposition 3.15 and classical results we have, up to the complement of a meager set

$$\left(\int_{A} f \, d\mu\right)(\omega) = \int_{A} f \, d\mu_{\omega} \in \mu_{\omega}(A) \, \overline{\operatorname{co}} \left\{ f(x), x \in A \right\}$$
$$= \overline{\operatorname{co}} \left\{ f(x)\mu_{\omega}(A), x \in A \right\} = (\mu(A) \, \overline{\operatorname{co}} \left\{ f(x), x \in A \right\})(\omega). \quad \Box$$

For the definition of absolute continuity and related remarks, see ([4]).

Proposition 3.17. If $f: X \to \tilde{\mathbb{R}}_0^+$ is integrable, then the integral $\int_{\mathbb{R}} f \, d\mu$ is absolutely continuous; that is, $(o) - \lim_n \int_{A_n} f \, d\mu = 0$ whenever $(A_n)_n$ is a sequence in A such that $(o) - \lim_n \mu(A_n) = 0$.

PROOF. The assertion is trivial when f is bounded. So we prove absolute continuity in the general case. Fix $n, k \in \mathbb{N}$, and pick $(A_n)_n$, with $(o) - \lim_n \mu(A_n) = 0$. We have

$$0 \le \int_{A_n} f \, d\mu = \int_{A_n} (f \wedge k) \, d\mu + \int_{A_n} f - (f \wedge k) \, d\mu$$
$$\le \int_{A_n} (f \wedge k) \, d\mu + \int_X f - (f \wedge k) \, d\mu.$$

As $(o) - \lim_k \int_X f - (f \wedge k) d\mu = 0$ and $(o) - \lim_n \int_{A_n} (f \wedge k) d\mu = 0$ for each $k \in \mathbb{N}$, there exist a sequence $(r_k)_k$ in R, $r_k \downarrow 0$, and a double sequence $(r'_{n,k})_{n,k}$ in R, $r'_{n,k} \downarrow 0$ $(n \to +\infty, k = 1, 2, \ldots)$ such that

$$0 \le \int_{A_n} f \, d\mu \le r'_{n,k} + r_k, \quad \forall \, n, k \in \mathbb{N}.$$

It follows that

$$0 \le (o) - \limsup_{n \to +\infty} \int_{A_n} f \, d\mu \le ((o) - \limsup_{n \to +\infty} r'_{n,k}) + r_k = r_k, \quad \forall \, k \in \mathbb{N}.$$

By the arbitrariness of k, we get $(o) - \limsup_{n \to +\infty} \int_{A_n} f \, d\mu = 0$ and hence $(o) - \lim_{n \to +\infty} \int_{A_n} f \, d\mu = 0$.

Now we will prove a Vitali-type theorem for our integral.

Definition 3.18. Let $(f_n : X \to \widetilde{\mathbb{R}})_n$ be a sequence of integrable functions. We say that $(f_n)_n$ is uniformly integrable if $\sup_n \int_X |f_n| d\mu \in R$ and $(o) - \lim_n \sup_{k \ge n} \left(\int_{A_n} |f_k| d\mu \right) = 0$, whenever $(o) - \lim_k \mu(A_k) = 0$.

Definition 3.19. Under the same hypotheses and notation as above, we say that $(f_n)_n$ converges in L^1 to f if $(o) - \lim_n \int_X |f_n - f| d\mu = 0$.

Remark 3.20. It is easy to check that $(f_n)_n$ converges in L^1 to f if and only if $\int_A f d\mu = (o) - \lim_{n \to +\infty} \int_A f_n d\mu$ uniformly with respect to $A \in \mathcal{A}$.

Theorem 3.21. (Vitali's theorem) Under the same notation as above, let $(f_n)_n$ be a uniformly integrable sequence of functions, convergent in measure to f. Then f is integrable and $(f_n)_n$ converges in L^1 to f.

Conversely, every sequence (f_n) of integrable functions, convergent in L^1 to an integrable map f, is convergent in measure to f and uniformly integrable.

