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ON SOME METHOD FOR IMPROVING
CONTINUITY, QUASI-CONTINUITY AND

THE DARBOUX PROPERTY

Abstract

In the paper we give and investigate the basic properties of a method
for improving continuity, quasi-continuity and the Darboux property of
real functions defined on a metric Baire space. This “improvement” is
carried out with the use of Blumberg sets.

A. Katafiasz in her doctoral dissertation [5] (Also see [6] and [7].) intro-
duced the notion of an α-improvable discontinuous function. The main idea of
this work was to examine the possibility of the “removal” of the discontinuity
of real functions defined on some subsets of the line. The author suggested a
certain method for removing the discontinuity and investigated the structure
of functions for which this method is efficient as well as the successive steps of
the procedure of removing of the discontinuity. This dissertation has inspired
our team’s investigations.

In our paper we give another method for “improving functions”. In ad-
dition we show that our method is efficient for a considerably wider class of
functions than A. Katafiasz’s method, and that it may also be applied, in
some cases, to the improving of quasi-continuity and the Darboux property.
An additional merit of our method is the fact that the “improvement” is done
in one step.
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We apply the classical symbols and notation. In particular, the symbol R
denotes the set of all real numbers with the natural topology.

Throughout the paper, we consider bounded real functions defined on some
metric Baire space.

If X is some metric space, then I(X) denotes the set of all isolated points.
The symbols A and Ad stand for the closure of the set A and the derived set of
A (i.e. the set of all accumulation points of A), respectively. By K(a, r) ⊂ X
we denote the open ball with center at x and radius r.

Let X be a metric space with a metric %, and let W ⊂ X, x ∈ X, r > 0.
Then γ(x, r,W ) denotes the supremum of the set of all t > 0 for which there
exists z ∈ X such that K(z, t) ⊂ K(x, r) \ W . The porosity of W at x is

defined to be the number p(W,x) = 2 · limr→0+
γ(x,r,W )

r ([9]) and W is porous
at x if p(W,x) > 0.

Let f : X → R and A ⊂ X. The symbol f|A denotes the restriction of f
to A. UA(f) = {x ∈ X : there exists limx→x0

f|A(x)}. (If A = X, then we

simply write U(f).) Let x0 ∈ Ad. Then

LA(f, x0) = {α : ∃{xn}⊂A\{x0} lim
n→∞

xn = x0 ∧ lim
n→∞

f(xn) = α}.

(If A = X, then we simply write L(f, x0).) If x ∈ I(X), then we assume
LA(f, x) = {f(x)} for an arbitrary subset A ⊂ X. If f : R → R and A ⊂ R,
then

L+
A(f, x0) = {α : ∃{xn}⊂A∩(x0,+∞) lim

n→∞
xn = x0 ∧ lim

n→∞
f(xn) = α}.

In an analogous way we define L−A(f, x0). (If A = R, then we simply write
L+(f, x0) and L−(f, x0.) The symbol Cf denotes the set of all continuity
points of f .

Let f : R→ R. A point x0 is said to be a right-sided (left-sided) Darboux
point ([3], [8]) of f provided that for each ε > 0 and for each number β which is
strictly between f(x0) and some element of L+(f, x0) (L−(f, x0)), there exists
z ∈ [x0, x0 + ε) (z ∈ (x0− ε, x0]) such that f(z) = β. A point x0 is a Darboux
point of f provided x0 is a right-sided and left-sided Darboux point of f .

Let f : X → Y where X and Y are metric spaces. We say that x0 is
a quasi-continuity point of f if, for any open neighborhoods U and V of x0
and f(x0), respectively, Int (U ∩ f−1(V )) 6= ∅. A function f is said to be
quasi-continuous if each point x in the domain of f is a quasi-continuity point
of f .

