E. D'Aniello, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Universitá Federico II, Naples, Italy, e-mail: daniel@matna2.dma.unina.it current address: Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA

A. Hirshberg, Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA, e-mail: ahirshberg@wesleyan.edu,

K. P. S. Bhaskara Rao, Division of Statistics and Mathematics, Indian Statistical Institute, Bangalore 560059, India, e-mail: isibang!kpsbrao@iisc.ernet.in,

R. M. Shortt, Department of Mathematics, Wesleyan University, Middletown, CT 06459, USA e-mail: rshortt@wesleyan.edu

BOUNDED COMMON EXTENSIONS OF VECTOR MEASURES

Abstract

Let \mathcal{A} and \mathcal{B} be fields of subsets of a set Ω , let \mathbf{X} be a normed space with the Hahn-Banach extension property and let $\mu: \mathcal{A} \to \mathbf{X}$ and $\nu: \mathcal{B} \to \mathbf{X}$ be consistent, bounded, vector measures. We give necessary and sufficient conditions for μ and ν to have a bounded common extension to $\mathcal{A} \vee \mathcal{B}$, generalizing already known results for real valued charges.

1 Introduction

Let \mathcal{A} be a field of subsets of a set Ω . We denote by $F(\Omega, \mathcal{A}) = F(\mathcal{A})$ the linear space spanned by indicator functions I_A of sets $A \in \mathcal{A}$. The functions in $F(\Omega, \mathcal{A})$ have finite range and are therefore bounded. If $f \in F(\Omega, \mathcal{A})$, then ||f|| is the supremum norm of f.

Let X be a Banach space. A finitely additive vector measure is a set function $\mu: \mathcal{A} \to \mathbf{X}$ such that $\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$, whenever $A_1, A_2 \in \mathcal{A}$

Key Words: Finitely additive vector measure, bounded vector measure, common

extension Mathematical Reviews subject classification: Primary 28B99; Secondary 28B05 Received by the editors February 6, 1997

are disjoint. The set function μ is also called simply a vector measure.

The variation of μ is the extended nonnegative function $|\mu|$ whose value on a set $A \in \mathcal{A}$ is given by

$$|\mu|(A) = \sup_{\pi} \sum_{E \in \pi} ||\mu(E)||,$$

where the supremum is taken over all partitions π of A into a finite number of pairwise disjoint members of A.

If $|\mu|(\Omega) < \infty$, then μ will be called a measure of bounded variation.

The *semivariation* of μ is the extended nonnegative function $\|\mu\|$ whose value on a set $A \in \mathcal{A}$ is given by

$$\|\mu\|(A) = \sup\{|x^*\mu|(A) : x^* \in X^*, \|x^*\| < 1\},$$

where $|x^*\mu|$ is the variation of the real valued measure $x^*\mu$. If $\|\mu\|(\Omega)$ $< \infty$, then μ will be called a measure of bounded semivariation or simply a bounded vector measure [3]. We define $\|\mu\| = \|\mu\|(\Omega)$.

Let \mathcal{A} and \mathcal{B} be fields of subsets of a set Ω and let μ and ν be vector measures on \mathcal{A} and \mathcal{B} , respectively. Say that μ and ν are consistent if $\mu(C) = \nu(C)$ for all $C \in \mathcal{A} \cap \mathcal{B}$. Let $\mathcal{A} \vee \mathcal{B}$ be the field generated by $\mathcal{A} \cup \mathcal{B}$.

A Banach space **X** is said to have the *Hahn-Banach extension property* if each bounded linear operator T on a subspace of any Banach space **Y** with values in **X** has a linear extension \tilde{T} carrying all of **Y** into **X** such that $\|\tilde{T}\| = \|T\|$ [5].

A normed space has the Hahn-Banach extension property if and only if the collection of its spheres has the binary intersection property [7].

Call \mathbb{R}^n the *n*-dimensional euclidean space considered as a vector space in the usual way, ordered component by component and normed by

$$||x|| = |x_1| \lor \ldots \lor |x_n| \text{ if } x = (x_1, \ldots, x_n).$$

The collection of spheres of \mathbb{R}^n with the above norm has the binary intersection property [7]. For these and other facts about the Hahn-Banach extension property, we refer the reader to [4], [5] and [7].

