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UNIMODAL FUNCTIONS OF TYPE 2∞

Abstract

The aim of this paper is to describe in an explicit way all scrambled
sets of chaotic weakly unimodal functions of type 2∞. For this purpose,
we introduce in this setting a new coding method which turns out to
be more useful here than the standard one from Milnor and Thurston’s
kneading theory [12].

1 Introduction

Since its appearance in 1975 [10], the notion of chaos in the sense of Li and
Yorke has been deeply analyzed, because as is shown in Smı́tal [17], it gives
a very reasonable criterion to decide whether the dynamics of a continuous
function f : I → I is “complex” or not. Here and in what follows, I will
always denote a non-degenerate compact interval. Also, recall that f0 = Id,
fn is the n-th iterate of f and a point p ∈ I is said to be periodic (of period
r) if there is an r ≥ 1 such that fr(p) = p and f i(p) 6= p for any 1 ≤ i < r. A
periodic point of period 1 is also called a fixed point.

Definition 1 Let f : I → I be a continuous function. Suppose that there is
an S ⊂ I with at least two elements such that for any x, y ∈ S, x 6= y, and
any periodic point p of f we have

(i) lim supn→∞ |fn(x)− fn(y)| > 0,
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(ii) lim infn→∞ |fn(x)− fn(y)| = 0,

(iii) lim supn→∞ |fn(x)− fn(p)| > 0.

Then we say that f is chaotic (in the sense of Li and Yorke) and S is called
a scrambled set of f .

In particular, it is interesting to know whether the size of the scrambled
sets of f is “large”, since this would imply “observable” chaos. There are
several papers showing examples of chaotic functions possessing scrambled
sets of positive or even full Lebesgue measure. (See for example Smı́tal [17],
Misiurewicz [14], Bruckner and Hu [3], Jiménez López [7], [8].) However, the
natural problem of constructing explicit examples of maximal scrambled sets
remained open. Here we say that a scrambled set of f is maximal if it is not
properly included in another scrambled set of f .

We will need some notation. Throughout the paper, closed intervals are
possibly degenerate. Given A,B ⊂ I, [A;B] will denote the least interval
including A and B, while (A;B) = [A;B] \ (A ∪ B). If A = {a}, we will
replace A by a in the above notation and then we will write respectively [a;B]
and (a;B) (similarly for the case B = {b}). If f is a function defined on A
and B ⊂ A, f |B will denote the restriction of f to B.

Definition 2 Let f : I → I be a non-constant continuous function, I = [a; b].
We say that f is weakly unimodal if f(a) = f(b) ∈ {a, b} and there is a
c ∈ (a; b) such that f |[a;c] and f |[c;b] are monotone.

The maximal closed interval C containing c for which f |C is constant will
be called the turning interval of f .

Notice that f |[a;c] need not be strictly monotone (similarly for f |[c;b]) and
likewise the turning interval may be non-degenerate.

Definition 3 Let f : I → I be a continuous function. We say that f is of
type 2∞ if it has periodic points of period 2r for every r ≥ 0 but no other
periods.

We will denote by U(I) (resp. V (I)) the set of weakly unimodal functions
f : I → I of type 2∞ for which all points of the turning interval are absolute
maxima (resp. absolute minima). We also define W (I) = U(I) ∪ V (I).

It is known that the set W (I) contains some chaotic functions. (See Mi-
siurewicz and Smı́tal [15].) The aim of this paper is to give an explicit de-
scription of all scrambled sets of every chaotic function f ∈W (I). Since every
scrambled set is a subset of a maximal scrambled set and every subset (con-
taining more than one point) of a scrambled set is also a scrambled set, for
this purpose it is sufficient to describe all maximal scrambled sets of f . This is
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accomplished in Theorem 1. In order to find such a description we will make
use of symbolic techniques, that is, we assign “codes” (sequences of symbols)
to points in an appropriate way and study the dynamical properties of the
points in terms of the structure of their codes. The standard way of doing
this, the kneading theory, is not very useful here. Thus we introduce a more
convenient coding method whose details are described in Section 2.

2 The Coding Method for Weakly Unimodal Functions
of Type 2∞

Let f ∈ W (I) be chaotic. We intend to describe explicitly all its scrambled
sets. When trying to solve this problem, we need to be able to identify each
point by a specific “name” (or code). Of course we have decimal expansions
for this, but they are useless in our setting because they have no relation
with the dynamical properties of the points (with respect to f). Ideally, our
coding method should satisfy the following requirements. (a) It must have a
“dynamical meaning’. (b) Each point must have its corresponding code, or
at least each point whose dynamics is significant for our problem. (c) If two
points x, y have the same code then their dynamics must be essentially the
same; that is, limn→∞ |fn(x) − fn(y)| = 0. (d) For each “reasonable” code
there must exist some point having it as its code — this would surely simplify
the technical part, both in the statement of results and in the construction of
examples.

A standard coding method is provided by Milnor and Thurston’s kneading
theory [12]. In fact f need not be of type 2∞ here. The method consists
of assigning an infinite sequence of −1’s, 0’ s and 1’s to each point x (its
itinerary), with −1, 0 or 1 being the n-th term of the sequence depending on
whether fn−1(x) < C, fn−1(x) ∈ C or C < fn−1(x) (C the turning interval
of f). Here and in the sequel we use the notation A < B to say that u < v
for any u ∈ A and v ∈ B, where in particular u < B stands for {u} < B
(similarly for A < {v}). The reader should notice that itineraries are usually
defined in the reversed way, that is, the n-th term is −1 if C < fn−1(x) and
1 if fn−1(x) < C, the reason of our change being to get a consistent notation
with that of the rest of the paper.

The dynamical meaning of the sequence is clear, each point has a code and
it can be checked that (c) “essentially” holds. However, not every sequence
of −1’s, 0’s and 1’s need be the itinerary of some point, and this converts
kneading theory into rather an uncomfortable tool for our purposes.

So a different approach is needed, taking into account the specific dynamic
properties of functions of type 2∞. The rest of this section is devoted to
describing our coding method and showing that (a)–(d) above holds for it.
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We use the well known idea of renormalization. (See e.g. van Strien [18].) If
f ∈W (I), then there exists a closed interval I1 ⊂ I0 = I such that f2(I1) ⊂ I1.
Moreover, f2|I1 ∈W (I1). If we let Υ(f) = f2|I1 , inductively define f0 = f and
fn+1 = Υ(fn) and In+1 is the interval playing the role for fn as I1 plays for f ,
then for each point x ∈ I either it is asymptotically periodic; that is, there
is a periodic point p such that limi→∞ |f i(x) − f i(p)| = 0, or for any n ≥ 0
there is a (minimal) nonnegative integer l(n) such that xn = f l(n)(x) ∈ In.
This allows us to assign to any non-asymptotically periodic point an infinite
sequence of integer numbers, which we will denote by Πf (x), as follows. If αn
is the n-th term of the sequence Πf (x), this means that fn−1 maps xn−1 into

In after |αn| iterations and f
|αn|
n−1 (xn−1) = xn. If αn = 0, we have xn−1 = xn

and then xn−1 ∈ In. Otherwise, αn will be negative or positive depending on
whether xn−1 lies between In and the fixed endpoint (for fn−1) of In−1 or not.

There is still another dynamical interpretation for Πf (x) in terms of the
renormalization map. Let Φ : [0, 1] → [0, 1] be defined by Φ(x) = κx(1 − x),
where κ ≈ 3.5699456 . . .. As is well known, Φ ∈ W ([0, 1]). (See e.g. Pre-
ston [16, p. 189].) Later we will show (Proposition 5) that f is topologically
semiconjugate to Φ, that is, there is a monotone onto function g : I → [0, 1]
such that g ◦ f = Φ ◦ g. Moreover, Φ and Φ1 = Υ(Φ) ∈ W (I1) are topolog-
ically conjugate, which means that the map h with h ◦ Φ1 = Φ ◦ h is now a
homeomorphism. (See Misiurewicz [13].) Let J1 contain Φ(I1) and be such
that Φ(J1) = I1. The renormalization map ν : I1 ∪ J1 → [0, 1] is defined by
ν(x) = h(x) if x ∈ I1 and ν(x) = h(Φ(x)) if x ∈ J1. For the set A of points
from I1∪J1 whose iterates (by ν) always belong to I1∪J1, the map ν : A→ A
is well defined. In a way which is strongly reminiscent of the kneading theory,
we can associate an infinite sequence of 0’ s and 1’s to each x ∈ A, having 0 or
1 as its n-th term depending on whether νn−1(x) ∈ I1 or νn−1(x) ∈ J1. This
sequence coincides with Πf (y) for any y ∈ g−1({x}).