If A is a bounded subset of R, then the symbol [A] denotes the closed
interval [inf A, supA].
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H. Blumberg in paper [1] showed that, for every real function defined on R,
there exists a dense subset B of R such that f|B is continuous. If f : X → Y ,
and B is a dense set of X such that f|B is continuous, then we say that B
is a Blumberg set of f . It is known ([2]) that, for a metric space X, X is a
Baire space if and only if for an arbitrary function f : X → R, there exists a
Blumberg set of f (see also [4]).

We shall apply these facts to our considerations. First, we introduce the
notion of a c-Blumberg set.

Definition 1 Let f : X → R. If B is a dense set of X such that Cf ⊂ B and
f|B is a continuous function, then we say that B is a c-Blumberg set.

Proposition 1 The metric space X is a Baire space if and only if, for an
arbitrary function f : X → R, there exists a c-Blumberg set of f .

Proof. Necessity. From the Bradford-Goffman Theorem we may deduce
that there exists a Blumberg set B of f . It is not hard to verify that B′ =
(B \ Cf ) ∪ Cf is a c-Blumberg set of f . Sufficiency is obvious. �

In our paper we consider only functions mapping a Baire space into the
real line, and so, for each function considered in this paper, there exists (at
least one) c-Blumberg set.

Let f : X → R be a function and let B be a c-Blumberg set of f . By the
symbol fB we shall denote the class of all functions f0 defined as follows.

f0(x) =

{
f(x), if x ∈ B,
an arbitrary element of LB(f, x), if x /∈ B.

Proposition 2 Let B be a c-Blumberg set of a function f : X → R. Then
the class fB contains at most one continuous function.

Proof. Of course, if f is continuous, then fB = {f}.
Now, we consider the case when f is a discontinuous function. Assume

to the contrary that fB contains two different continuous functions f1, f2.
Then there exists a point x0 ∈ X such that α1 = f1(x0) 6= f2(x0) = α2.
Of course, x0 /∈ I(X). From the definition of the class fB we infer that
there exists a sequence {xn} ⊂ B such that x0 = limn→∞ xn and α1 =
limn→∞ f(xn). Note that f1(xn) = f2(xn) = f(xn) (n = 1, 2, . . .) and, conse-
quently, limn→∞ f2(xn) = α1 6= α2, contrary to the continuity of f2. �

Definition 2 Let B be a c-Blumberg set of a function f : X → R. Then we
say that f is a B-improvable function if the family fB contains a continuous
function. (Such a function will be denoted by fBc .)
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According to Proposition 2, for a fixed c-Blumberg set of f , there is at
most one “improvement” fBc of f . But, in the case of different c-Blumberg
sets of f we can obtain different “improved functions”.

Example 1 Let f : R→ R be a function such that the image of an arbitrary
interval is equal to R. Then Cf = ∅ and, consequently, f−1(α) is a c-Blumberg

set of f for each α ∈ R. It is easy to see that f
f−1(α)
c (x) = α for x ∈ R and

α ∈ R. So, we have obtained a continuum of “improved functions” of f .

Proposition 3 If f0 ∈ fB, then f0 is continuous at each point of the set
UB(f) ∪ I(X).

Proof. If x0 ∈ I(X), then, of course, x0 ∈ Cf0 .
Assume that x0 /∈ I(X). Let {xn}∞n=1 ⊂ X be an arbitrary sequence

such that x0 = limn→∞ xn and let {f0(xkn)}∞n=1 be an arbitrary subsequence
of {f0(xn)}∞n=1. Then we may choose a subsequence {xlkn }

∞
n=1 of {xkn}∞n=1

such that either {xlkn }
∞
n=1 ⊂ B or {xlkn }

∞
n=1 ⊂ X \ B. In the first case, if

x0 ∈ B, then, according to the continuity of f|B , we obtain f0(x0) = f(x0) =
limn→∞ f|B(xlkn ) = limn→∞ f0(xlkn ), and if x0 /∈ B, then (limx→x0

f|B(x)
exists) we may infer that f0(x0) = limx→x0

f|B(x), and as a consequence,
f0(x0) = limn→∞ f0(xlkn ).