PROOF. To obtain the integrability of |f|, it is enough to prove that

$$\sup S_{|f|} \equiv \sup \left\{ \int_X \varphi \, d\mu : 0 \le \varphi \le |f| \quad \text{and} \quad \varphi \text{ is simple} \right\} \in R, \qquad (1)$$

by virtue of Proposition 3.13. Let $\varphi \in S_{|f|}$, $\varphi = \sum_{j=1}^k c_j \chi_{B_j}$. Fix $j=1,2,\ldots,k$ and for every $n\in\mathbb{N}$, set $A_n\equiv E_1^{|f-f_n|}$. If $x\in A_n{}^c\cap B_j$, we have $\varphi(x)=c_j\leq |f_n(x)|+1$ and hence $\int_{B_j\cap A_n^c}\varphi(x)\,d\mu\leq \int_{B_j}|f_n(x)|\,d\mu+\mu(B_j)$. As to $A_n\cap B_j$, we have $\int_{B_j\cap A_n}\varphi(x)\,d\mu\leq c_j\mu(A_n)$. Thus

$$\int_{B_j} \varphi(x) \, d\mu \le \int_{B_j} |f_n(x)| \, d\mu + \mu(B_j) + c_j \mu(A_n),$$

$$\int_X \varphi(x) \, d\mu \le \int_X |f_n(x)| \, d\mu + \mu(X) + \mu(A_n) \sum_{j=1}^k c_j.$$

By convergence in measure, $(o) - \lim_{n \to +\infty} \mu(A_n) \sum_{j=1}^k c_j = 0$ and since n is arbitrary, $\int_X \varphi \, d\mu \leq \sup_n \int_X |f_n| \, d\mu + \mu(X) \in R$. Since the right hand side does not depend on φ , (1) follows. So |f| is integrable. By Proposition 3.14, f^+ and f^- are integrable and so is f.

Now fix $\varepsilon > 0$ and $n \in \mathbb{N}$. As f_n is integrable by hypothesis, so is $f - f_n$.

We have

$$\int_{X} |f_{n} - f| d\mu \leq \int_{\{x \in X: |f_{n} - f| \leq \varepsilon\}} |f_{n} - f| d\mu + \int_{\{x \in X: |f_{n} - f| > \varepsilon\}} |f_{n} - f| d\mu
\leq \int_{X} \varepsilon d\mu + \int_{\{x \in X: |f_{n} - f| > \varepsilon\}} |f_{n}| d\mu + \int_{\{x \in X: |f_{n} - f| > \varepsilon\}} |f| d\mu
\leq \varepsilon \cdot \mu(X) + \sup_{k \geq n} \int_{\{x \in X: |f_{n} - f| > \varepsilon\}} |f_{k}| d\mu + \int_{\{x \in X: |f_{n} - f| > \varepsilon\}} |f| d\mu.$$

As $(o) - \lim_n \mu(\{x \in X : |f - f_n| > \varepsilon\}) = 0$, by virtue of uniform integrability of $(f_k)_k$, integrability of f and absolute continuity of the integral we get

$$(o) - \lim_{n \to +\infty} \left[\sup_{k \ge n} \int_{\{x \in X: |f_n - f| > \varepsilon\}} |f_k| \, d\mu + \int_{\{x \in X: |f_n - f| > \varepsilon\}} |f| \, d\mu \right] = 0.$$

So there exists a sequence $(r_n)_n$ in R, $r_n \downarrow 0$ such that

$$0 \le \int_X |f_n - f| \, d\mu \le \varepsilon \cdot \mu(X) + r_n, \quad \forall \, n \in \mathbb{N}.$$

Thus we obtain

$$0 \le (o) - \limsup_{n \to +\infty} \int_X |f_n - f| \, d\mu \le \varepsilon \cdot \mu(X) + (o) - \limsup_{n \to +\infty} r_n$$
$$= \varepsilon \cdot \mu(X) + \inf_{n \in \mathbb{N}} r_n = \varepsilon \cdot \mu(X).$$

Since $\varepsilon > 0$ was arbitrary, we get $(o) - \lim_{n \to +\infty} \int_X |f_n - f| d\mu = 0$. Conversely, suppose that $(f_n)_n$ converges in L^1 to f. Fix $\varepsilon > 0$ and set

$$E_{\varepsilon}^{|f-f_n|} \equiv \{x \in X : |f_n(x) - f(x)| > \varepsilon\}, \quad \forall n \in \mathbb{N}.$$

