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A CHARACTERIZATION OF ORLICZ
FUNCTIONS PRODUCING AN ADDITIVE
PROPERTY

Abstract

It is shown that the only Luxemburg functionals that satisfy a very
simply formulated property are induced by pth-power functions, 0 < p <
00. The known result that Orlicz spaces cannot be normed analogously
to Lp-spaces follows as a consequence.

1 Introduction

Let ¥ : [0,00) — [0, 00] be a nondecreasing function, ¥(0) = 0, ¥(x) — oo as
x — 00, and such that if 0 < a < b, 0 < ¥(a), ¥(b) < 0o, then ¥ is strictly
increasing on [a, b] and continuous on [0,b]. Such a function is called an O-
function. Let (£2, A, 1) be a measure space. Identify real valued functions on
(2 that differ only on a set of measure zero. Let M denote the corresponding
set of congruence classes. It is known [2,3] that the pair {&, u} induces the
Luzemburg functional on the Orlicz space

Ly(p) = {fe./\/l:/ﬂtlf(a|f|)du<oofor somea>0}.
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Its expression is

prl$) =t {305 [ w(/naus 1},

A well known example is the L,-norm (with abuse of language for 0 < p < 1),
induced by any p and ¥(z) = cxP, ¢ > 0, for 0 < p < oo, which gives
Lo () = Ly(n) = {f € M [, |17 du < 50}, puF) = (¢ Jy [£]7 dp)"/7. amd
induced by any p and a function ¥ that satisfies ¥(z) = 0 if 0 < z < q,
U(z) = oo if £ > a, a > 0, for p = oo, which gives Ly () = Loo(p) =
{f e M :esssup|f| < oo}, pwp(f) = ||fllec = aess sup|f|. The L,-norms
satisfy the following property, applicable to any functional p defined on a quite
arbitrary real function space.

For any set B € A and f, g simple functions, if p(fx5) = p(9xB)

and p(fxo\B) = P(gxa\B), then p(f) = p(g). *)

We recall that a simple function is one of form Y. | ¢ixa,, #(4;) < 0o, where
x4 denotes the characteristic function of the set A. If A has, exactly, none,
one or two disjoint sets of finite and positive measure, then the class of all
simple functions can be identified with {0}, R or R2, respectively, and in these
cases any homogeneous functional defined on Ly (p), depending on |f|, (e.g.
a Luxemburg functional) satisfies (x). We show in this paper that a rather
different result follows when A has at least three disjoint sets of finite and
positive measure p. The function ¥ is said to satisfy property P, if {¥,u}
induces a Luxemburg functional on Ly (u) satisfying (x). We shall give a
description of such functions. In all cases they yield a Ly-norm, 0 < p < oo.
In case that p is o-finite and ¥ is convex, this latter result can also be obtained
from a classical theorem of H. F. Bohnenblust [1, 4]. As a consequence of that
theorem, for dim Ly (p) > 3 it is obtained that homogeneous functionals on
Ly () that satisfy (x) are p-additive, 0 < p < oo. For p > 1 this fact implies
in turn that py ,(f) is a L,-norm. However we do not follow the ideas of that
theorem neither use the p-additive condition. Depending on a general measure
1, in each case our proofs directly lead to the characterization of ¥.

We consider in Section 2 a Luxemburg functional induced by a continuous
O-function ¥. In Section 3 we assume that ¥ is not continuous and that y is in
addition a o-finite measure. As a consequence of Theorem 1 we get in Section 4
the known fact that the space Ly (n) :== {f € M : [,¥(a|f])du < oo for
all & > 0} cannot be normed analogously to L,-spaces, p > 0, whenever
dim £ (p) > 2.

We say that (£2, A, p) is infinitely divisible if there are measurable subsets
of £2 with positive and arbitrarily small measure. If ({2, A, 1) is not infinitely
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divisible and A has at least one set of finite and positive measure, then we let

ro = inf {u(A), A € A, u(A) >0} > 0.

2 Characterization of a Continuous O-function ¥

In this section we assume that ¥ satisfies (R ) D R,.. Hence its right inverse
function =1 : (0,00) — R exists, is continuous and satisfies ¥(¢~1(x)) = x
for all x > 0. We say that a Luxemburg functional induced by any measure
and such a function ¥ is a L-functional.

Theorem 1 Assume that A has at least three disjoint sets of finite and posi-
tive measure.

(a) If (12, A, ) is infinitely divisible, then ¥ satisfies property P,, if and only
if U(x) = cxP on [0,00), ¢ >0, p>0.