In the second case, since f0(xlkn ) ∈ LB(f, xlkn ), we may construct, for ev-

ery n, a sequence {ylkns }∞s=1 ⊂ B such that xlkn = lims→∞ y
lkn
s and

lims→∞ f(y
lkn
s ) = f0(xlkn ). So for every positive integer n, there exists

a positive integer s(n) such that %(y
lkn
s(n), xlkn ) < 1

n (where % denotes the

metric in the space X) and |f(y
lkn
s(n)) − f0(xlkn )| < 1

n . In a fashion anal-

ogous to the above, we may show that limn→∞ f0(y
lkn
s(n)) = f0(x0). Since

|f0(xlkn ) − f0(x0)| ≤ |f0(xlkn ) − f0(y
lkn
s(n))| + |f0(y

lkn
s(n)) − f0(x0)|, we deduce

that limn→∞ f0(xlkn ) = f0(x0).
From the above considerations we infer that limn→∞ f0(xn) = f0(x0). �

Theorem 1 Let B be a c-Blumberg set of f : X → R. Then f is B-improvable
function if and only if X = UB(f) ∪ I(X).

Proof. Necessity. Suppose that f is a B-improvable function (so, fBc exists)
and that there exists a point x0 /∈ UB(f)∪ I(X). Then we may choose two se-
quences {xn}∞n=1 ⊂ B and {yn}∞n=1 ⊂ B such that xn 6= x0 6= yn (n = 1, 2, . . .)
limn→∞ xn = limn→∞ yn = x0 and limn→∞ f(xn) = α 6= β = limn→∞ f(yn).
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Then fBc (x0) = limn→∞ fBc (xn) = limn→∞(xn) = α, and on the other hand,
fBc (x0) = limn→∞ fBc (yn) = limn→∞ f(yn) = β, which is impossible.

According to Proposition 3, sufficiency is obvious. �

Proposition 4 If x0 is a continuity point of a function f : X → R, then f is
also a continuity point of an arbitrary function f0 from fB (B is a c-Blumberg
set of f).

The easy proof is omitted.

Lemma 1 Let f : X → R be a function of Baire class one defined on the
complete metric space X. Then the following conditions are equivalent:
(i) For each c-Blumberg set B of f , f is a B-improvable function.
(ii) There exists a c-Blumberg set B of f such that f is a B-improvable func-
tion.
(iii) LCf (f, x) is a singleton for each x ∈ X.

Proof. The implication (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii). From Theorem 1 we infer that X = UB(f)∪I(X). Of course

if x ∈ I(X), then LCf (f, x) = {f(x)}. Now, we suppose that x ∈ UB(f). This
means that limy→x f|B(y) exists, and so, limy→x f|Cf (y) exists, also.

(iii) ⇒ (i). Assume to the contrary that, for some c-Blumberg set of f ,
f is not a B-improvable function. So, according to Theorem 1, there exists
x0 ∈ X \ (UB(f) ∪ I(X)). Then x0 /∈ B. It is easy to see that there exist two
sequences {xn}∞n=1 ⊂ B and {yn}∞n=1 ⊂ B such that

lim
n→∞

xn = x0 = lim
n→∞

yn, lim
n→∞

f(xn) = α 6= β = lim
n→∞

f(yn)

and xn 6= x0 6= yn (n = 1, 2, . . .). This means that LB(f, x0) contains at least
two distinct elements.

From the continuity of f|B and the density of Cf we may deduce that
α, β ∈ LCf (f, x0), which is impossible because LCf (f, x0) is a singleton. �

Lemma 2 If B1, B2 are two c-Blumberg sets of f : R → R where f is a
function of Baire class one and f is B1-improvable, then f is B2-improvable
and fB1

c = fB2
c .

Proof. Since f is a B1-improvable function, according to Lemma 1, LCf (f, x)
is a singleton for x ∈ R and, consequently, (according again to Lemma 1) f is
a B2-improvable function.