Lemma 1.1. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are given vector measures on \mathcal{A} and \mathcal{B} , respectively, with values in a Banach space \mathbf{X} . If μ and ν are consistent, then they have a common extension, i.e. there is a vector measure ρ on $\mathcal{A} \vee \mathcal{B}$ such that $\rho(C) = \mu(C)$ for $C \in \mathcal{A}$ and $\rho(C) = \nu(C)$ for $C \in \mathcal{B}$.

PROOF. Indication: This is a well-known result. See e.g., theorem 3.6.2 of [2].

When do two bounded consistent vector measures have a bounded common extension? By the lemma, some common extension exists, but might not be bounded. The principal result of this paper [theorem 2.5] solves this problem in the case when \mathbf{X} is a normed space with the Hahn-Banach extension property. Earlier, Lipecki [6] gave some examples to show that the answer to the question is "not always".

2 Chain conditions and bounded extensions

We begin with the following definition and a few abbreviations. Call $\emptyset = C_0 \subseteq C_1 \subseteq C_2 \subseteq \ldots \subseteq C_{N+1} = \Omega$ a *chain* in $\mathcal{A} \cup \mathcal{B}$ if all C_i 's are in $\mathcal{A} \cup \mathcal{B}$. The following elementary fact lays the groundwork of our main result.

Lemma 2.1. Let μ on \mathcal{A} and ν on \mathcal{B} be consistent vector measures with values in a Banach space \mathbf{X} . If ρ on $\mathcal{A} \vee \mathcal{B}$ is a common extension of μ and ν , then for any finite chain $\emptyset = C_0 \subseteq C_1 \subseteq C_2 \subseteq \ldots \subseteq C_{N+1} = \Omega$ in $\mathcal{A} \cup \mathcal{B}$

(*)
$$\sup_{\epsilon_i} \| \sum_{\epsilon_i} (\eta(C_{i+1}) - \eta(C_i)) \| \le \|\rho\|(\Omega),$$

where the supremum is taken over all finite collections $\{\epsilon_i\}$ satisfying $\epsilon_i = \pm 1$ and $\eta(C) = \mu(C)$ or $\nu(C)$ according as C is in A or in B.

Proof. By proposition 11 of [3],

$$\|\rho\|(\Omega) = \sup\{\|\sum_{E_i \in \pi} \epsilon_i \rho(E_i)\|\},\$$

where the supremum is taken over all partitions π of Ω into finitely many disjoint members of $\mathcal{A} \vee \mathcal{B}$ and all finite collections $\{\epsilon_i\}$ satisfying $|\epsilon_i| \leq 1$, but an accurate look at the proof shows that

$$\|\rho\|(\Omega) = \sup\{\|\sum_{E_i \in \pi} \epsilon_i \rho(E_i)\|\},\,$$

where the supremum is taken over all partitions π of Ω into finitely many disjoint members of $\mathcal{A} \vee \mathcal{B}$ and all finite collections $\{\epsilon_i\}$ satisfying $\epsilon_i = \pm 1$. Therefore, it follows that if μ on \mathcal{A} and ν on \mathcal{B} have a bounded common extension, then the supremum of the left-hand side of (*), taken over all possible finite chains and over all finite collections $\{\epsilon_i\}$ satisfying $\epsilon_i = \pm 1$ must be finite.

Our main result [theorem 2.5] establishes the converse statement in the case when X is a normed space with the Hahn-Banach extension property.

Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and let $\mu : \mathcal{A} \to \mathbf{X}$ and $\nu : \mathcal{B} \to \mathbf{X}$ be consistent bounded vector measures. We define

$$I^0 = I^0(\mu, \nu) = \inf\{\|\rho\| : \rho \text{ a common extension of } \mu \text{ and } \nu \text{ to } A \vee B\},$$

$$S^{0} = S^{0}(\mu, \nu) = \sup\{\|\int f d\mu + \int g d\nu\| : f \in F(\mathcal{A}), g \in F(\mathcal{B}), \|f + g\| \le 1\},$$

$$SC^{0} = SC^{0}(\mu, \nu) = \sup\{\|\sum_{i=0}^{N} \|\epsilon_{i}(\eta(C_{i+1}) - \eta(C_{i}))\| : \emptyset = C_{0} \subseteq C_{1} \subseteq C_{2}$$

$$\subseteq \ldots \subseteq C_{N+1} = \Omega \text{ a chain in } \mathcal{A} \cup \mathcal{B},$$

$$\{\epsilon_{i}\} \text{ a finite collection satisfying } \epsilon_{i} = \pm 1, N \geq 0\}.$$

In the remainder of this paper X will be a normed space with the Hahn-Banach extension property.