Let us make the above ideas more precise. Let f ∈W (I), I = [a; b], f(a) =
a and C be the turning interval of f . Notice that f([a;C]) 6⊂ [a;C]; otherwise
f(I) ⊂ [a;C] and since f |[a;C] is increasing, f could only have periodic points
of period 1. Then there exists a (unique) fixed point p of f such that p ∈
(C; b). (See Figure 1) Now take q ∈ [C; p] with f2(q) = q and f2(x) 6= x
for any x ∈ (C; q). Observe that q 6∈ C. If not, for any x ∈ [a; q] either
fk(x) ∈ [q; f(q)] for some k or (fn(x))∞n=0 would be monotone. This, together
with f([f(q); b]) = [a; q] and the fact that f |[q;f(q)] : [q; f(q)] → [q; f(q)] is
decreasing (and then it can only have periodic points of periods 1 and 2),
leads to a contradiction. A similar reasoning shows that

f2(x) < q for any x ∈ (C; q) (1)

since otherwise f2(x) ∈ [x; f(x)] for any x ∈ [C; q]. Now take u ∈ (a;C) such
that f(u) = f(q) and f(x) 6= f(q) for any x ∈ (u;C). Since f is of type 2∞,
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Figure 1: The graph of a function f ∈ U(I); here Km stands for Km(f) for
any m.
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f2(C) ⊂ (u; q). (See Šarkovskii [19] or Block [2].) Thus f2([u; q]) ⊂ [u; q]. The
interval [u; q] is denoted by I1.

So the function Υ(f) = f2|I1 : I1 → I1 is well defined. By arguments
similar to those in the above paragraph, it is easy to show that Υ(f) ∈W (I1).
More precisely, Υ(f) ∈ V (I1) if f ∈ U(I) and Υ(f) ∈ U(I1) if f ∈ V (I).

Before continuing, we give some necessary notations and definitions.
For any set A, A∞ and An denote as usual the set of infinite sequences and

finite sequences of length n of points from A and CardA will be its cardinality.
If α is such a sequence, we denote its k-th term by αk. If α is infinite or its
length is larger than n, we set α|n = α1, α2, . . . , αn. The shift map σ : A∞ →
A∞ is defined by σ(α) = α2, α3, α4, . . ..

Let Z denote the set of integers. If α ∈ Zn, we put τ(α) =
∑n
i=1 |αi|2i−1,

and α, l will denote the sequence α1, α2, . . . , αn, l for any integer l. The se-
quences 0,1 ∈ Z∞ are defined by 0i = 0 and 1i = 1 for any i.

We order the sets Z∞, Zn as follows. If α, β ∈ Z∞ or α, β ∈ Zn, α 6= β
and k is the first integer such that αk 6= βk, we say that α < β if either
k + Card {1 ≤ i < k : αi > 0} is odd and αk < βk or k + Card {1 ≤ i <
k : αi > 0} is even and βk < αk. For instance, let α = 2, 0,−1, 0, 5, . . .,
β = 2, 0,−1, 0,−3, . . .. In this case k = 5 and Card {1 ≤ i < 5 : αi > 0} = 1.
Since 6 is even and β5 < α5, we have α < β. Observe that in the case n = 1
(when we identify Z1 and Z), < is the usual order in Z.

Finally let us introduce some specific notation for f . Recall that the se-
quence (fn)∞n=0 was defined inductively by f0 = f and fn+1 = Υ(fn). For any
n ≥ 1 and α ∈ Zn define the set Kα(f) as follows. Put K0(f) = (u; q) and
inductively define K−m(f) and Km(f) by K−m(f) = f−1(K−m+1(f))∩ (a;C)
and Km(f) = f−1(K−m+1(f)) ∩ (C; b) for any m ≥ 1. Now assume that
Kα(h) has been already defined for any α ∈

⋃n
i=1 Zi, any compact interval K

and any f̃ ∈W (K) and put

Kα(f) = {x ∈ Kα|n(f) : fτ(α|n)(x) ∈ Kαn+1
(fn)}

for any α ∈ Zn+1. Finally, define Kα(f) =
⋂∞
n=1Kα|n(f) for any α ∈ Z∞ and

put K(f) =
⋃
α∈Z∞ Kα(f).

Let us explain the connection of the above sets with our problem. First
we emphasize that Cl (K0(fn−1)) = In for any n ≥ 1. (Here ClA denotes
the closure of a set A.) Note that Cl (K1(f)) = g−1(J1) with the notation
we introduced before defining the renormalization map. Take an arbitrary
α ∈ Z∞ and let x ∈ Kα(f). Then x ∈ Kα1

(f) and |α1| is the necessary
number of iterations of f to map x into I1. Further, α1 is negative or positive
depending on whether x lies between I1 and a or I1 and b. Put x1 = f |α1|(x).
Then x1 ∈ Kα2(f1) and |α2| is the necessary number of iterations of f1 to map
x1 into I2. The sign of α2 tells us whether x1 lies between I2 and the fixed
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endpoint of f1 or not. In general, if we define xn = f
|αn|
n−1 (xn−1) and repeat

the process, we find that it takes |αn+1| iterations of fn to map xn into In+1

and the sign of αn describes the relative position of xn with respect to In+1.
Moreover, τ(α|n) is the first number such that fτ(α|n)(x) ∈ In. (This is the
number we denoted at the beginning of the section by l(n).) In other words,
α is the code Πf (x) we were looking for.

There are still some problems to solve. Let us recall them. (A) Πf , seen
as a map from K(f) to Z∞, must be well defined, or equivalently, the sets
Kα(f), α ∈ Z∞, must be pairwise disjoint. (B) K(f) must coincide with the
set of non-asymptotically periodic points of f . (C) If x, y ∈ Kα(f) for some
α ∈ Z∞, then we must have limn→∞ |fn(x) − fn(y)| = 0. (D) Πf must be
surjective; that is, Kα(f) 6= ∅ for any α ∈ Z∞. Notice that (B), (C) and (D)
correspond to the requirements (b), (c) and (d) from the beginning of this
section. (With respect to (b) we remark that a scrambled set cannot contain
any asymptotically periodic points and so these points are negligible for our
purposes.)

The following proposition summarizes some useful properties of the sets
Kα(f), α ∈ Zn, and in particular allows us to solve (A) and (D). Indeed, if
α 6= β, then α|k 6= β|k for some k, and by (iii) below Kα|k(f) ∩Kβ|k(f) = ∅
which also implies Kα(f) ∩ Kβ(f) = ∅. This solves (A). From (i) and (iii),
Cl (Kα|n+1

(f)) ⊂ Kα|n(f) for any n and α ∈ Z∞ and then (i) implies that
Kα(f) is a closed interval, in particular a nonempty set. This proves (D).

Proposition 1 Let f ∈ W (I) and C be its turning interval. Then for any
n ≥ 1 and any α ∈ Zn, the following properties hold.

(i) Kα(f) is an open interval.

(ii) K0|n(f) = K0(fn−1). In particular, C ⊂ K0|n(f).

(iii) Let β ∈ Zn. If f ∈ U(I) (resp. f ∈ V (I)) and α < β, then Kα(f) <
Kβ(f) (resp. Kβ(f) < Kα(f)).

(iv) Suppose α 6= 0|n and let j be the first integer such that αj 6= 0. Define
β ∈ Zn by βi = 1 for any i < j, βj = 1 − |αj | and βi = αi for any
i > j. Then f(Kα(f)) = Kβ(f)); in particular, fτ(α)(Kα(f)) = K0|n(f)
(because τ(β|n) = τ(α|n)− 1). Additionally, f(K0|n(f)) ⊂ K1|n(f).

Proof. We use induction on n. Indeed we will also prove the following
auxiliary property.

(v) If Card {1 ≤ i ≤ n : αi > 0} is even (resp. odd), then fτ(α)|Kα(f) is
increasing (resp. decreasing).
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Properties (i)–(v) clearly hold for the case n = 1 (use (1) to check
f(K0(f)) ⊂ K1(f)). Now, supposed that Proposition 1 holds for every n ≤ k.
We will prove it in the case n = k + 1.

To begin with, (ii) is trivial, while (i) is an immediate consequence of the
particular case in (iv) for n = k. To prove (iii), we can assume α|k = β|k
since otherwise it follows from the induction hypothesis. For example assume
that f ∈ U(I) and k is odd. (The other possibilities are analogous.) Since
fk ∈ V (Cl (K0(fk−1))), m < l implies Kl(fk) < Km(fk) for any m, l ∈ Z.
Using (v) for n = k, (iii) follows.

To prove (iv), we will distinguish two cases. If α|k 6= 0|k, we get f(Kα|k(f))
= Kβ|k(f) by (iv) for the case n = k . Since τ(β|k) = τ(α|k)− 1 and αk+1 =
βk+1, we clearly get f(Kα(f)) = Kβ(f).

Now assume α = 0|k, l. As in the paragraph above,

f2k−1(K1|k(f)) = K0|k(f), f2k−1(K1|k,m(f)) = K0|k,m(f) (2)

for any m ∈ Z. Further, notice that

f2k−1(K1|k(f) \K1|k,m(f)) = K0|k(f) \K0|k,m(f). (3)

By (iv) for n = k, we also get

f(K0|k(f)) ⊂ K1|k(f). (4)

On the other hand, Kα(f) = Kl(fk) and so

f2k(Kα(f)) = K0|k,1−|l|(f) (5)

if l 6= 0 and

f2k(K0|k+1
(f)) ⊂ K0|k,1(f).