Then

$$\frac{\int_X |f_n - f| \, d\mu}{\varepsilon} \ge \frac{\int_{E_{\varepsilon}^{|f - f_n|}} |f_n - f| \, d\mu}{\varepsilon} \ge \mu(E_{\varepsilon}^{|f - f_n|}) \ge 0,$$

and hence $(o) - \lim_n \mu(E_{\varepsilon}^{|f - f_n|}) = 0.$

Now we prove uniform integrability. By convergence in L^1 , it follows immediately that $\sup_k \int_X |f_k| d\mu \in R$. Let $(A_n)_n$ be a sequence in \mathcal{A} such that $(o) - \lim_n \mu(A_n) = 0$. Fix $n \in \mathbb{N}$. For every $k \geq n$ we have

$$\int_{A_n} |f_k| \, d\mu \le \int_{A_n} |f_k - f| \, d\mu + \int_{A_n} |f| \, d\mu \le \int_X |f_k - f| \, d\mu + \int_{A_n} |f| \, d\mu.$$

By convergence in L^1 , there exists a sequence $(r_k)_k$ in R, $r_k \downarrow 0$ such that $\int_X |f_k - f| d\mu \le r_k \le r_n$. Thus $\sup_{k \ge n} \int_{A_n} |f_k| d\mu \le r_n + \int_{A_n} |f| d\mu$. So

$$0 \le (o) - \limsup_{n \to +\infty} \sup_{k \ge n} \int_{A_n} |f_k| \, d\mu \le \inf_n r_n + (o) - \limsup_{n \to +\infty} \int_{A_n} |f| \, d\mu = 0$$

and hence
$$(o) - \lim_{n \to +\infty} \sup_{k \ge n} \int_{A_n} |f_k| d\mu = 0.$$

A consequence of Vitali's theorem is the following theorem.

Theorem 3.22. (Lebesgue dominated convergence theorem) Let $(f_n)_n$, f_n be a sequence of measurable functions and suppose that there exists an integrable map h such that $|f_n(x)| \leq |h(x)|$ for all $n \in \mathbb{N}$ and almost everywhere with respect to x. Furthermore assume that $(f_n)_n$ converges in measure to f. Then for every $n \in \mathbb{N}$, f_n is integrable and $(f_n)_n$ converges in L^1 to f.

PROOF. Without loss of generality, we suppose that

$$|f_n(x)| \le |h(x)|, \quad \forall n \in \mathbb{N}, \quad \forall x \in X.$$

By integrability of |h| and Proposition 3.14, f_n is integrable for every $n \in \mathbb{N}$. Moreover by virtue of absolute continuity of the integral of h, the hypotheses of Theorem 3.21 hold. So the assertion follows.

As a consequence of Theorem 3.22, we prove the following theorem, that is a sufficient condition for the convergence in L^1 , inspired by a well-known result of Scheffé's ([23]):

Theorem 3.23. With the same notation as above, let $(f_n)_n : X \to \widetilde{\mathbb{R}}_0^+$ be a sequence of integrable functions, convergent in measure to a nonnegative integrable mapping f. Assume that $\int_X f_n d\mu(o)$ -converges to $\int_X f d\mu$. Then $(f_n)_n$ converges in L^1 to f.

PROOF. Let $h_n(x) = f_n(x) - f(x)$, $\forall x \in X$. Thus $0 \le [h_n(x)]^- \le f(x)$, $\forall x$. Let $H_n(x) = [h_n(x)]^-$, $\forall x$. Then f, H_n are integrable for every n and $(H_n)_n$ converges in measure to 0. By Theorem 3.22, we have $0 = (o) - \lim_n \int_X [h_n(x)]^- d\mu$ and so $(o) - \lim_n \int_X [h_n(x)]^+ d\mu = (o) - \lim_n \int_X h_n d\mu = 0$, by hypothesis. Finally we get

$$(o) - \lim_{n} \int_{X} |h_{n}| d\mu = (o) - \lim_{n} \int_{X} [h_{n}(x)]^{+} d\mu$$
 (2)

$$+(o) - \lim_{n} \int_{X} [h_n(x)]^{-} d\mu = 0.$$

We now state a version of the monotone convergence theorem.