(b) If (2, A, ) is not infinitely divisible, then ¥ satisfies property P, if and
only if ¥ verifies ¥(z) = caP for any x € [0,%~1(1/ro)], p >0, ¢ > 0.

In both cases the functional induced is a Ly-norm and therefore these are the
only L-functionals that verify property (x).

PROOF. Assume that ¥ satisfies property P,. Take F € A, 0 < u(F) < oo,
such that there are two disjoint sets G and E of finite and positive measure,
GUE C O\F, (E) > p(F). Such a set F' always exists due to the assumptions
on (2, A, ). Assume first pu(F) = ¥(1) = 1. Take h € R, h > 0, such that
pw,u(hxrue) = pwu(xr) = 1. So property (x) implies py . (hxFuc + sxE) =
pw,u(XF + sxE) =: ds for any s € [0,00). Therefore, by definition of py , and
the continuity of ¥ (on [0,1)), we get u(F UG)¥(h) =1 on the one hand and
on the other hand

w(FUG)U(h/ds) + u(E)¥(s/ds) =W(1/6s) + n(E)W(s/ds) =1,

whence ¥(h/ds) = W(h)¥(1/d,) for any s > 0. As s — J, maps continuously
[0,00) onto [1,00), we have obtained that h is a multiplier for ¥, i.e., h is a
point m € [0,1] that satisfies

U(m~y) = ¥(m)¥(y) for any v € [0, 1].

Observe that the former equation implies that ¥(h™) = [W(h)]" for n € N.
Moreover, h™ is a multiplier for ¥. Since 0 < h < 1, 0 < ¥(h) < 1, it follows
that h™ | 0, ¥(h™) | 0 as n — oo (and therefore ¥(x) > 0 if > 0). Take
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ki € R, k1 > 0, such that pg ,(kixr +mkixe) = po,u(xF) = 1, where m is a
multiplier for ¥. Hence ¥ (k1) + u(G)¥(mki) = 1. As ky < 1, it follows that

W (ky)[1 + p(G(m)] = 1.

On the other hand, property (*) implies pw ,(k1xF + mkixa + sxg) = 05 for
any s > 0, whence ¥(k1y) = W(k1)¥(y) for v € [0,1]. We have just proved
that if m is a multiplier for ¥, then k1 = ¥=1(1/[1 + u(G)¥(m)]) is also a
multiplier for ¥. It follows that

My = M (U, 1) ==V H1/[1 + p(G)YT(h™)])

is a multipler for ¥, n € N. As ¢! is continuous and ¥~1(1) = 1, we get that
mp T 1asn — oo.

The existence of the sequence {m,,} implies that any m € [0,1] is in the
collection P of multipliers for ¥. Indeed, observe first that P is closed because
¥ is continuous. Hence

Bo(m) :=inf{f e P:8>m} e P forme|0,1),

and fo(m) = m because m,Bo(m) € P for all n € N.
For = € (0,1] we have

(amy) — V(@) /[e(m, - 1)] = U(@)[P(m,) — FL))/[e(m, —1)]. (1)

On the other hand, the obvious estimates below show that ¥ is absolutely
continuous on [1, 1] for all n € (0,1).

Let z; € [n,1], 1 <i<n+1,neN and z; < 3 < -+ < Tp41. Let
Yi = &;/Ti+1, 1 <i<mn. Then

TIZU -l < Z$i+1[1 — i) = Z[zi-&-l — i,
Z[W(%H) = ¥(x;)] = Z[W(xiﬂ) — U (Viit1)]

i=1 i

Il
_

n

(i)l = W(y)] <D [1— (),

=1

.

—_ =

?

1 —%(y) <KJ[1 —~] for some K >0 and any v < 1.

Therefore we get that the derivative ¥'(x) exists and is finite-valued for almost
every z on [0, 1]. Hence the left side in eq. (1) converges to ¥'(z) as n — oo for
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almost every z € [0, 1], and it follows that the right side in eq. (1) converges to
p¥(x)/x as n — oo for any = € (0, 1], where p > 0. Therefore ¥'(z)/¥(z) =
p/x a.e.on (0,1]. As ¥ is not constant, we have p > 0. Since In¥ is absolutely
continuous on [n, 1], the integration of both sides of the former equation from
x to 1 gives ¥(x) = zP on [0, 1]. Observe that, so far, only the restriction of
¥ on [0,1] has been considered (cf. the end of Section 3).