Theorem 2.2. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B} , respectively. Then $S^0(\mu,\nu) = I^0(\mu,\nu)$.

The infimum defining $I^0 = I^0(\mu, \nu)$ is attained at some choice of ρ . If \mathcal{A} and \mathcal{B} are finite, then the supremum defining $S^0 = S^0(\mu, \nu)$ is attained for some f and g.

PROOF. Given $f \in F(\mathcal{A})$, $g \in F(\mathcal{B})$, $||f + g|| \le 1$ and some common extension ρ of μ and ν , we have

$$\| \int f \, d\mu + \int g \, d\nu \| = \| \int (f+g) \, d\rho \|.$$

By the Hahn-Banach theorem, there exists $x^* \in X^*$ with $||x^*|| = 1$ and $x^*(\int (f+g) d\rho) = ||\int (f+g) d\rho||$.

Therefore,

$$\| \int f \, d\mu + \int g \, d\nu \| = x^* (\int (f+g) \, d\rho) = \int (f+g) d(x^* \rho)$$

$$\leq \int \|f+g\| d|x^* \rho| \leq |x^* \rho|(\Omega) \leq \|\rho\|(\Omega),$$

so that $S^0 \leq I^0$.

If $S^0 = \infty$, there is nothing to prove. If $S^0 < \infty$, consider the linear subspace M of $F(A \vee B)$ defined by

$$M = \{ f + g : f \in F(\mathcal{A}), g \in F(\mathcal{B}) \}.$$

Let $L: M \to \mathbf{X}$ be the linear operator defined by

$$L(f+g) = \int f \, d\mu + \int g \, d\nu.$$

The consistency of μ and ν ensures that L is well-defined. In fact, L is a bounded linear operator on M with norm $||L|| = S^0$. Since \mathbf{X} has the Hahn-Banach extension property, L may be extended to a linear operator $L_0: F(\mathcal{A} \vee \mathcal{B}) \to \mathbf{X}$ with $||L_0|| = ||L||$.

Then $\rho(C) = L_0(I_C)$ defines a charge ρ on $\mathcal{A} \vee \mathcal{B}$ with $\|\rho\| = \|L_0\| = S^0$, so that $S^0 = I^0$ and the infimum is attained at ρ .

If \mathcal{A} and \mathcal{B} are finite, then $F(\mathcal{A} \vee \mathcal{B})$ is a finite-dimensional space and the last statement of the theorem becomes elementary.

Corollary 2.3. In order that consistent X-valued vector measures μ and ν have a bounded common extension, it is necessary and sufficient that $S^0(\mu, \nu) < \infty$.

The following technical lemma will be used in the proof of our main theorem.

Lemma 2.4. Let \mathcal{A} be a field of subsets of Ω and let μ be a bounded \mathbf{X} -valued vector measures on \mathcal{A} . If $\|\int f d\mu\| = \|\mu\|$ for $f \in F(\Omega, \mathcal{A})$, with $\|f\| \leq 1$, then there exists $x^* \in X^*$ such that

- (i) $x^*\mu \ge 0$ on subsets of $\{x: f(x) = 1\}$;
- (ii) $x^* \mu < 0$ on subsets of $\{x : f(x) = -1\}$;
- (iii) $|x^*\mu|(\{x: -1 < f(x) < 1\}) = 0.$

PROOF. By the Hahn-Banach theorem, there exists $x^* \in X^*$ such that $\| \int f d\mu \|$ = $x^* (\int f d\mu)$. Hence

$$\| \int f \, d\mu \| = x^* (\int f \, d\mu) = \int f d(x^* \mu) \le \int \|f\| d|x^* \mu|$$

$$\le |x^* \mu|(\Omega) \le \|x^* \mu\| \le \|\mu\|$$

Therefore, $\int f d(x^*\mu) = \|x^*\mu\|$ and the assertions follow from lemma 1.4 of [1].

Theorem 2.5. Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω and suppose that μ and ν are consistent \mathbf{X} -valued vector measures on \mathcal{A} and on \mathcal{B} , respectively. Then $SC^0(\mu,\nu) = I^0(\mu,\nu)$.