Theorem 3.24. With the same notation as above, let $(f_n)_n$ be an increasing sequence of non negative integrable maps, convergent in measure to an integrable function f. Then $\int_X f d\mu = (o) - \lim_n \int_X f_n d\mu$ and therefore $f_n \to f$ in L^1 .

PROOF. It is an immediate consequence of Vitali's Theorem.

4 Countably Additive Case

If μ is countably additive, convergence almost everywhere implies convergence in measure; this can be proved along classical lines. Hence we simply state the results. So both Levi's theorem and Fatou's lemma hold.

Proposition 4.1. Let R be a Dedekind complete Riesz space, $A \subset \mathcal{P}(X)$ a σ -algebra, and assume that $\mu : A \to R$ is a σ -additive mean. Set

$$A_n^{\varepsilon} \equiv \{x \in X : |f_n(x) - f(x)| > \varepsilon\}, \quad \forall \varepsilon > 0.$$

Then, f_n converges almost everywhere to f if and only if $\mu(\limsup_n A_n^{\varepsilon}) = 0$, $\forall \varepsilon > 0$.

It is easy to prove the following.

Proposition 4.2. Let R, A and μ be as above, and assume that μ is σ -additive. Then for each sequence (A_n) in A one has

$$\mu(\liminf_n A_n) \leq \liminf_n \mu(A_n) \leq \limsup_n \mu(A_n) \leq \mu(\limsup_n A_n).$$

A straightforward consequence of Proposition 4.2 is the following.

Theorem 4.3. Let f_n , f and μ be as above. If (f_n) converges to f almost everywhere, (f_n) converges to f in measure.

From Theorems 3.24 and 4.3, and by the proceeding as in the classical case, the next theorem follows.

Theorem 4.4. With the same notation and hypotheses as above, let $(f_n)_n$ be an increasing sequence of nonnegative measurable maps. Then $f(x) \equiv \lim_n f_n(x)$ is integrable if and only if $\lim_n \int_X f_n d\mu \in R$ and in this case

$$\int_X f \, d\mu = (o) - \lim_n \int_X f_n \, d\mu.$$

A consequence of Beppo Levi's Theorem is the following version of Fatou's Lemma.

Theorem 4.5. Let X, R, μ be as above, $(f_n)_n$ a sequence of nonnegative integrable maps, $f(x) \equiv \liminf_n f_n(x)$, $\forall x \in X$. If $\liminf_n \int_X f_n d\mu \in R$, then f is integrable and $\liminf_n \int_X f_n d\mu \geq \int_X f d\mu$.

5 Radon-Nikodym Theorem

In this section we give a Greco-type condition for the existence of a Radon-Nikodym derivative for the monotone integral introduced in the previous section (see [14]). We show that the Radon-Nikodym problem, in general, has no solutions. Indeed, there exist two \mathbb{R}^2 -valued σ -additive means μ and ν , with $\nu \ll \mu$, such that there is no function $f: X \equiv \{0,1\} \to \mathbb{R}$ such that $\nu = \int_X f \, d\mu$.

Let $X \equiv \{0,1\}$, $\mathcal{A} \equiv \mathcal{P}(X)$, $R \equiv \mathbb{R}^2$ (endowed with componentwise ordering), $\mu, \nu : \mathcal{P}(X) \to \mathbb{R}^2$ defined by setting

$$\mu(\{0\}) = (1,0), \quad \mu(\{1\}) = (0,1), \quad \nu(\{0\}) = (0,1), \quad \nu(\{1\}) = (1,0).$$

It is easy to check that μ and ν are σ -additive, ν is absolutely continuous with respect to μ and μ is absolutely continuous with respect to ν . However there is no function $f: X \to \mathbb{R}$ such that $\nu(A) = \int_A f \, d\mu$, $\forall \, A \in \mathcal{P}(X)$ for otherwise, we would have $(1,0) = \nu(\{1\}) = \int_{\{1\}} f \, d\mu = f(1)\mu(\{1\}) = (0,f(1))$, which is a contradiction.

Furthermore it is easy to see that for every r > 0 there exists no Hahn decomposition for the map $\nu - r\mu$.