If l 6= 0, (2)–(5) imply f(Kα(f)) ⊂ Kβ(f). Further, f(Kα(f)) = Kβ(f) since
otherwise some endpoint of Kl(fk) would be mapped by fk into
K1−|l|(fk), a contradiction. Similarly, f(K0|k+1

(f)) ⊂ K1|k+1
(f).

Finally, (v) follows trivially from the induction hypothesis if αk+1 = 0. For
example assume that Card {1 ≤ i ≤ k : αi > 0} is even and αk+1 > 0 (We
omit the other cases.), when Card {1 ≤ i ≤ k + 1 : αi > 0} is odd. Then
f
αk+1

k |Kαk+1
(fk) is clearly decreasing. Since fτ(α|k)|Kα(f) is increasing by (v)

for n = k, fτ(α)|Kα(f) = (f2k·αk+1 ◦ fτ(α|k))|Kα(f) is decreasing. �

Sometimes, if α ∈ {0, 1}n, then we will denote Kα(f) by Kn
j (f), where

j = 2n − τ(α), and also Kn
2n(f) = K0|n(f) by Kn

0 (f). Then for any n,
Proposition 1 (iii) and (iv) imply respectively

Cl (Kn+1
i (f) ∪Kn+1

i+2n(f)) ⊂ Kn
i (f) for any 0 ≤ i < 2n, (6)
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f(Kn
0 (f)) ⊂ Kn

1 (f) and f(Kn
i (f)) = Kn

i+1(f) for any 1 ≤ i < 2n. (7)

Also, it will be useful to reinterpret Proposition 1 in terms of the sets Kα(f)
but now with α ∈ Z∞. For instance, (ii) gives

C ⊂ K0(f), (8)

C the turning interval of f . From (iii) we get an easy characterization of the
order< in Z∞: α < β if and only ifKα(f) < Kβ(f) (in the case f ∈ U(I)), and
α < β if and only if Kβ(f) < Kα(f) (in the case f ∈ V (I)). If α ∈ Z∞, α 6= 0,
j is the first integer such that αj 6= 0 and we define β ∈ Z∞ by βi = 1 for any
i < j, βj = 1− |αj | and βi = αi for any i > j, then

f(Kα(f)) = Kβ(f). (9)

To prove it, use Proposition 1 (iv) to get f(Kα|n(f)) = Kβ|n(f) for any n ≥ j,
while as in (3), f(Kα|n(f) \Kα|n+1

(f)) = Kβ|n(f) \Kβ|n+1
(f) for any n ≥ j.

Similarly,

f(K0(f)) ⊂ K1(f). (10)

The following proposition solves (B).

Proposition 2 Let f ∈ W (I) and x ∈ I. Then x ∈ K(f) if and only if it is
a non-asymptotically periodic point.

Proof. Define a, b and q as at the beginning of this section. Then we clearly
have that for any x ∈ (Km(f);Km+1(f)), m ≤ 0 (resp. m > 0), f |m|(x) ∈
[q; f(q)] (resp. fm+1(x) ∈ [q; f(q)]). Further, if [a; c] and [d; b] are maximal
with the property [a; c] ∩

⋃∞
m=−∞Km(f) = ∅ = [d; b] ∩

⋃∞
m=−∞Km(f), then

c is a fixed point of f and f([a; c]) = [a; c], f([d; b]) = [a; c]. Hence, every
x ∈ I \

⋃∞
m=−∞Km(f) is asymptotically periodic. Reasoning similarly for

every fn (Also use Proposition 1 (ii) and (iv).), we get that all points of
I \K(f) are asymptotically periodic.

Conversely, take x ∈ K(f) and assume that limn→∞ |fn(x) − fn(p)| = 0
for some periodic point p of period 2r. By (7), there exists a k large enough so

that fk(x) ∈
⋃2r+2−1
i=0 Kr+2

i (f). Since by (6) the sets Kr+2
j (f) ∪Kr+2

j+2r+1(f),

0 ≤ j < 2r+1, have disjoint closures, we arrive at a contradiction. �

Recall that if f : I → I is a continuous function, we say that a non-
degenerate subinterval J of I is a wandering interval of f if fn(J)∩fm(J) = ∅
for any n > m ≥ 0 and it does not contain any asymptotically periodic
points. In particular, the lengths of fn(J) tend to 0 when n → ∞ and so
limn→∞ |fn(x)− fn(y)| = 0 for any x, y ∈ J . Then the following proposition
solves (C).
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Proposition 3 Let f ∈ W (I). If for an α ∈ Z∞ the interval Kα(f) is
non-degenerate, then it is a wandering interval of f . Conversely, if J is a
wandering interval of f , then there is an α ∈ Z∞ such that J ⊂ Kα(f).

Proof. From (9) and Proposition 1(iii), we easily get fn(Kα(f))∩fm(Kα(f))
= ∅ for any n > m ≥ 0 and any α ∈ Z∞. From this and Proposition 2, the
proposition follows. �

Here e would like to draw the reader’s attention to the following problem.
As we will show in the next section, the chaoticity of a map f ∈W (I) depends
essentially on the existence of non-degenerate intervals Kα(f) for some special
α ∈ Z∞. Therefore it is important to know whether given some set A ⊂ Z∞
there exists a map f ∈W (I) with the property that Kα(f) is non-degenerate
if and only if α ∈ A.

Of course A cannot be arbitrary. For instance it must be countable. Fur-
ther, if α and β are such that f(Kα(f)) = Kβ(f) (compare with (9)), β ∈ A
implies α ∈ A. By the way, notice that f(K0(f)) ⊂ K1(f) by (10) but
f(K0(f)) = K1(f) does not necessarily hold, so 1 ∈ A need not imply 0 ∈ A.
This suggests the following definition. Let α, β ∈ Z∞ and fix some f ∈W (I).
We say that α � β if there is a k ≥ 0 such that fk(Kα(f)) = Kβ(f) and
fn(Kα(f)) 6= K0(f) for any 0 ≤ n < k. Notice that � does not depend on the
choice of f and has no relation with the order < defined above. Also, we say
that a set A ⊂ Z∞ is closed for � if α ∈ A and β � α imply β ∈ A. Observe
that if Kα(f) is non-degenerate and β � α, then Kβ(f) is non-degenerate as
well.

Thus we have that for any f ∈ W (I) the set of sequences α for which
Kα(f) is non-degenerate is countable and closed for �. It turns out that the
converse also holds.

Proposition 4 Let A ⊂ Z∞ be closed for � and countable. Then there is a
function f ∈W ([0, 1]) such that, for any α ∈ Z∞, α ∈ A if and only if Kα(f)
is non-degenerate.

Proof. We will use the technique of blowing-up orbits. (See e.g. Harri-
son [6].) Namely, let Φ be the parabola of type 2∞ defined at the beginning of
this section. It is well known that Φ has no wandering intervals. (See Martens,
de Melo and van Strien [11] or Misiurewicz [13].) According to Proposition 3,
all intervals Kα(Φ), α ∈ Z∞, are degenerate. Since A is countable, it is easy
to construct an increasing onto function g : [0, 1] → [0, 1] such that g−1({u})
is non-degenerate if and only if {u} = Kα(Φ) for some α ∈ A. Now let
us define f : [0, 1] → [0, 1] in the following way. Let α, β ∈ Z∞ be such that
Φ(Kα(Φ)) = Kβ(Φ), α < 0 (resp. 0 < α). Then we define f on g−1(Kα(Φ)) in
such a way that f(g−1(Kα(Φ))) = g−1(Kβ(Φ)) and f |g−1(Kα(Φ)) is increasing
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(resp. decreasing). Since A is closed for �, if g−1(Kβ(Φ)) is non-degenerate,
then so is g−1(Kα(Φ)), and the above construction makes sense. Further, write
g−1(K1(Φ)) = [a; b], a ≤ b, and define f(x) = a for any x ∈ g−1(K0(Φ)). Fi-
nally, if u ∈ [0, 1] \ K(Φ), Φ(u) = v and g(x) = u, g(y) = v, then we define
f(x) = y (notice that from Proposition 2, v ∈ [0, 1] \K(Φ) and then there is
no ambiguity about y). By (8) and (10) (for Φ), f is continuous and weakly
unimodal. Moreover, g ◦ f = Φ ◦ g and then f is clearly of type 2∞. (Use (9)
and (10).) �

In the proof of the above proposition, for a given g we constructed an
appropriate function f topologically semiconjugate to Φ via g. Conversely,
any function f ∈ W (I) is topologically semiconjugate to Φ. This result was
proved earlier by Misiurewicz and Smı́tal in [15], who used it in the same
paper to show that any function f ∈ W (I) having a non-degenerate turning
interval is chaotic (cf. also [5]). (By the way, notice that this last result follows
as a particular case from Theorem 1(i).) It turns out that Misiurewicz and
Smı́tal’s proof of the semiconjugacy property contains a mistake. Namely,
for every weakly unimodal function f : I → I they consider the equivalence
relation ∼ defined in I as follows: x ∼ y if there is a k such that fk is constant
on the closed interval containing x and y. They state that every equivalence
class is a closed interval and use this property later. But it is not true in
general. To see this, as in the proof of Proposition 4, it suffices to construct
an f ∈ U([0, 1]) for which there is an increasing onto function g : [0, 1]→ [0, 1]
with g ◦ f = Φ ◦ g and such that g([0, 1/3]) = 0, g([2/3, 1]) = 1 and g|[1/3,2/3]

is one-to-one. Notice that f can be defined arbitrarily on [0, 1/3], except that
f |[0,1/3] must be increasing and f(0) = 0, f(1/3) = 1/3. In particular we can
assume f(x) = 2x for any x ∈ [0, 1/6] and f(x) = 1/3 for any x ∈ [1/6, 1/3].
Since f((1/3, 2/3)) ⊂ (1/3, 2/3), it is obvious that the class containing 1/3 is
(0, 1/3].