Now let x0 ∈ R. Then (Lemma 1) LCf (f, x0) = {α}. This means that
fB1
c (x0) = α and fB2

c (x0) = α, and so fB1
c (x0) = fB2

c (x0). By the arbitrari-
ness of the choice of x0, fB1

c = fB2
c . �
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Now, we present the basic facts from paper [5]. Let D be a subset of R,
f : D → R and let

A(f) = {x ∈ D : lim
t→x

f(t) 6= f(x)}.

Then f(0)(x) = f(x) for x ∈ D. For every ordinal number α (A. Katafiasz
considers the class of all ordinal numbers.), let

f(α)(x) =

 f(x), if {γ < α : x ∈ A(f(γ))} = ∅;
limt→x f(γ0)(t) if x ∈ A(f(γ0)),

where γ0 = min{γ < α : x ∈ A(f(γ))}.

For every ordinal number α, Aα = {f : D → R : Cf(α)
= D}. If a function

f : D → R belongs to Aα\(
⋃

0≤β<αAβ), then it will be called an α-improvable
(in the sense of Katafiasz) discontinuous function. If f ∈

⋃
0≤α<ω1

Aα, then
it will be called an improvable (in the sense of Katafiasz) function.

Theorem 2 If f : R→ R is an α-improvable function in the sense of Katafi-
asz (for some ordinal number α), then, for each1 c-Blumberg set B of f , f is
a B improvable function.

Proof. According to Theorem 15 of [5, p. 36], f is of Baire class one, and so,
Cf is a c-Blumberg set of f .

Let f(α) be a (continuous) function obtained by the method of Katafiasz.
Now, we shall prove that

UCf (f) = R. (1)

Let x0 ∈ R, and let {bn}∞n=1 ⊂ Cf be a sequence such that x0 = limn→∞ bn.
Theorem 1(3, α) from paper [5] gives the equality f(bn) = f(α)(bn) for n =
1, 2, . . .. Of course, limn→∞ f(α)(bn) = f(α)(x0) and, thus, limn→∞ f(bn) =
f(α)(x0). According to the arbitrariness of the sequence {bn}, x0 ∈ UCf (f),
and so, (1) is true.

From (1) and Theorem 1 we conclude that f is a Cf -improvable function
and, consequently, according to Lemma 2, f is a B-improvable function for an
arbitrary c-Blumberg set B of f .

Now, we shall show that f(α) = f
Cf
c . In fact, let z0 ∈ R = UCf (f). Then

(according to Theorem 1(3, α) from [5])

f
Cf
c (z0) = lim

z→z0
f|Cf (z) = lim

z→z0;z∈Cf
f(α)(z) = f(α)(z0).

1Note that, according to the Proposition 1, there exists at least one c-Blumberg set of f .
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From Lemma 2 we infer that f(α) = fBc for an arbitrary c-Blumberg set B
of f . �

Note that there exists a discontinuous function f : R→ R of Baire class one
such that f is Cf -improvable, but is not improvable in the sense of Katafiasz.
For example, let f be the characteristic function of the Cantor set. Since
fCf ≡ 0, by Theorem 1 f is a Cf -improvable function, but f(α) = f for
0 ≤ α < ω1 (cf. [5, Theorem 5, p. 10]).

The above considerations suggest the following question: How often do
B-improvable functions occur in the class of Baire one functions? The answer
to this question is contained in the next theorem.

Let X be a connected and complete metric space containing at least two
different points, let B1(X) denote the space of all bounded functions f : X →
R of Baire class one with the metric of uniform convergence and let P (X)
denote the subset of the space B1(X) consisting of all functions g : X → R
satisfying the condition: there exists a c-Blumberg set B of g such that g is a
B-improvable function.

Theorem 3 In the space B1(X) the set P (X) is porous at each point f ∈
B1(X).