Now we introduce two preliminary lemmas.

Proposition 5.1. Let $\mu, \nu : A \to R$ be two means with $\nu \ll \mu$. If there exists an A-measurable function $f: X \to \widetilde{\mathbb{R}}_0^+$ such that, for every $E \in A$

$$\nu(E) = \int_E f \, d\mu,$$

then, for every r > 0, the set $A_r = \{x \in X : f(x) > r\}$ satisfies

(5.1.1)
$$\nu(E) \geq r\mu(E)$$
 for every $E \in A_r \cap \mathcal{A}$,

(5.1.2)
$$\nu(E) \leq r\mu(E)$$
 for every $E \in A_r^c \cap \mathcal{A}$,

(5.1.3)
$$(o) - \lim_{r \to +\infty} \nu(A_r) = 0.$$

PROOF. $A_r \in \mathcal{A}$ for every r > 0 since f is measurable. Moreover for every r > 0 and for every $E \in A_r \cap \mathcal{A}$, $F \in A_r^c \cap \mathcal{A}$ we have

$$\begin{split} \nu(E) &= \int_E f \, d\mu \geq \int_E r \, d\mu = r \mu(E) \\ \nu(F) &= \int_F f \, d\mu \leq \int_F r \, d\mu = r \mu(F). \end{split}$$

This proves (5.1.1) and (5.1.2).

(5.1.3) is a consequence of (5.1.1). In fact (5.1.1) yields

$$\mu(A_r) \le \frac{\nu(A_r)}{r} \le \frac{\nu(X)}{r}, \quad \forall r > 0.$$

So
$$(o) - \lim_{r \to +\infty} \mu(A_r) = 0$$
, and hence $(o) - \lim_{r \to +\infty} \nu(A_r) = 0$.

Proposition 5.2. Let μ , $\nu : \mathcal{A} \to R$ be two means with $\nu \ll \mu$. Let $D \equiv \left\{\frac{i}{2^n}, i, n \in \mathbb{N}\right\}$. If there exists a decreasing family $(A_r)_{r \in D}$ such that $A_0 = X$ and satisfying (5.1.1) and (5.1.2), then the function $f : X \to [0, +\infty]$, defined by $f(x) \equiv \sup\{r \in D : x \in A_r\}$, is integrable and $\nu(E) = \int_E f d\mu$, $\forall E \in \mathcal{A}$.

PROOF. f is \mathcal{A} -measurable, since, $\forall t > 0$, $\{x \in X : f(x) > t\} = \bigcup_{r \in D, r > t} A_r$. Let $f_n \equiv \frac{1}{2^n} \sum_{k=1}^{n2^n} \chi_{A_{\frac{k}{2^n}}}$, for every $n \in \mathbb{N}$. Then $f \wedge n - f \wedge \frac{1}{2^n} \leq f_n \leq f$, $\forall n$. By construction for every $E \in \mathcal{A}$,

$$\int_{E} f_{n} d\mu = \frac{1}{2^{n}} \sum_{k=1}^{n2^{n}} \mu(A_{\frac{k}{2^{n}}})$$

$$= \sum_{k=1}^{n2^{n}-1} \frac{k}{2^{n}} \left[\mu(A_{\frac{k}{2^{n}}} \cap E) - \mu(A_{\frac{k+1}{2^{n}}} \cap E) \right] + n\mu(A_{n} \cap E)$$

$$\leq \sum_{k=1}^{n2^{n}-1} \left[\nu(A_{\frac{k}{2^{n}}} \cap E) - \nu(A_{\frac{k+1}{2^{n}}} \cap E) \right] + n\nu(A_{n} \cap E) \leq \nu(E).$$

So $\sup_n \int_X f_n d\mu \le \nu(X) \in R$ and thus

$$\sup_{n} \int_{X} (f \wedge n) d\mu \le \sup_{n} \int_{X} (f_n + 1) d\mu \le \nu(X) + \mu(X).$$