For completeness we give here a proof of the above result, whose essential
ideas were suggested to the author by one of the referees.

Proposition 5 Any function f ∈W (I) is topologically semiconjugate to Φ.

Proof. We can assume f ∈ U(I). For any x ∈ I, let us define the sequence
(θnf (x))∞n=1 similarly to the itinerary of x in the kneading theory, the only
difference being that K0(f) now plays the role of the turning interval C of
f . More precisely, θn(x) equals −1, 0 or 1 depending on whether fn−1(x) <
K0(f), fn−1(x) ∈ K0(f) or K0(f) < fn−1(x). We denote by Kf (x) the set of
points from I for which its corresponding sequence coincides with that of x.

Clearly, K(x) is an interval and

f(Kf (x)) ⊂ Kf (f(x)) (11)
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by (9) and (10). We claim that

Kf (x) is closed for any x. (12)

In fact, it is easy to check that Kf (x) = KΠf (x)(f) if x is a non-asymptotically
periodic point and then (12) holds for these points. In general, observe that
if Kf (x) is not closed, then there is a k such that fk(Kf (x))∩K0(f) = ∅ but
Cl (fk(Kf (x))) ∩ K0(f) 6= ∅. By (11), this implies that Kf (fk(x)) includes
infinitely many Kα(f)’s, which is impossible.

By (11), we can construct an increasing onto function g : I → [0, 1] such
that g(Kf (x)) is a single point for any x and g(Kf (x)) 6= g(Kf (y)) if x 6= y.
By (12), there is a continuous function h : [0, 1] → [0, 1] with g ◦ f = h ◦ g.
It is easy to show that h ∈ U([0, 1]). (Recall f ∈ U(I) and use (6) and (7).)
Clearly, each Kh(u) is degenerate. Then (θnh(u))∞n=1 is the standard itinerary
of u and different points from [0, 1] have different itineraries (with respect to
h). It is well known that Φ has the same property. (See [13]). Further, from
the structure of maps from U([0, 1]) follows that the set of itineraries of points
from [0, 1] are the same both with respect to h and Φ. Then h and Φ are
topologically conjugate. (Use e.g. Lemmas II.1.2 and II.1.3 from [4].) �

3 Maximal Scrambled Sets for Weakly Unimodal Func-
tions of Type 2∞

In order to simplify the notation, we will write Π, Kα, Kn
j and K instead

of Πf , Kα(f), Kn
j (f) and K(f) throughout the rest of the paper (except in

Lemmas 2 and 4). Since in each case f will be clearly stated, this should not
lead to confusion. Proposition 1 and (6)-(10) will be repeatedly used without
further references.

In order to get an explicit description of all maximal scrambled sets of a
function f ∈W (I) we need, according to Proposition 2, to characterize explic-
itly (in terms of their codes) the points x, y ∈ K such that limn→∞ |fn(x) −
fn(y)| = 0 and and those for which lim infn→∞ |fn(x) − fn(y)| = 0. (More
briefly, we will write respectively in these cases x ∼sf y and x ∼if y — or

simply x ∼s y and x ∼i y, as above not referring specifically to f .) In fact
it is obvious that ∼s is an equivalence relation in K and Proposition 6 below
describes explicitly ∼i and shows that it is an equivalence relation as well.
We call every equivalence class for ∼s (resp. ∼i) a ∼sf -class (resp. ∼if -class)

or simply a ∼s-class (resp. ∼i-class). Thus each maximal scrambled set of
f is characterized by the property of being included in some ∼i-class E and
containing exactly one representative from every ∼s-class included in E.

For any given k, fn(x), fn(y) ∈
⋃2k−1
j=0 Kk

j if n is large enough. Then
Proposition 6 says in other words that x ∼s y if and only if there are no
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n and k such that fn(x), fn(y) belong to different Kk
j , Kk

l . We could also
consider Proposition 6 in the light of the semiconjugacy g between f and Φ
(cf. Proposition 5). Then x ∼i y if and only if the sequences (Φ2n(g(x)))n
and (Φ2n(g(y)))n have the same limit.

Proposition 6 Let f ∈ W (I), x, y ∈ K, α = Π(x), β = Π(y). Then x ∼i y
if and only if τ(α|i) ≡ τ(β|i) (mod 2i) for any i.

Proof. Let us prove the “only if” part. Assume the contrary. Then there is
a k such that

τ(α|k) 6≡ τ(β|k) (mod 2k). (13)

Put n1 = τ(α|k), n2 = τ(β|k). Let us say n1 > n2. From (13) we get

fn1(x) ∈ Kk
0 , fn1(y) ∈ Kk

l for some 0 < l < 2k, and so fn1+m2k(x) ∈
Kk

0 , fn1+m2k(y) ∈ Kk
l for any m. Take j large enough so that n1 + j2k ≥

max{τ(α|k+1), τ(β|k+1)}. Then fn1+m2k(x) ∈ Kk+1
0 ∪ Kk+1

2k
, fn1+m2k(y) ∈

Kk+1
l ∪Kk+1

l+2k
for any m ≥ j. Since these sets have disjoint closures, we get a

contradiction.

Now we show the “if” part. Fix ε > 0 and choose Kk
l = (a, b) with b−a < ε.

As above, put n1 = τ(α|k), n2 = τ(β|k), n1 ≥ n2. Since n1 = n2+j2k for some

j ≥ 0, we get fn1+l+m2k(x), fn1+l+m2k(y) ∈ Kk
l for any m, which finishes the

proof. �

Thus it remains only to find an explicit characterization of ∼s. To begin
with, assume that Kγ is non-degenerate for some γ ∈ Z∞. If x ∼s y, there
must exists a k large enough such that Kγ 6⊂ (fn(x), fn(y)) for any n ≥ k, or
equivalently, there must exist an l large enough such that Kγ∩[fn(x), fn(y)] =
∅ for any n ≥ l (due to Proposition 3). We will describe this situation by saying
that x ∼sγ,f y, or simply x ∼sγ y. On the contrary we will write as usual x 6∼sγ y.
Obviously, ∼sγ defines an equivalence relation in K.

So it seems reasonable to begin by getting information about ∼sγ for any
γ ∈ Z∞. (Notice that the definition of ∼sγ makes sense both if Kγ is degenerate
and if not.) For many γ’s such information is easy to obtain, but useless.
(x ∼i y (in particular x ∼s y) implies automatically x ∼sγ y for any x, y ∈ K.)
This is clearly the case if γ 6∈ {0, 1}∞. The same thing happens if γ ∈ {0, 1}∞
and σk(γ) = 1 for some k; that is, γi = 1 for any i > k. To prove it we can
for example assume f ∈ U(I). Suppose x ∼i y but x 6∼sγ y for some x, y ∈
K. Since γ ∈ {0, 1}∞, there is an l ≥ 0 such that f l|K1|k

is monotone and

f l(K1|k) = Kγ|k . Choose n large enough such that fn−l(x), fn−l(y) ∈ K1|k ,

fn(x), fn(y) ∈ Kγ|k and Kγ ⊂ (fn(x); fn(y)). Since f l(K1) = Kγ , either

K1 < fn−l(x) or K1 < fn−l(y), which is impossible because f(I) ⊂ [a, b],
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where a and b are respectively the left endpoint of I and the right endpoint
of K1.

This leads us to the set

S = {γ ∈ {0, 1}∞ : σi(γ) 6= 1 for any i}.

One could wonder whether γ, θ ∈ S can induce the same equivalence relation,
that is, x ∼sγ y if and only if x ∼sθ y for any x, y ∈ K. Note that this property
does not depend on the choice of f . In this situation we say that γ ∼e θ and
call every equivalence class for ∼e a ∼e-class. Notice that all the equivalence
relations we had introduced earlier (∼i, ∼s, ∼sγ) are defined in K, but ∼e is
defined in S.