Proof. Let f ∈ B1(X), ε > 0 and let x0 be an arbitrary point of continuity
of f . Set α = f(x0). Then there exists δ > 0 such that f(K(x0, δ)) ⊂
(α− ε

4 , α+ ε
4 ). Put

g(x) =


α+

ε

2
sin

1

%(x0, x)
, if x ∈ K(x0, δ) \ {x0},

α, if x = x0,
f(x), if x /∈ K(x0, δ),

where % denotes the metric in the space X. It is not difficult to verify that
g ∈ B1(X) and g ∈ K(f, 34ε) and, consequently, K(g, ε8 ) ⊂ K(f, ε).

Now, we shall show that

K
(
g,
ε

8

)
∩ P (X) = ∅. (2)

Let h ∈ K(g, ε8 ) and let α0, β0 ∈ (0, π2 ) be numbers such that sinα0 = 0.2 and
sinβ0 = 0.8. Then there exist positive integer n0 and sequences {an}∞n=n0

,

{bn}∞n=n0
⊂ Ch such that %(x0, an) ∈

(
1

π
2 +2nπ ,

1
β0+2nπ

)
and %(x0, bn) ∈(

1
α0+2nπ ,

1
2nπ

)
. (For simplicity we assume that n0 = 1.) It is easy to see
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that limn→∞ an = x0 and limn→∞ bn = x0. Without loss of generality we
may assume that

{an : n = 1, 2, . . .} ⊂ K(x0, δ) ⊃ {bn : n = 1, 2, . . .}.

Of course an 6= x0 6= bn (n = 1, 2, . . .). Note that

g(an) =α+
ε

2
sin

1

%(x0, an)
> α+ 0, 4 · ε (n = 1, 2, . . .),

g(bn =α+
ε

2
sin

1

%(x0, bn)
< α+ 0, 1 · ε (n = 1, 2, . . .).

Consequently (according to the fact that |h(x)− g(x)| < ε
8 for x ∈ X)

h(an) > α+ 0.275 · ε, h(bn) < α+ 0.225 · ε for n = 1, 2, . . . .

Since limn→∞ an = x0 = limn→∞ bn and {an}∞n=1, {bn}∞n=1 ⊂ Ch, the
above inequality proves that limx→x0

h|Ch(x) does not exist, and so, LCh(h, x0)
is not a singleton. From Lemma 1 we may infer that h is not a B-improvable
function for any c-Blumberg set of h, and so, (2) is proved.

From (2) it follows that the porosity of P (X) at f : p(P (X), f) ≥ 1
4 , which

means that the set P (X) is porous at f . �

The results included in paper [5] and our considerations (in particular,
Theorem 2) lead to the question: How large, in the space P = P (R) (with the
metric of uniform convergence), is the set K of all functions improvable in the
sense of Katafiasz? The answer to this question is contained in the following
assertion.

Theorem 4 In the space P the set K is porous at each point t ∈ P .

Proof. Let t be an arbitrary element of P and let η > 0. Fix a point
z0 of continuity of t and let α = t(z0). Then there exists σ > 0 such that
t([z0 − σ, z0 + σ]) ⊂ (α− η

4 , α+ η
4 ). Let C be a Cantor-like set in the segment

[σ2 , σ] and, moreover, let B be a fixed c-Blumberg set of t. Then (Lemma 2) t
is a B-improvable function.

Put β1 = tBc (z0−σ) and β2 = tBc (z0 +σ). Note that β1, β2 ∈ [α− η
4 , α+ η

4 ].
Let γ ∈ (α− η

4 , α+ η
4 ) be a number such that |γ − β2| > 3

16η. Now, we define
the function w : R→ R by

w(x) =


t(x), if |x− z0| ≥ σ,
β2, if x− z0 ∈ [σ2 , σ)\(C\{σ2 }),
γ, if x− z0 ∈ (σ2 , σ) ∩ C,
2(β2−β1)

3σ · x+ σ(β1+2β2)−2z0(β2−β1)
3σ , if x− z0 ∈ (−σ, σ2 ).
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Since the restriction of w to any closed set possesses a continuity point, w is
of Baire class one.