So by Proposition 3.11, f is integrable and hence, by Proposition 3.8, $f \cdot \chi_E$

is integrable, $\forall E \in \mathcal{A}$. Thus

$$(o) - \lim_{n} \left[\int_{E} (f \wedge n) \, d\mu - \int_{E} \left(f \wedge \frac{1}{2^{n}} \right) \, d\mu \right] = (o) - \lim_{n} \int_{E} (f \wedge n) \, d\mu$$
$$= \int_{E} f \, d\mu,$$

and therefore $(o) - \lim_n \int_E f_n d\mu = \int_E f d\mu$ and $\int_E f d\mu \leq \nu(E)$, $\forall E \in \mathcal{A}$. On the other hand,

$$\int_{E} f_{n} d\mu = \sum_{k=1}^{n2^{n}-1} \frac{k+1}{2^{n}} \left[\mu(A_{\frac{k}{2^{n}}} \cap E) - \mu(A_{\frac{k+1}{2^{n}}} \cap E) \right] + n\mu(A_{n} \cap E) +$$

$$- \frac{1}{2^{n}} \sum_{k=1}^{n2^{n}-1} \left[\mu(A_{\frac{k}{2^{n}}} \cap E) - \mu(A_{\frac{k+1}{2^{n}}} \cap E) \right]$$

$$\geq \nu(A_{\frac{1}{2^{n}}} \cap E) - \nu(A_{n} \cap E) - \frac{1}{2^{n}} \left(\mu(A_{\frac{k}{2^{n}}}) - \mu(A_{n} \cap E) \right).$$

Taking the (o)-limits as $n \to \infty$, we obtain $\int_E f d\mu = \nu(E)$.

A consequence of Proposition 5.1 and 5.2 is the following Radon-Nikodym Theorem.

Theorem 5.3. Let $\mu, \nu : A \to R$ be two means with $\nu \ll \mu$. Then the following are equivalent:

- **(5.3.a)** there exists an A-measurable function $f: X \to \widetilde{\mathbb{R}}_0^+$ such that, for every $E \in \mathcal{A}$ we have $\nu(E) = \int_E f \, d\mu$,
- (5.3.b) there exists a family $(A_r)_{r>0}$ of measurable sets such that for every r>0

(5.3.b.1)
$$\nu(E) \geq r\mu(E)$$
 for every $E \in A_r \cap \mathcal{A}$,

(5.3.b.2)
$$\nu(E) \leq r\mu(E)$$
 for every $E \in A_r^c \cap \mathcal{A}$.

The following is a different formulation of Theorem 5.3.

Theorem 5.4. Let $\mu, \nu : A \to R$ be two means with $\nu \ll \mu$. Then the following are equivalent:

(5.4.a) there exists a A-measurable function $f: X \to \widetilde{\mathbb{R}}_0^+$ such that, for every $E \in \mathcal{A}$ we have $\nu(E) = \int_E f \, d\mu$,

(5.4.b) for every r > 0 the measure $\nu - r\mu$ admits a Hahn decomposition, namely there exist two disjoint measurable sets (B_r, C_r) such that, $\forall E \in \mathcal{A}$

$$(\nu - r\mu)^+(E) = (\nu - r\mu)(E \cap B_r)$$
$$(\nu - r\mu)^-(E) = (\nu - r\mu)(E \cap C_r).$$

Proof. $(5.4.a) \Longrightarrow (5.4.b)$

By Theorem 5.3, there exists a family $(A_r)_{r>0}$ of measurable sets such that, for every r>0

(5.3.b.1)
$$\nu(E) \geq r\mu(E)$$
 for every $E \in A_r \cap \mathcal{A}$,

(5.3.b.2)
$$\nu(E) \leq r\mu(E)$$
 for every $E \in A_r^c \cap \mathcal{A}$.

Set $B_r \equiv A_r$, $C_r \equiv A_r^c$. For every $E \in A_r \cap \mathcal{A}$ we have

$$(\nu - r\mu)^{+}(E) = (\nu - r\mu)^{+}(E \cap A_r) + (\nu - r\mu)^{+}(E \cap A_r^{c})$$
$$= (\nu - r\mu)^{+}(E \cap A_r) = (\nu - r\mu)(E \cap A_r)$$

from (5.3.b.1), since $(\nu - r\mu)(F) \leq 0$, $\forall F \in E \cap A_r^c \cap \mathcal{A}$. So we obtain, for every $E \in \mathcal{A}$, $(\nu - r\mu)^+(E) = (\nu - r\mu)(E \cap B_r)$. Analogously for each $E \in \mathcal{A}$, $(\nu - r\mu)^-(E) = (\nu - r\mu)(E \cap C_r)$. (5.4.b) \Longrightarrow (5.4.a)

It is easy to check that, if (5.4.b) holds, then (5.3.b.1.) and (5.3.b.2.) are satisfied. The assertion follows by Proposition 5.2.