We know that if x ∼s y, then x ∼sγ y for any γ ∈ S for which Kγ is
non-degenerate. This suggests the following. Define γ ∈ S to be an essential
sequence of f if Kγ is non-degenerate and call a ∼e-class containing some es-
sential sequence of f an essential class of f . With this notation, a necessary
condition for x ∼s y is that, fixed a set E containing exactly one representa-
tive from every essential class of f , x ∼sγ y for every γ ∈ E . The following

proposition shows that this condition is also sufficient (provided x ∼i y) and
characterizes ∼s. As we will see in Lemma 3 below, that x ∼sγ y for some

γ ∈ E implies x ∼i y, but this condition is necessary in the case E = ∅.

Proposition 7 Let f ∈W (I), x, y ∈ K and E ⊂ S be a set containing exactly
one representative from every essential class of f . Then x ∼s y if and only if
x ∼i y and x ∼sγ y for any γ ∈ E.

Proof. It remains only to prove the “if part”. Assume that there are
some x, y ∈ K such that x ∼i y but for which x ∼s y does not hold. Then
there are an ε > 0 and a strictly increasing sequence (n(j))∞j=1 such that

|fn(j)(x) − fn(j)(y)| > ε for any j. Take the intervals [fn(j)(x); fn(j)(y)] and
consider the sequence (cj)

∞
j=1 of their midpoints. Let c be an accumulation

point of (cj)
∞
j=1. There is no loss of generality in assuming that |c− cj | < ε/4

for any j. Thus

[c− ε/4, c+ ε/4] ⊂ [fn(j)(x); fn(j)(y)] for any j. (14)

On the other hand, from x ∼i y and Proposition 6 we can assume that there are
a strictly increasing sequence (m(j))∞j=1 and a γ[j] ∈ {0, 1}m(j) such that for

every j [fn(j)(x); fn(j)(y)] ⊂ Kγ[j]. Then [c− ε/4, c+ ε/4] ⊂ Kγ[j], from which
we get that Kγ[j+1] ∩ Kγ[j] 6= ∅ for any j. Therefore there is a γ ∈ {0, 1}∞
such that γ|m(j) = γ[j] for any j and with the property

[c− ε/4, c+ ε/4] ⊂ Kγ . (15)
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So Kγ is non-degenerate. From (14) and (15) we get Kγ∩[fn(j)(x); fn(j)(y)] 6=
∅ for any j. Thus x 6∼sγ y. But we have shown at the beginning of this section

that if θ 6∈ S, then x ∼i y implies x ∼sθ y. Hence, γ ∈ S. This finishes the
proof. �

Although Proposition 7 characterizes ∼s, it is not sufficient for our pur-
poses because we are aiming for an explicit description. This means that we
must explicitly characterize ∼sγ for any γ ∈ S and ∼e. This is accomplished
in Propositions 8 and 9.

Fix γ ∈ S. Let us explain the main points of the characterization of ∼sγ .

First of all, we take advantage of the fact that σi(γ) 6= 1 for any i to define
the strictly increasing sequence (oγ(j))∞j=1 (or simply (o(j))∞j=1 if there is no
confusion about γ) of the indexes i with the property γi = 0. For instance,
suppose

γ = 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . .

Then o(1) = 4, o(2) = 5, o(3) = 6, o(4) = 7, o(5) = 12, o(6) = 15 and
o(j) = 2j + 3 for any j ≥ 7. The next step is to use this sequence to “cut”
each α ∈ Z∞ into the blocks αjγ = αo(j−1)+1, αo(j−1)+2, . . . , αo(j) (or simply

αj); here we mean o(0) = 0. These blocks occupy the same places as those of
γ maximal with the property that the last term is 0 and all the other terms
are 1’s. So in the above case we get γ1 = 1, 1, 1, 0, γ2 = 0, γ3 = 0, γ4 = 0,
γ5 = 1, 1, 1, 1, 0, γ6 = 1, 1, 0, and γj = 1, 0 for any j ≥ 7, and if for example

α = 2, 2, 4, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 5, 1,−1, 0,−1, 0,−1, 0,−1, 0, . . . ,

then α1 = 2, 2, 4, 0, α2 = 3, α3 = 0, α4 = 2, α5 = 0, 1, 0, 1, 0, α6 = 2, 5, 1 and
αj = −1, 0 for any j ≥ 7.

The above decomposition in blocks turns out to be very useful to describe
∼sγ . Let x, y ∈ K, Π(x) = α, Π(y) = β and suppose x ∼sγ y. We will show
that there must exists a k large enough such that τ(α|o(k)) = τ(β|o(k)) and
τ(αj) = τ(βj) for any j > k. For instance suppose

α =2, 5, 1, 5, 1, 5, 1, 5, 1, . . . ,

β =2, 3, 2, 3, 2, 3, 2, 3, 2, . . . ,

γ =1, 0, 1, 0, 1, 0, 1, 0, 1, . . . .

Then α1 = 2, 5, β1 = 2, 3 and αj = 1, 5, βj = 2, 3 for any j ≥ 2. Since
τ(1, 5) = 11 and τ(2, 3) = 10, x 6∼sγ y. Note that x ∼i y and that τ(α|i) =
τ(β|i) for any odd number i. In fact we prove the above result under the addi-
tional hypothesis that both sequences (τ(α|i))∞i=1, (τ(β|i))∞i=1 are unbounded,
or equivalently, σi(α) 6= 0 6= σi(β) for any i. Note that this condition cannot
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be dropped. For instance, define

α =0,

β =2, 1, 1, 1, 1, 1, 1, . . . ,

η =0, 1, 1, 1, 1, 1, 1, . . . .

Since f2(Kα) ⊂ Kη = f2(Kβ), by Proposition 3 we get x ∼sθ y for any θ ∈ Z∞
and any x ∈ Kα, y ∈ Kβ .

Fortunately, there is a simple way to deal with this problem, which is
indeed suggested by the above example. For any α ∈ Z∞, define n(α) ∈ Z∞
by

n(α) =

{
2 + supi τ(α|i), 1, 1, 1, 1, 1, 1, . . . if (τ(α|i))∞i=1 is bounded

n(α) = α otherwise.

If x ∈ Kα, x′ ∈ Kn(α), we get as before that there are some appropriate

l and η such that f l(x), f l(x′) ∈ Kη (namely l = 2 + supi τ(α|i) and η =
0, 1, 1, 1, 1, 1, 1, . . . as above) and so x ∼sγ y if and only if x′ ∼sγ y. In other
words, we can study ∼sγ in terms of the properties not of the sequences Π(x)’s
but of n(Π(x))’s. So our previous result can be restated in the following way.
Let x, y ∈ K, n(Π(x)) = θ, n(Π(y)) = ϑ and suppose x ∼sγ y. Then there

must exists a k large enough such that τ(θ|o(k)) = τ(ϑ|o(k)) and τ(θj) = τ(ϑj)
for any j > k.

However, the above necessary condition is not sufficient. To go further for
any α ∈ Z∞ we must introduce a sequence δαγ ∈ {−1, 0, 1}∞ (or simply δα) as
follows. Most of the terms of the sequence δα will be 0’s; namely we put δαi = 0
if i 6= o(j) for any j ≥ 1. (Recall that (o(j))∞j=1 is the sequence of indexes for
which the corresponding term of γ is 0.) Now suppose that i = o(j) for some
j ≥ 1 and define δαi . To do this we first take into account the “size” (in terms
of τ) of the block αj . Then if τ(αj) < 2i−o(j−1)−1 (that is, if τ(αj) < 2l−1,
l the length of αj), we define again δαi = 0. It remains only to consider the
case τ(αj) ≥ 2i−o(j−1)−1. (We have this situation if for example αi 6= 0.) It
can happen that αj is the last “large” block; that is, τ(αm) < 2o(m)−o(m−1)−1

for any m > j. Then we again put δαi = 0. Otherwise let m > j be minimal
such that τ(αm) ≥ 2o(m)−o(m−1)−1. Note that τ(γm) = 2o(m)−o(m−1)−1 − 1
and in particular αm 6= γm. Now the main role is played (with one ex-
ception) by the relative position of the finite sequences αi+1, αi+2, . . . , αo(m)

and γi+1, γi+2, . . . , γo(m). These sequences are constructed by simply putting
together respectively the blocks αj+1, αj+2, . . . , αm and γj+1, γj+2, . . . , γm.
Since αm 6= γm, the sequences are different. Now we define δαi = 1 if αi = 0
or γi+1, γi+2, . . . , γo(m) < αi+1, αi+2, . . . , αo(m) and δαi = −1 if αi 6= 0 and
αi+1, αi+2, . . . , αo(m) < γi+1, γi+2, . . . , γo(m). This finishes the definition of
δα.
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As an example, let us return to the sequences