Suppose now u(F) =r > 0, ¥(1) > 0. The L-functional induced by r¥
and p/r on Ly (p) coincides with the L-functional induced by ¥ and p. On
the other hand, the L-functional induced by ¥ (z) := r& (¥~ (1/r)x) and u/r
on Ly(u) is $~1(1/r) times the L-functional induced by r¥ and pu/r, and
therefore it also satisfies property (x), with (1) = (u/r)(F) = 1. So we get
¥(z) = 2P on [0,1], with p > 0, whence ¥(x) = cz? on [0,%1(1/r)], where
e = 1/[r (@1 (1/r)7)].

Under the hypothesis of (a) we can take r | 0. Then the case ¥~1(1/r) 1 b,
b < 00, leads to a contradiction, whence ¥»~1(1/r) 1 oo and the necessary part
of (a) follows. The sufficiency of (a) is obvious. The necessity of (b) follows
by taking r — rg. (Observe that this taking of limits in r is compatible
with the assumption on F' at the beginning of the proof). Conversely, if
W(z) = ca? on [0,%1(1/r0)], then ¥(zx) := ro@ (¥~ (1/r0)z) = 2P on [0,1]
and, as mentioned above, ¥ and w/ro induce, up to a multiplicative constant,
the same L-functional as ¥ and u. So, to conclude the proof, it suffices to
observe that if ¥(z) = P on [0, 1] and in addition x(C) > 1 for any measurable
set C' with p(C) > 0, then {¥, u} induces the standard L,-norm on Ly ()
(= Lp(p)). Indeed, if g € M and [, |g| dp < 1, then |g| < 1 almost everywhere
(1) on £2, whence [, ¥(|f]/A)dp < 1 is equivalent to [,(|f|/A)Pdu < 1.

Therefore pg,,,(f) = inf{\: [,(|f|/A)Pdp =1} = ([, \f|pd,u)1/p. O

3 Characterization of a Discontinuous O-function ¥

Now we suppose, and only in this section, that ¥ is not ({2, .4, ) is in addition
a o-finite measure space. So we consider an O-function ¥ jumping to infinity at
a, a > 0. We say that the Luxemburg functional induced by such a pair {¥, u}
on Lyg(u) is a L*-functional. Observe that when (2,4, 1) is not infinitely
divisible, a L*-functional may coincide with a L-functional. Since p is o-finite,
the condition required to A in Theorem 1 is now equivalent to dim Ly () >
3. We can suppose without loss of generality that ¥ is left continuous. An
example of such a function is: ¥(z) =0if 0 <z < qa, ¥(z) = 0 if z > a.
It is easy to see that {¥, u}, with this function ¥, induces the a essential sup
norm on Ly (p), which we call, as usual, a Lo.-norm. Moreover, it is easy to
show that if u(2)¥(a) < 1, then {¥, u} induces a Lo,-norm. Observe also
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that if u(C) > 1 for any measurable set C of positive measure and ¥ satisfies
U(x) =aP on [0,1] (e.g., ¥(x) = 2P on [0, 1], ¥(x) = oo for & > 1), then {¥, u}
induces the standard L,-norm on Ly (u).

Assume now that {¥, u} induces a L*-functional, where u(2)¥(a) > 1.
Under this condition we consider two exhaustive cases. Suppose first that
there exists F' € A, 0 < p(F)¥(a) < 1. For instance, this is the case if
(2, A, 1) is infinitely divisible. Assume also that there exists B € A, B D F,
w(B) < p(£2), w(B)¥(a) > 1. (This is the case if u(§2) = 00). Then, since ¥
is a continuous function on [0, a), it follows that there exists b, 0 < b < a, such
that p(F)¥(a) + p(B \ F)#(b) = 1. Then we have pg ,(axr) = pw (axr +
bxp\r) = 1. Take E € A, E C 2\ B, 0 < u(F) < oo. Therefore there
exists ¢, 0 < ¢ < a, ¥(c) > 0, such that u(F)¥(a) + p(E)¥(c) < 1, whence
pw.u(axr +cxg) = 1 but py (axr +bxp\r +cxe) > 1. So property (*) does
not hold.

If for any set Din D={D € A, DD F, u(D) < u(2)} is u(D)¥(a) < 1,
then consider a set B € D such that u(B) = sup{u(D), D € D}. Hence
w(B) < u(£2) < oo and 2\ B is an atom, whence B is not an atom. At this
point we can assume that F' satisfies at least one of the following conditions.

(1) There exists G € A such that F' C G, u(F)¥(a) < p(G)¥(a) < 1.
(2) F is an atom.