References

- [1] C. D. Aliprantis and O. Burkinshaw, *Locally solid Riesz spaces*, Academic Press, 1978.
- [2] S. J. Bernau, Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc., 15 (1965), 599–631.
- [3] A. Boccuto, Riesz spaces, integration and sandwich theorems, Tatra Mountains Math. Publ., 3 (1993), 213–230.
- [4] A. Boccuto, Abstract integration in Riesz spaces, Tatra Mountains Math. Publ., 5 (1995), 107–124.
- [5] J. K. Brooks and A. Martellotti, On the De Giorgi-Letta integral in infinite dimensions, Atti Sem. Mat. Fis. Univ. Modena, 4 (1992), 285–302.

- [6] G. Choquet, Theory of capacities, Annales de l'Istitut de Fourier, 5 (1953-54), 131-295.
- [7] M. Congost Iglesias, Medidas y probabilidades en estructures ordenadas, Stochastica, 5 (1981), 45–68.
- [8] R. Cristescu, On integration in ordered vector spaces and on some linear operators, Rend. Circ. Mat. Palermo, Suppl., 33 (1993), 289–299.
- [9] E. De Giorgi and G. Letta, Une notion générale de convergence faible des fonctions croissantes d'ensemble, Ann. Scuola Sup. Pisa, **33** (1977), 61–99.
- [10] D. Denneberg, Non-additive measure and integral, Kluwer Acad. Publ., 1994.
- [11] M. Duchoň and B. Riečan, On the Kurzweil-Stieltjes integral in ordered spaces, to appear on Tatra Mountains Math. Publ.
- [12] I. Gilboa and D. Schmeidler, Additive representation of non-additive measures and the Choquet integral, Ann. Oper. Res., **52** (1994), 43–65.
- [13] G. H. Greco, Integrale monotono, Rend. Sem. Mat., Univ. Padova, 57 (1977), 149–166.
- [14] G. H. Greco, Un teorema di Radon-Nikodym per funzioni d'insieme sub-additive, Ann. Univ. Ferrara, 27 (1981), 13–19.
- [15] J. Haluška, On integration in complete vector lattices, Tatra Mountains Math. Publ., 3 (1993), 201–212.
- [16] M. C. Isidori, A. Martellotti and A. R. Sambucini, The monotone integral, preprint, 1995.
- [17] W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, North-Holland Publishing Co., 1971.
- [18] P. Maličký, Random variables with values in a vector lattice (mean value and conditional mean value operators), Acta Math. Univ. Comenianae, 52-53 (1987), 249-263.
- [19] P. Mcgill, Integration in vector lattices, J. Lond. Math. Soc., 11 (1975), 347–360.
- [20] E. J. Mcshane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Mem. Amer. Math. Soc., 88 (1969).

- [21] B. Riečan, On the Kurzweil integral for functions with values in ordered spaces I, Acta Math. Univ. Comenian., **56-57** (1989), 411–424.
- [22] B. Riečan and M. Vrábelová, On the Kurzweil integral for functions with values in ordered spaces II, Math. Slovaca, 43 (1993), 471–475.
- [23] H. Scheffe, A useful convergence theorem for probability distributions, Ann. Math. Stat., 18 (1947) 434–438.
- [24] J. Šipoš, Integral with respect to a pre-measure, Math. Slov., 29 (1979), 141–155.
- [25] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967.
- [26] J. D. M. Wright, Stone-algebra-valued measures and integrals, Proc. Lond. Math. Soc., 19 (1969), 107–122.
- [27] J. D. M. Wright, Measures with values in a partially ordered vector space, Proc. London Math. Soc., 25 (1972), 675–688.
- [28] A. C. Zaanen, Riesz spaces II, North-Holland Publishing Co., 1983.