Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487

ON CHARACTERIZING EXTENDABLE CONNECTIVITY FUNCTIONS BY ASSOCIATED SETS

Abstract

We answer two questions in [11]. We show that the class of extendable connectivity functions from I into I (I = [0,1]) cannot be characterized in terms of associated sets, and we show that one of Jones' functions obeying f(x+y) = f(x) + f(y) is an example of an almost continuous function from $\mathbb R$ into $\mathbb R$ which is not the uniform limit of any sequence of extendable connectivity functions.

A class K of real-valued functions defined on an interval is *characterized* by associated sets if there exists a family P of subsets of $\mathbb R$ such that $f \in K$ if and only if for every $\alpha \in \mathbb R$, the "associated" sets $E^{\alpha}(f) = \{x: f(x) < \alpha\}$ and $E_{\alpha}(f) = \{x: f(x) > \alpha\}$ belong to P. For example, the family P of open sets characterizes the class K of continuous functions.

A Darboux function $f:I\to I$ has the intermediate value property. A function $f:I\to I$ has the Weak Cantor Intermediate Value Property (WCIVP) if for each subinterval (x,y) of I with $f(x)\neq f(y)$, there exists a Cantor set C in (x,y) such that f(C) lies between f(x) and f(y). A connectivity function $f:I\to I$ or $F:I^2\to I$ obeys the property that the graph of its restriction to each connected subset of its domain is a connected set. A connectivity function $f:I\to I$ is extendable if there exists a connectivity function $f:I\to I$ such that F(x,0)=f(x) for all $x\in I$. Each neighborhood of the graph of an almost continuous function $f:I\to I$ in $I\times I$ contains the graph of a continuous function from I into I. Similar definitions hold for $\mathbb R$ replacing I.

Of the above classes of functions, these have been shown by the following to be not characterizable by associated sets:

Mathematical Reviews subject classification: 26A15, 54C08 Received by the editors February, 29, 1996

Key Words: extendable connectivity function, associated set, almost continuous function, uniform limit

280 HARVEY ROSEN

Darboux functions

connectivity functions

almost continuous functions

Bruckner [1]

Cristian and Tevy [3]

Kellum [9]

We continue this pattern for extendable connectivity functions.

Theorem 1 The class K of extendable connectivity functions from I into I cannot be characterized by associated sets.

PROOF. Assume K is characterized by a family P of associated sets. It follows from [12] or [2] that there exists an extendable connectivity function $f: I \to I$ whose graph is dense in I^2 and f(I) = (0,1). By [11], there exists a dense G_{δ} -subset A of (0,1) that is f-negligible. This means that every function from I into I obtained by arbitrarily redefining f on A is still an extendable connectivity function. Therefore the function $g: I \to I$ defined by

$$g(x) = \begin{cases} f(x) & \text{if } x \in I \setminus A \\ 0 & \text{if } x \in A \end{cases}$$

belongs to K, and so $E_0(g) = \{x \in I : g(x) > 0\} = I \setminus A \in P$. As in [12], we show that $I \setminus A$ is negligible for some extendable connectivity function. Since $I \setminus A$ is of the first category, it follows from Lemma 3 in [10] that there exists a homeomorphism $h: I \to I$ such that $(I \setminus A) \cap h(I \setminus A) = \emptyset$. $I \setminus A \subset h^{-1}(A)$ and $f \circ h: I \to (0,1)$. According to Corollary 1 and Lemma 2 in [10], $f \circ h$ is an extendable connectivity function, and $h^{-1}(A)$ is $(f \circ h)$ -negligible. Therefore $I \setminus A$ is $(f \circ h)$ -negligible. Then the function $\phi: I \to I$ defined by

$$\phi(x) = \begin{cases} (f \circ h)(x) & \text{if } x \in A \\ 0 & \text{if } x \in I \setminus A \end{cases}$$

belongs to K, and so $E_0(\phi)=\{x\in I: \phi(x)>0\}=A\in P.$ Define the function $\psi:I\to I$ by

$$\psi(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in I \setminus A. \end{cases}$$

Then for every $\alpha \in \mathbb{R}$, $E^{\alpha}(\psi)$, $E_{\alpha}(\psi) \in P$, yet $\psi \notin K$, a contradiction. \square

Theorem 2 The class K of uniform limits of sequences of extendable connectivity functions $f_n : \mathbb{R} \to \mathbb{R}$ is not characterized by associated sets.

PROOF. Assume K is characterizable in terms of a family P of associated sets. By [12] or [2], there exists an extendable connectivity function $g: \mathbb{R} \to \mathbb{R}$ whose graph is dense in \mathbb{R}^2 . According to Theorem 1 in [11] which still holds there for \mathbb{R} replacing I, there exists a dense G_{δ} -subset A of \mathbb{R} that is g-negligible. We may suppose $A \cap g^{-1}(1/2) = \emptyset$. Therefore $g^{-1}(1/2) = \bigcup_{i=1}^{\infty} C_i$, where each C_i is nowhere dense in \mathbb{R} and if $i \neq j$, then $C_i \cap C_j = \emptyset$. Like Example 1 in [11], for each positive integer n, define $f_n: \mathbb{R} \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} g(x) & \text{if } x \in \mathbb{R} \setminus \bigcup_{i=1}^n C_i \\ \frac{i+2}{2i} & \text{if } x \in C_i \text{ and } i = 1, 2, \dots, n \end{cases}$$