Let B′ = Cw. Of course, B′ is a c-Blumberg set of w. To prove the fact
that w is a B′-improvable function, it is sufficient to show (Theorem 1) that

UCw(w) = R. (3)

Let x ∈ R. We consider the following cases:
1. |x−z0| > σ. Since t is a B-improvable function for some c-Blumberg set

B of t and Ct ⊂ B, the limit limy→x,y∈Ct t(y) exists and limy→x,y∈Cw w(y) =
limy→x,y∈Ct t(y).

2. x − z0 ∈ (−σ, σ2 ). Then, of course, the limit limy→x,y∈Cw w(y) exists
since w is linear on the interval (z0 − σ, z0 + σ

2 ).
3. x− z0 ∈ (σ2 , σ). Then, of course,

lim
y→x,y∈Cw

w(y) = lim
y→x,y∈(σ2 ,σ)\C

w(y) = β2.

4. x− z0 = −σ. Then limy→x+,y∈Cw w(y) = β1 and

lim
y→x−,y∈Cw

w(y) = lim
y→(z0−σ)−,y∈Ct

t(y) = tBc (z0 − σ) = β1

for some c-Blumberg set B of t.
5. x− z0 = σ

2 . Then, of course,

lim
y→x−,y∈Cw

w(y) = β2 and lim
y→x+,y∈Cw

w(y) = β2.

6. x− z0 = σ. Then limy→x−,y∈Cw w(y) = β2 and

lim
y→x+,y∈Cw

w(y) = lim
y→(z0+σ)+,y∈Ct

t(y) = tBc (z0 + σ) = β2

for some c-Blumberg set B of t. The proof of (3) is complete.
Of course, w ∈ K(t, η2 ) and, consequently, K(w, η16 ) ⊂ K(t, η). Now, we

shall show that
K
(
w,

η

16

)
∩K = ∅ (4)

Let h ∈ K(w, η16 ). Then γ − η
16 < h(x) < γ + η

16 for each x such that
x − z0 ∈ (σ2 , σ) ∩ C, β2 − η

16 < h(x) < β2 + η
16 for each x such that x − z0 ∈

[σ2 , σ] \ (C \ {σ2 }). Note that

h possesses no limit at any point x such that x− z0 ∈
(σ

2
, σ
)
∩ C. (5)
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Indeed, if x0 is an element such that x0 − z0 ∈ (σ2 , σ) ∩ C, then there
exist two sequences {an}∞n=1 ⊂ (σ2 , σ) \C and {bn}∞n=1 ⊂ (σ2 , σ)∩C such that
limn→∞(z0 + an) = x0 = limn→∞(z0 + bn) and

h(z0 + bn) ∈
(
γ − η

16
, γ +

η

16

)
,

h(z0 + an) ∈
(
β2 −

η

16
, β2 +

η

16

)
.

From the assumptions on γ we infer that[
γ − η

16
, γ +

η

16

]
∩
[
β2 −

η

16
, β2 +

η

16

]
= ∅.

This finishes the proof of (5).
By the transfinite induction (applying (5)), we may prove that

h(α)(x) = h(x) for x ∈
(
z0 +

σ

2
, z0 + σ

)
and 0 ≤ α < ω1. (6)

According to (5) and (6), we infer that h(α) possesses no limit at any point x
such that x − z0 ∈ (σ2 , σ) ∩ C, which finishes the proof of (4). From (4) we
deduce p(K, t) ≥ 1

8 , which means that K is porous at t. �

Our method for improving the continuity of a fixed function is not always
effective but, in some cases, we may “improve” properties “near” the conti-
nuity, for example quasi-continuity or the Darboux property. The following
theorem is connected with this problem.

Theorem 5 Let f : R → R be a function such that Cf is a dense set. If
x0 ∈ R is a point such that there exists δ > 0 such that (x0, x0 + δ) ⊂ UCf (f)

and [L+
Cf

(f, x0)] ⊂ L+
Cf

(f, x0), then fCf contains a function for which x0 is a
right-sided Darboux point and x0 is a quasi-continuity point.