γ =1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . ,

α =2, 2, 4, 0, 3, 0, 2, 0, 1, 0, 1, 0, 2, 5, 1,−1, 0,−1, 0,−1, 0,−1, 0, . . . ,

considered above. First notice that τ(α1) = τ(2, 2, 4, 0) = 22 ≥ 8 =
2o(1)−o(0)−1. Further, τ(α2) = τ(3) = 3 ≥ 1 = 2o(2)−o(1)−1. So since αo(1) = 0
we get δα1 = 0, δα2 = 0, δα3 = 0, δα4 = δαo(1) = 1. Next, τ(α3) = τ(0) = 0,

τ(α4) = τ(2) = 2 ≥ 1 = 2o(4)−o(3)−1. Since αo(2) 6= 0 and 0, 2 < 0, 0, we get
δα5 = δαo(2) = −1, δα6 = δαo(3) = 0. Similarly, τ(α5) = τ(0, 1, 0, 1, 0) = 10 <

16 = 2o(5)−o(4)−1, τ(α6) = τ(2, 5, 1) = 16 ≥ 4 = 2o(6)−o(5)−1. Again αo(4) 6= 0
and 0, 1, 0, 1, 0, 2, 5, 1 < 1, 1, 1, 1, 0, 1, 1, 0 so δα7 = δαo(4) = −1, δα8 = 0, δα9 = 0,
δα10 = 0, δα11 = 0, δα12 = δαo(5) = 0, δα13 = 0 and δα14 = 0. Finally, notice that

τ(αm) < 2o(m)−o(m−1)−1 for any m > 6. Thus δα15 = δαo(6) = 0 and also δαi = 0
for any i ≥ 16. Briefly,

δα = 0, 0, 0, 1,−1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . .

With the help of the sequences δα we can finish our explicit characterization
of ∼sγ : x ∼sγ y if and only if the necessary condition described above holds and

δθi = δϑi for any i large enough. Summarizing we have the following.

Proposition 8 Let f ∈ W (I), γ ∈ S, x, y ∈ K, α = Π(x), β = Π(y). Also
put θ = n(α), ϑ = n(β). Then x ∼sγ y if and only if there is an m such that

τ(θ|o(m)) = τ(ϑ|o(m)), τ(θj) = τ(ϑj) for any j > m and δθi = δϑi for any
i > o(m).

Before proving Proposition 8 let us still make some additional observa-
tions. Recall that ∼sγ defines an equivalence relation in K. Then, informally
speaking, Proposition 8 says that the “size” of every equivalence class for ∼sγ
is directly related with the “abundance” of 0’s in the sequence γ. As the ex-
tremal cases, recall that if σk(γ) = 1 for some k, x ∼i y implies x ∼sγ y. On

the other hand, if σk(γ) = 0 for some k and x ∼sγ y, we get from Proposition 8

that there is l such that τ(θ|l) = τ(ϑ|l) and σl(θ) = σl(ϑ); that is, there are
η ∈ Z∞ and n such that fn(x), fn(y) ∈ Kη.

Observe that the description becomes substantially more complicated in
the cases when the sequences α and β contains some 0’s and 1’s. If α, β ∈
(Z \ {0, 1})∞, we can restate Proposition 8 as follows. x ∼sγ y if and only

if there is an m such that τ(α|o(m)) = τ(β|o(m)) and τ(αj) = τ(βj) and
both αo(j)+1, βo(j)+1 have the same sign for any j > m. In this case, it is
also possible to reinterpret ∼sγ without making use of codes. (Although of
course they are being implicitly used because we assume α, β ∈ (Z\{0, 1})∞.)
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Returning to the notation at the beginning of Section 2, let lx(n), ly(n) be
the minimal numbers such that f lx(n)(x), f ly(n)(y) ∈ In. Then x ∼sγ y if and
only if lx(o(j)) = ly(o(j)) and the turning interval of f does not lies between
f lx(o(j))(x) and f ly(o(j))(y) for any j large enough.

Finally, a few words about the proof of Proposition 8. It follows from a
sequence of lemmas (Lemmas 1-5). Lemmas 1 and 2 are of a technical nature,
the first one stating an almost trivial but useful fact and the second one aiming
for a better handle of the considerably complicated notation. Lemma 3 states
that if x, y ∈ K and x ∼sγ y, then x ∼i y. Since τ(α|k) ≡ τ(β|k) (mod 2k)

obviously implies τ(α|i) ≡ τ(β|i) (mod 2i) for any i < k, this is in fact a
particular case of Lemma 4. However, we have preferred to state it in an
independent way both because it is necessary for proving Lemma 4 and to
emphasize that this is not necessarily the case for a general γ ∈ Z∞. For
instance if γ1 > 1 and Π(x) = α, then fn(x) < Kγ for any n ≥ α1. Therefore,
x ∼sγ y for any x, y ∈ K. Finally, the proposition is proved in Lemmas 4 and 5.

Recall that for every f ∈ W (I) the sequence (fn)∞n=0 was defined at the
beginning of Section 2.

Lemma 1 Let k ≥ 0 and J be a subinterval of I such that fk|J is monotone.
Let u, v ∈ J and η, ρ ∈ Z∞ be such that Kη ⊂ J and fk(Kη) = Kρ. If
Kρ ∩ [fk(u); fk(v)] 6= ∅, then Kη ∩ [u; v] 6= ∅.

Proof. Suppose not. For example suppose that u ≤ v, Kη < [u; v] and fk

is increasing (the other cases are similar). Then we must have fk(u) ∈ Kρ,
which implies that fk(z) ∈ Kρ for any Kη < z < u. Since Kη =

⋂∞
n=1Kη|n ,

there must exist an l large enough so that w < u for the right endpoint w of
Kη|l . This contradicts Propositions 2 and 3. �

Lemma 2 Let r ≥ 0 and u, v ∈ Kk
0 (f) for some k. Then

Kγ(f) ∩ [fn(u); fn(v)] = ∅ for any 0 < n ≤ r2k

if and only if

Kσk(γ)(fk) ∩ [f jk(u); f jk(v)] = ∅ for any 0 < j ≤ r.

Proof. Define η ∈ Z∞ by η|k = 0|k and σk(η) = σk(γ). Let us prove the
“only if” part. Suppose that there is some 0 < l ≤ r such that Kσk(γ)(fk) ∩
[f lk(u); f lk(v)] 6= ∅. Since Kσk(γ)(fk) = Kη(f) and fk = f2k |Cl (K0|k (f)), we get

Kη(f) ∩ [f l2
k

(u); f l2
k

(v)] 6= ∅. (16)
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Say Kγ|k(f) = Kk
s (f), 0 < s ≤ 2k. (Recall that Kk

0 = Kk
2k .) So fs+(l−1)2k(u),

fs+(l−1)2k(v) ∈ Kγ|k(f). Further, f2k−s(Kγ(f)) = Kη(f). Since f2k−s|Kγ|k (f)

is monotone, (16) and Lemma 1 imply

Kγ(f) ∩ [fs+(l−1)2k(u); fs+(l−1)2k(v)] 6= ∅.

Let us prove the “if” part. Suppose that there is a 0 < j ≤ r2k such
that Kγ(f) ∩ [f j(u); f j(v)] 6= ∅. We have f j(u), f j(v) ∈ Kk

s (f) for some
s. Since Kγ(f) ∩ Kk

s (f) 6= ∅, Kγ(f) ⊂ Kk
s (f) and so Kk

s (f) = Kγ|k(f).

Then, if (l − 1)2k < j ≤ l2k, we get f l2
k−j(Kγ(f)) = Kη(f). So Kη(f) ∩

[f l2
k

(u); f l2
k

(v)] 6= ∅; that is, Kσk(γ)(fk) ∩ [f lk(u); f lk(v)] 6= ∅. �

Lemma 3 If x ∼sγ y, then x ∼i y.

Proof. Suppose not. Then, according to Proposition 6, there must exist
some intervals Kk

i1
6= Kk

i2
and an s large enough so that Kγ ⊂ Kk

i1
and

fs+n2k(x) ∈ Kk
i1

, fs+n2k(y) ∈ Kk
i2

for any n. Moreover, for some l > k large

enough there exist Kl
j1
< Kl

j2
< Kl

j3
such that Kl

jr
⊂ Kk

i1
for any r ∈ {1, 2, 3}

and Kγ ⊂ Kl
j2

. (Use γ ∈ S.) Also, we can choose numbers n1, n2 as large as

necessary so that fs+n12k(x) ∈ Kl
j1

and fs+n22k(x) ∈ Kl
j3

. This contradicts
x ∼sγ y. �

Lemma 4 Suppose that x ∼sγ y and α = θ, β = ϑ. Then there is a k such

that τ(α|o(k)) = τ(β|o(k)) and τ(αj) = τ(βj) for any j > k.