Then the sequence of extendable connectivity functions f_n converges uniformly to a function $f: \mathbb{R} \to \mathbb{R}$ with range $\mathbb{R} \setminus \{1/2\}$. Then $f \in K$ and so $E^{1/2}(f)$, $E_{1/2}(f) \in P$. Define a function $h: \mathbb{R} \to \mathbb{R}$ by

$$h(x) = \begin{cases} 1 & \text{if } x \in E^{1/2}(f) \\ 0 & \text{if } x \in E_{1/2}(f). \end{cases}$$

Clearly, h cannot be a uniform limit of a sequence of Darboux functions, and so $h \notin K$. Yet for every $\alpha \in \mathbb{R}$, $E^{\alpha}(h)$, $E_{\alpha}(h) \in P$, and so $h \in K$, a contradiction. \square

In [5], Gibson and Roush gave an example of a Darboux function $f: I \to \mathbb{R}$ which is not the uniform limit of a sequence of connectivity functions, and in [6], Jastrzebski gave an example of a connectivity function $f: I \to \mathbb{R}$ which is not the uniform limit of a sequence of almost continuous functions. We continue this trend with an example of an almost continuous function $f: \mathbb{R} \to \mathbb{R}$ that is not the uniform limit of any sequence of extendable connectivity functions. We prove two preliminary results.

Theorem 3 There exists a function $f : \mathbb{R} \to \mathbb{R}$ obeying f(x+y) = f(x) + f(y) that is almost continuous but does not have the WCIVP.

PROOF. Jones constructed a function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) and such that its graph intersects every perfect subset P of \mathbb{R}^2 with x-projection $\pi_1(P)$ having c-many points [7]. Kellum showed it was almost continuous [8].

Suppose x < y, $f(x) \neq f(y)$, and C is an arbitrary Cantor set between x and y. By construction, f meets the perfect subset $C \times \{f(x)\}$ of \mathbb{R}^2 , and so f(C) does not lie between f(x) and f(y). Therefore f does not have the WCIVP.

282 HARVEY ROSEN

According to [4], an extendable connectivity function has the WCIVP. Therefore the example given by Theorem 3 is not an extendable connectivity function.

Theorem 4 The uniform limit f of a sequence of extendable connectivity functions $f_n : \mathbb{R} \to \mathbb{R}$ has the WCIVP.

PROOF. Suppose x < y and $f(x) \neq f(y)$. Choose x_1 and y_1 such that $x < x_1 < y_1 < y$, $f(x_1) \neq f(y_1)$, and $f(x_1)$ and $f(y_1)$ lie between f(x) and f(y). We may suppose $f(x) < f(x_1) < f(y_1) < f(y)$. Let

$$\epsilon = (1/2) \min\{f(x_1) - f(x), f(y) - f(y_1), f(y_1) - f(x_1)\}.$$

There is an integer N such that for every $n \geq N$ and for every $z \in \mathbb{R}$, $|f(z) - f_n(z)| < \epsilon$. Since $f_N(x_1) \neq f_N(y_1)$, there exists a Cantor set $C \subset (x_1, y_1)$ such that $f_N(C) \subset (f_N(x_1), f_N(y_1))$. Then $C \subset (x, y)$ and $f(C) \subset (f(x), f(y))$. This shows f has the WCIVP.

Since Jones' function f in Theorem 3 does not have the WCIVP, then according to Theorem 4, f cannot be the uniform limit of a sequence of extendable connectivity functions. This proves the following result.

Theorem 5 There exists an almost continuous function $f : \mathbb{R} \to \mathbb{R}$ that is not the uniform limit of a sequence of extendable connectivity functions from \mathbb{R} into \mathbb{R} .

References

- [1] A. M. Bruckner, On characterizing classes of functions in terms of associated sets, Canad. Math. Bull. 10 (1967), 227–231.
- K. Ciesielski and I. Reclaw, Cardinal invariants concerning extendable and peripherally continuous functions, Real Analysis Exch., 21, no. 2 (1995–96), 459–472
- [3] B. Cristian and I. Tevy, On characterizing connected functions, Real Anal. Exchange 6 (1980-81), 203-207.
- [4] R. G. Gibson and F. Roush, Concerning the extension of connectivity functions, Top. Proc. 10 (1985), 75–82.
- [5] R. G. Gibson and F. Roush, The uniform limit of connectivity functions, Real Anal. Exchange 11 (1985-86), no. 1, 254-259.

- [6] J. Jastrzebski, An answer to a question of R. G. Gibson and F. Roush, Real. Anal. Exchange 15 (1989-90), 340–341.
- [7] F. B. Jones, Connected and disconnected plane sets and the functional equation f(x) + f(y) = f(x + y), Bull. Amer. Math. Soc. 48 (1942), 115–120.
- [8] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125–128.
- K. R. Kellum, Almost continuity and connectivity sometimes it's as easy to prove a stronger result, Real Anal. Exchange 8 (1982-1983), no. 1, 244-252.
- [10] T. Natkaniec, Extendability and almost continuity, Real Anal. Exchange **21** (1995-96), no. 1, 349–355.
- [11] H. Rosen, Limits and sums of extendable connectivity functions, Real Anal. Exchange **20** (1994-95), no. 1, 183–191.
- [12] H. Rosen, Every real function is the sum of two extendable connectivity functions, Real Anal. Exchange 21 (1995-96), no. 1, 299–303.