Proof. Let g be a function belonging to fCf such that g(x0) ∈ L+
Cf

(f, x0).
We shall show that

x0 is a right-sided Darboux point of g. (7)

Let α ∈ L+(g, x0) \ {g(x0)}. It is not hard to verify that α ∈ LCf (f, x0).
Assume, for instance, that g(x0) < α, and let β be an arbitrary number such
that β ∈ (g(x0), α); moreover, let γ > 0. To prove (7), it is sufficient to show
that there exists y0 ∈ [x0, x0 + γ) such that g(y0) = β. Note that there exist
β1 and β2 such that

β1 ∈ L+
Cf

(f, x0) ∩ (g(x0), β) ∧ β2 ∈ L+
Cf

(f, x0) ∩ (β, α). (8)
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Indeed, α ∈ L+
Cf

(f, x0), (g(x0), β) ⊂ [L+
Cf

(f, x0)] ⊃ (β, α). Since L+
Cf

(f, x0) is

dense in [L+
Cf

(f, x0)], the proof of (8) is finished.

From (8) we infer that there exists a nondegenerate segment [x1, x2] such
that [x1, x2] ⊂ (x0, x0 + min(γ, δ)), f(x1) ∈ (g(x0), β), f(x2) ∈ (β, α) and
x1, x2 ∈ Cf . Assume, for instance, that x1 < x2. Let

y0 = sup
{
x > x1 : f([x1, x) ∩ Cf ) ⊂ (−∞, β)

}
.

(Of course, {x > x1 : f([x1, x) ∩ Cf ) ⊂ (−∞, β)} 6= ∅.) Note that

f([x1, y0) ∩ Cf ) ⊂ (−∞, β) and y0 < x2.

By the above, f(x) < β for any x ∈ [x1, y0) ∩ Cf and, consequently,

lim
x→y0−,x∈Cf

f(x) ≤ β. (9)

(Such a limit exists because x0 < y0 < x0 +δ, which means that y0 ∈ UCf (f).)
Now, we shall show that

LCf (f, y0) = {β}. (10)

Indeed, from the definition of y0 we deduce that:

for each n = 1, 2, . . ., there exists yn ∈
[
y0, y0 +

1

n

)
∩ Cf

such that f(yn) ≥ β. (11)

Consider the following cases:

1o There exists n0 such that f(y) < β for each y ∈ (y0, y0 + 1
n0

) ∩ Cf .
By (11) and the assumptions of this case, f(y0) ≥ β and y0 ∈ Cf . According
to (9), limy→y0,y∈Cf f(y) = β, which means that LCf (f, y0) = {β}.

2o For every n, there exists yn ∈ (y0, y0 + 1
n ) ∩ Cf such that f(yn) ≥ β.

Since y0 ∈ UCf (f), limn→∞ f(yn) exists and limn→∞ f(yn) ≥ β. From (9) we
infer that limy→y0 f(y) = β. The proof of (10) is finished.

If y0 ∈ Cf , then g(y0) = f(y0) = β. If y0 /∈ Cf , then (g ∈ fCf ) g(y0) ∈
LCf (f, y0) = {β} and, consequently, g(y0) = β. The proof of the fact that x0
is a right-sided Darboux point of g is completed.

Now, we shall show that x0 is a quasi-continuity point of g. Let V be an
open neighborhood of g(x0) and let U be an open neighborhood of x0. Since
g(x0) ∈ L+

Cf
(f, x0), there exists a sequence {qn} ⊂ Cf such that limn→∞ qn =

x0 and limn→∞ f(qn) = g(x0). According to Proposition 4, {qn} ⊂ Cg and
limn→∞ g(qn) = g(x0). Then there exists n0 such that qn0 ∈ U and, moreover,
there exists an open neighborhood G ⊂ U of qn0

such that g(G) ⊂ V . This
completes the proof of the quasi-continuity of g at x0. �
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