Proof. Take an l such that Kγ(f) ∩ [fn(x); fn(y)] = ∅ for any n > l
and choose k0 large enough so that τ(α|o(k0)) > l, τ(β|o(k0)) > l. (This is
possible because α = θ, β = ϑ.) For example, assume that there is a t > k0

such that r = τ(α|o(t)) < τ(β|o(t)). By modifying t if necessary it may be
assumed that τ(β|o(k0)) < r. Put u = fr(x), v = fr(y). Then u ∈ Ki

0(f)

for any i ≤ o(t). Similarly v ∈ K
o(k0)
j (f) for some j. Then Lemma 3 and

Proposition 6 imply v ∈ K
o(k0)
0 (f). Now take an s ≥ o(k0) maximal with

respect to the property v ∈ Ks
0(f). Since τ(α|o(t)) < τ(β|o(t)), we get s < o(t).

Then u ∈ K0|o(t)−s(fs), while v ∈ Kw(fs) for some w ∈ Z \ {0}. Moreover,

|w| > 1 from x ∼i y. For example assume that fs ∈ U(Cl (K0|s(f))). Then
clearly fs(v) < Kσs(γ)(fs). Recall that fs(K0|o(t)−s(fs)) ⊂ K1|o(t)−s(fs). Since
γo(t) = 0, Kσs(γ)(fs) < fs(u). This contradicts Lemma 2. �

In the following lemma we mean o(0) = 0 and τ(α|0) = τ(β|0) = 0.

Lemma 5 Suppose that τ(α|o(k−1)) = τ(β|o(k−1)), τ(α|o(k)) = τ(β|o(k)) for
some k. Then Kγ ∩ [fn(x); fn(y)] = ∅ for any τ(α|o(k−1)) < n ≤ τ(α|o(k)) if
and only if one of the following alternatives occurs.
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(i) αo(k) = 0 = βo(k).

(ii) αo(k) 6= 0, βo(k) = 0 and σo(k)(γ) < σo(k)(α).

(iii) αo(k) 6= 0 6= βo(k) and either

σo(k)(α) < σo(k)(γ) and σo(k)(β) < σo(k)(γ)

or
σo(k)(γ) < σo(k)(α) and σo(k)(γ) < σo(k)(β).

Proof. First we assume k = 1. It may be assumed that f ∈ U(I). If
τ(αo(1)) = 0, there is nothing to prove; so we will exclude this case. Then
there are two possibilities for α. If αo(1) = 0, then o(1) > 1, and so it makes
sense to consider γ|o(1)−1, when γ|o(1)−1 = 1|o(1)−1 by the definition of o(1).
Let a be the left endpoint of I and b be the right endpoint of K1|o(1)−1

. Since

f(I) ⊂ [a, b] and f(Kη)∩K1o(1)−1
= ∅ for any η ∈ Zo(1)−1 \ {0|o(1)−1}, we get

fn(x) < Kγ for any 0 < n ≤ τ(α|o(1)−1). Since αo(1) = 0, fn(x) < Kγ for any
0 < n ≤ τ(α|o(1)).

The second possibility is αo(1) 6= 0. As before, fn(x) < Kγ for any

0 < n ≤ τ(α|o(1)−1). Write fτ(α|o(1)−1)(x) = u and assume o(1) > 1. Since

f j+t2
o(1)−1

(u) ∈ K
o(1)−1
j for any 0 ≤ j < 2o(1)−1 and any t ≥ 0, we get

f j+t2
o(1)−1

(u) < Kγ for any 0 ≤ j < 2o(1)−1 (j 6= 1) and any t ≥ 0. Recall that

u ∈ K0|o(1)−1,αo(1) and f t2
o(1)−1

(u) ∈ K0|o(1)−1,t−|αo(1)| for any 0 < t ≤ |αo(1)|.
Moreover, (K0|o(1)−1,−1 ∪K0|o(1)−1,1) ⊂ (K0|o(1)−1,−l;K0|o(1)−1,l) for any l ≥ 2.
Notice that γ|o(1) = 1|o(1)−1, 0, from which f(K0|o(1)−1,−1) = f(K0|o(1)−1,1) =

Kγ|o(1) . Then we get f1+t2o(1)−1

(u) < Kγ for any 0 ≤ t < |αo(1)| − 1. Fi-

nally let r = 1 + (|αo(1)| − 1)2o(1)−1. Now fr(u) ∈ Kγ|o(1) , more precisely

Π(fr(u))|o(1) = γ|o(1) and σo(1)(Π(fr(u))) = σo(1)(α). Then fr(u) < Kγ

(resp. Kγ < fr(u)) if and only if σo(1)(γ) < σo(1)(α) (resp. σo(1)(α) <
σo(1)(γ)). In short, fn(x) < Kγ for any 0 < n ≤ τ(α|o(1)) except possibly

for the case n = τ(α|o(1))− 2o(1)−1 + 1, when fn(x) < Kγ (resp. Kγ < fn(x))

if and only if σo(1)(γ) < σo(1)(α) (resp. σo(1)(α) < σo(1)(γ)). Recall that we
were assuming o(1) > 1. It is easy to check that the same result also holds in
the case o(1) = 1.

A similar reasoning for β and y completes the proof of the lemma for the
case k = 1. The general case follows from this one and Lemma 2. �

Proof of Proposition 8. Observe that there are some nonnegative integers
k and l such that fk(Kα) ⊂ fk(Kθ), f

l(Kβ) ⊂ f l(Kϑ), and then it is not
restrictive to assume that α = θ, β = ϑ. Now the proposition follows easily
from Lemmas 4 and 5. �
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It remains only to characterize explicitly ∼e. This is a much easier task.
γ ∼e θ if and only g(Zγ) and g(Zθ) are mapped to the same point by some
iterate of the renormalization map ν (cf. the beginning of Section 2).

Proposition 9 Let γ, θ ∈ S. Then γ ∼e θ if and only if there is a k such that
σk(γ) = σk(θ).

Proof. Let us prove the “only if” part. Suppose not. Then it may be
assumed that there is a sequence (i(n))∞n=1 such that γi(n) = 0, θi(n) = 1
and i(n + 1) > i(n) + 1 for any n. Now choose x, y ∈ K with α = Π(x),
β = Π(y) defined as follows. Put αi = βi = 2 for any i 6= i(n), i 6= i(n) + 1,
n ≥ 1, and αi(n), αi(n)+1 = 2, 4, βi(n), βi(n)+1 = 6, 2 for any n. We have

τ(αjθ) = τ(βjθ) for any j (because (αjθ)1 = 4, (βjθ)1 = 2 is impossible, and

(αjθ)oθ(j)−oθ(j−1) = 2, (βjθ)oθ(j)−oθ(j−1) = 6 is impossible as well), and then
from the comment below the statement of Proposition 8, x ∼sθ y. On the
other hand, τ(α|oγ(k)) 6= τ(β|oγ(k)) if oγ(k) = i(n) for some n; so x 6∼sγ y by
Proposition 8. This is a contradiction.

Let us prove now the “if” part. Suppose that x ∼sγ y but x 6∼sθ y for some
x, y ∈ K. Then there is a strictly increasing sequence (n(j))∞j=1 such that

Kθ ∩ [fn(j)(x); fn(j)(y)] 6= ∅ for any j. If τ(θ|k) ≤ τ(γ|k), then f l(Kθ) = Kγ

for some l and Kγ ∩ [fn(j)+l(x); fn(j)+l(y)] 6= ∅ for any j, a contradiction. If
τ(θ|k) > τ(γ|k), then there is an m such that fm(Kγ|k) = Kθ|k and fm|Kγ|k
is monotone. By Lemma 3 and Proposition 6, we can choose all n(j) large
enough so that fn(j)−m(x), fn(j)−m(y) ∈ Kγ|k for any j. Since fm(Kγ) = Kθ,

Kγ ∩ [fn(j)−m(x); fn(j)−m(y)] 6= ∅ by Lemma 1. This is impossible. �

Remark 1 From Proposition 9 we easily get that γ ∼e θ if and only if γ � θ
or θ � γ. (Recall that � was defined at the end of Section 2.) Then fix
γ ∈ S and define A = {θ ∈ Z∞ : θ � γ}, which is countable and closed for
�. According to Proposition 4, there is an f ∈ W ([0, 1]) such that, for any
α ∈ Z∞, Kα is non-degenerate if and only if α ∈ A. For this function f ,
x ∼s y if and only if x ∼sγ y.

The following theorem summarizes our previous results and gives the de-
sired description of all maximal scrambled sets of any f ∈W (I).

Theorem 1 Let f ∈W (I) and S ⊂ I. Then we have

(i) f is chaotic if and only if it has some essential sequence.

(ii) Suppose f is chaotic. Then S is a maximal scrambled set of f if and
only if there is a ∼i-class E such that S ⊂ E and S contains exactly one
representative from every one of the ∼s-classes included in E.
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Moreover, the equivalence relations ∼i and ∼s can be explicitly described
(respectively, Proposition 6 and Propositions 7, 8 and 9). In particular,
every maximal scrambled set of f is uncountable.

Notice that Proposition 7 is the only point where we make use of the
specific features of f (apart of course from f ∈W (I)).