In either case it follows that u(F) < u(B). We have pg ,(axr) = pw,u(axs) =
1. As u(F) 4+ u(R2\ B) < u(£2), we get that FU(2\ B) € D, i.e., u(F)¥(a)+
u(2\ B)¥(a) < 1. So py,ulaxr +axe\s) = 1 but puu(axs +axe\s) > 1,
whence property (*) does not hold.

It remains to consider the case where ({2, A, ;1) is not infinitely divisible
and 7% (a) > 1. In this case w1 is well defined and continuous on the interval
(0,1/r9], whence the proof in Theorem 1(b) applies without changes. Thus,
in this case ¥ satisfies property P, if and only if ¥(x) = ca? on [0,¥ ! (1/r¢)].
So we have the following.

Theorem 2 If dim Ly (u) > 3, then the L*-functional induced by ¥ and p
satisfies property (x) if it is necessarily a Ly-norm, 0 < p < co.

4 Ly(p) cannot be normed analogously to L,-spaces

Let Li(pn) = {f € M : [, P(alf|)dp < oo for all a > 0}, where & is a finite-
valued convex O-function. L(u) is a linear subspace of L£4(p). A natural
way for trying to provide L (x) with a norm, analogously to the L,-norm, is
to consider the expression @~ ([, ®(|f|) du). We refer to [6] for a historical
survey of this and related questions. In this article it is proved that this
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attempt is possible only if &(z) = caP, in the case where p is the Lebesgue
measure on the real line. This result was later extended [5] to the linear space
Ly (1), where ¥ is a finite-valued strictly increasing O-function and ({2, A, p)
is such that dim £}, (1) > 2. More precisely, it is proved in that paper that
it orwu(f): =T (fQ (If]) dp) is a homogeneous functional on L, (), being
I' and ¥ finite-valued strictly increasing O-functions, then ¥(x) = ¥(1)z?
I(x) = I'(1)z*?, p > 0. Next we prove that this result is a consequence
of Theorem 1. Assume first that dim £}, (1) = 2. Therefore £ (1) can be
identified with R? = {(x1,x2), 21,22 € R}, and where

orwu(z,v2) = 'a1¥(|z1]) + a¥(|22])), a1, a2 > 0.

Assume that ¢r ¢, (21,22) is a homogeneous functional. For any = > 0 we
have

orwu(z,0)=I'(m¥(x)) =zorwu(l,0) = zI'(a1¥(1)).

As parw,u(= aprw,) is also a homogeneous functional for all a > 0, we can
suppose without loss of generality that I'(a1% (1)) = 1. Under this assumption,
a,¥ = I'"'. Define on R? the homogeneous functional

@/($1,12,$3) :QDF,W,;L((PF,W,M(IMI2),173)
=I'(a¥(I'(ar1¥(|z1]) + a2¥(|2]))) + a2?(|zs]))
=I'(a1¥(|z1]) + a2¥(|z2]) + a2¥(|z3))).

This functional is of the form ¢y v, where dim £y, (¢') = 3. This fact shows
that it suffices to consider a homogeneous functional ¢ g, defined on Ly (1),
dim £ () > 3. After dividing I" by I'(1) we can suppose I'(1) = 1. For
any f € Ly(n) we have that ¢prw ,(f) = 1 if and only if pg ,(f) = inf{X :

Jo@(|fI/A)dp <1} =1, and since these two functionals are homogeneous, it
follows that ¢r w . (f) = pw,(f) for all f € Ly (n). Note that dim Ly () > 3
implies that there exist three measurable sets of finite and positive measure,
since ¥ is strictly increasing. As the simple functions belong to £y (1) and
©r v, satisfies property (x), we get that Theorem 1 implies that ¢r v, (f) =
(¢ foIfIP dp)l/p for all f € L, (), and also ¥(x) = czP in the case where
(2, A, 1) is infinitely divisible, and ¥(z) = ca? on [0,%~1(1/ry)] in the case
where (£2, A, 1) is not infinitely divisible, ¢ > 0, p > 0. For ¢ > 0 define
I'*(x) = I'(x/€)/I'(1/€). Then applying in the latter case the same conclusion
to the homogeneous functional ¢r- 4, = [1/I'(1/€)]orw, ., and taking € | 0,
it follows that also in this case ¥(z) = caP for any x in [0,00). Therefore

I (c[olfIPdu) = (c[ylfIP du)l/p for all f € Ly (), whence it is easy to
show that I'(z) = z/7.
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