4 Final Remarks and Open Questions

Note that the set E from Proposition 7 can be infinite (countable), and in
this case our characterization of ∼s turns out to be fairly complicated. Thus
it would be interesting to find a minimal set E ′ ⊂ S (maybe not necessarily
E ′ ⊂ E) such that for any x, y ∈ K, x ∼s y if and only if x ∼sγ y for every
γ ∈ E ′. If particular, in [9] we characterized the cases for which there is a γ
such that, for any x, y ∈ K, x ∼s y if and only if x ∼sγ y. (Then we could
choose E ′ = {γ}.) However, Proposition 7 cannot be improved in general,
even in the case when E is infinite. This is shown in the following example.

In order to shorten the notation, for any α ∈ Z∞ and j ≥ 1, we will write
αj = σ(5+j/2)(j−1)(α)|j and αj = σ5(j−1)+(j+1)j/2(α)|5. Also, λn,m ∈ {0, 1}n,
1 ≤ m ≤ n, will be defined by λn,mn+1−m = 0 and λn,mi = 1 if i 6= n + 1 −m.

Now for any n ≥ 1, define γ[n] ∈ S by γ[n]
j

= λj,j if j < n and γ[n]
j

= λj,n

if j ≥ n, and γ[n]
j

= λ5,3 for any j. Specifically,

γ[1] =0; 1, 1, 0, 1, 1; 1, 0; 1, 1, 0, 1, 1; 1, 1, 0; 1, 1, 0, 1, 1; 1, 1, 1, 0; . . . ,

γ[2] =0; 1, 1, 0, 1, 1; 0, 1; 1, 1, 0, 1, 1; 1, 0, 1; 1, 1, 0, 1, 1; 1, 1, 0, 1; . . . ,

γ[3] =0; 1, 1, 0, 1, 1; 0, 1; 1, 1, 0, 1, 1; 0, 1, 1; 1, 1, 0, 1, 1; 1, 0, 1, 1; . . . ,

γ[4] =0; 1, 1, 0, 1, 1; 0, 1; 1, 1, 0, 1, 1; 0, 1, 1; 1, 1, 0, 1, 1; 0, 1, 1, 1; . . . ,

· · ·

and so on. (Here the semicolons delimit the γ[n]
j

and γ[n]
j

blocks.) The set
A = {θ ∈ Z∞ : θ � γ[n] for some n ≥ 1} is countable and closed for �. So by
Proposition 4 there is an f ∈W ([0, 1]) with E = {γ[n] : n ≥ 1}. Now suppose
that E ′ ⊂ S is such that, for any x, y, x ∼s y if and only if x ∼sγ y for any
γ ∈ E ′. We will prove that there is a bijection ψ : E → E ′ with γ[n] ∼e ψ(γ[n])
for any n. In many stages of the following argument, we will have to check
x ∼sθ y for several x, y ∈ K and θ ∈ S. In each case this is a routine application
of Proposition 8, so we will not go into the details.

First of all we prove that if γ is such that x ∼sγ y for any x, y with x ∼s y,
then there is an l such that γ ∼e γ[l]. We will accomplish it through three
successive steps.

Claim 1. There is a k such that γj = λ5,3 for any j > k.
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First of all we show that there is an m for which γji = 1 for any i 6= 3 and
j > m. Otherwise we could find a strictly increasing sequence (j(n))∞n=1 and an

r ∈ {1, 2, 4, 5} such that γ
j(n)
r = 0 for any n. Let us say that γ

j(n)
r is the i(n)-

th term of the sequence γ for any n. Then choose x, y ∈ K with the sequences
α = Π(x), β = Π(y) defined by αi(n), αi(n)+1 = 1, 2, βi(n), αi(n)+1 = 3, 1 for
any n and αi = βi = 1 otherwise. We have x ∼s y but x 6∼sγ y, a contradiction.

Now assume that Claim 1 does not hold. According to the paragraph
above, there must exist a strictly increasing sequence (k(n))∞n=1 such that
γk(n) = 1|5 for any n. Then take some x, y such that α = Π(x), β = Π(y)

are defined by αj = 3, 0, 1,−1, 1, β
j

= 1, 1, 1,−1, 1 for any j and αi = βi = 1
otherwise. Again x ∼s y but x 6∼sγ y, a contradiction.

Claim 2. There is a k such that γj ∈ {λj,m : 1 ≤ m ≤ j} for any j > k.

Suppose not. Two possibilities appear. The first one is that there is
a strictly increasing sequence (j(n))∞n=1 such that γj(n) = 1|j(n) for any
n. Then take some x, y for which the corresponding α, β are defined by

αj = −1, 1, 1, 3, 0, β
j

= −1, 1, 1, 1, 1 for any j and αi = βi = 1 otherwise.
Again we get x ∼s y, but x 6∼sγ y.

The second possibility is that there is a strictly increasing sequence
(k(n))∞n=1 such that for any n γk(n) has at least two terms equal to zero.

For each n, let i(n) be the last index with γ
k(n)
i(n) = 0. It is not restrictive to

assume that either i(n) = k(n) for any n or i(n) < k(n) for any n. In the

first case put αk(n) = βk(n) = γk(n) and α
k(n)
1 = 2, β

k(n)

1 = −2 for any n and
define αi = βi = 1 otherwise. In the second case for any n similarly define

α
k(n)
i = βk(n)

i
= γk(n)

i
if 1 ≤ i ≤ i(n) and α

k(n)
i(n)+1 = 2, βk(n)

i(n)+1
= −2, and put

αi = βi = 1 otherwise. In each case we get x ∼s y while x 6∼sγ y.

Claim 3. There are some k and l such that γj = λj,l for any j > k.

Again assume the contrary. Since Claim 2 holds, it is clearly possible to
choose a sequence (j(n))∞n=1 such that j(n+1)−j(n) > 1 and γj(n) = λj(n),r(n),

γj(n)+1 = λj(n)+1,s(n), with r(n) < s(n) for any n. Now define αj(n) =

βj(n) = γj(n),αj(n) = β
j(n)

= λ5,3 and α
j(n)+1
j(n)+2−s(n), α

j(n)+1
j(n)+3−s(n) = 0, 2,

βj(n)+1

j(n)+2−s(n)
, βj(n)+1

j(n)+3−s(n)
= 0,−2 for any n, and put αi = βi = 1 other-

wise. Since s(n) ≥ 2 for any n, α and β are well defined. Also, x ∼s y while
x 6∼sγ y.

From Claims 1, 2 and 3 we get as desired that if γ is such that x ∼s y
implies x ∼sγ y for any x, y ∈ K, then there is an l such that γ ∼e γ[l].
To finish, fix r ≥ 1 and choose x, y in such a way that their corresponding
α, β satisfy αjj+1−r, α

j
j+2−r = 0, 2, βj

j+1−r, β
j

j+2−r = 0,−2 for any j > r and

αi = βi = 1 otherwise. Then x ∼sγ[n] y for any n 6= r but x 6∼sγ[r] y.
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On the other hand, it would also be interesting to get a clearer information
on the size of every ∼s-class, in particular when a ∼s-class F is minimal; that
is, the cases when x, y ∈ F if and only if θ = n(Π(x)), ϑ = n(Π(y)) imply
σk(θ) = σk(ϑ) for some k. We have solved this problem in [9] for the case
E = {γ}.

Finally, it seems plausible that a similar approach to that of this paper
could be useful for describing all maximal scrambled sets of general (not nec-
essarily unimodal) functions of type 2∞, the point being that these functions
verify a “kind” of Proposition 1. (See Theorem 3.5 from Smı́tal [17].) For
example, an analogous version of Proposition 6 is proved in Balibrea Gallego
and Jiménez López [1].
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[10] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math.
Monthly, 82 (1975), 985–992.

[11] M. Martens, W. C. de Melo and S. J. van Strien, Julia-Fatou-Sullivan the-
ory for real one-dimensional dynamics, Acta Math., 168 (1992), 271–318.

[12] J. Milnor and W. Thurston, On iterated maps of the interval, in Dynam-
ical Systems, pages 465–563, Springer, Berlin, 1988.

[13] M. Misiurewicz, Structure of mappings of an interval with zero entropy,
Inst. Hautes Études Sci. Publ. Math., 53 (1981), 5–16.

[14] M. Misiurewicz, Chaos almost everywhere, in Iteration Theory and
its Functional Equations, Lecture Notes in Mathematics, 1163,
pages 125–130, Springer, Berlin, 1985.

[15] M. Misiurewicz and J. Smı́tal, Smooth chaotic functions with zero topo-
logical entropy, Ergod. Th. and Dynam. Sys., 8 (1988), 421–424.

[16] C. Preston, Iterates of Maps on an Interval, Lecture Notes in Mathemat-
ics, 999, Springer, Berlin, 1983.

[17] J. Smı́tal, Chaotic functions with zero topological entropy, Trans. Amer.
Math. Soc., 297 (1986), 269–282.

[18] S. J. van Strien, Smooth dynamics on the interval, in New Directions
in Dynamical Systems, (eds. T. Bedford and J. Swift), pages 57–119,
Cambridge Univ. Press, 1988.
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