PROOF. That $SC^0 \leq I^0$ follows from lemma 2.1.

In order to prove the reverse inequality, we use theorem 2.2. Suppose that $f_0 \in F(\mathcal{A})$ and $g_0 \in F(\mathcal{B})$ such that $||f_0 + g_0|| \le 1$ are given. We shall demonstrate that

(**)
$$SC^0 \ge \| \int f_0 d\mu + \int g_0 d\nu \|,$$

from which fact follows $SC^0 \ge S^0 = I^0$ as desired.

Let \mathcal{A}_0 (respectively \mathcal{B}_0) be the smallest field for which f_0 is measurable. Then $\mathcal{A}_0 \subseteq \mathcal{A}$ and $\mathcal{B}_0 \subseteq \mathcal{B}$ are finite. In order to prove (**), we may assume that f_0 and g_0 have been chosen so that

$$\|\int f_0 d\mu + \int g_0 d\nu\|$$

is the supremum of $\|\int f d\mu + \int g d\nu\|$ over all choices of $f \in F(\mathcal{A}_0)$ and $g \in F(\mathcal{B}_0)$; we use the final sentence of theorem 2.2. Applying theorem 2.2 to μ_0 and ν_0 , the restrictions of μ and ν to \mathcal{A}_0 and \mathcal{B}_0 , respectively, we find some common extension ρ of μ_0 and ν_0 to $\mathcal{A}_0 \vee \mathcal{B}_0$ such that

$$\| \int f_0 \, d\mu + \int g_0 \, d\nu \| = \| \rho \|.$$

Hence

$$\| \int (f_0 + g_0) \, d\rho \| = \| \rho \|,$$

and as in lemma 2.4, there exists $x^* \in X^*$ with $f_0 + g_0 = \pm 1(|x^*\rho|a.e.)$. By the same lemma, $x^*\rho \ge 0$ for subsets of $\{x: f_0(x) + g_0(x) = 1\}$ and $x^*\rho \le 0$ for subsets of $\{x: f_0(x) + g_0(x) = -1\}$.

Now f_0 and g_0 may be replaced with $f_0 + c$ and $g_0 - c$ for any constant c, with no effect on the norm or integral of their sum. Thus, without loss of generality, we may assume that $f_0 \ge 0$ and $g_0 \le 0$. Let, as in theorem 1.5 of [1], N be an even integer such that $N \ge \max\{\|f_0\|, \|g_0\|\}$ and define

$$C_i = \left\{ \begin{array}{ll} \{x \in \Omega: g_0(x) \leq -N+i-1\} & \text{if i is odd,} \\ \{x \in \Omega: f_0(x) \geq N-i+1\} & \text{if i is even.} \end{array} \right.$$

Then $\emptyset = C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{N+1} = \Omega$ is a chain of sets in $\mathcal{A} \cup \mathcal{B}$. If i is odd, then $f_0 + g_0 > -1$ on $C_{i+1} - C_i$, so that $f_0 + g_0 = 1(|x^*\rho|a.e.)$ on $C_{i+1} - C_i$.

Likewise, if i is even, then $f_0 + g_0 = -1(|x^*\rho|a.e.)$ on $C_{i+1} - C_i$. Define functions $f_1 \in F(\mathcal{A})$ and $g_1 \in F(\mathcal{B})$ by putting

$$f_1 = N - 2n - 1$$
 for $x \in C_{2n+2} - C_{2n}$,
 $q_1 = -N + 2n$ for $x \in C_{2n+1} - C_{2n-1}$

for $n=0,1,\ldots,N/2$, noting that $C_{-1}=\emptyset$ and $C_{N+2}=\Omega$. For i odd $f_1+g_1=1$ on $C_{i+1}-C_i$ and, for i even, $f_1+g_1=-1$ on $C_{i+1}-C_i$. Thus

$$SC^{0} \ge \sum_{i=0}^{N} |x^{*}\eta(C_{i+1}) - x^{*}\eta(C_{i})|$$

$$= \int (f_{1} + g_{1}) d(x^{*}\rho) = \int (f_{0} + g_{0}) d(x^{*}\rho)$$

$$= x^{*} (\int (f_{0} + g_{0}) d\rho) = \| \int (f_{0} + g_{0}) d\rho \|$$

$$= \| \int f_{0} d\mu + \int g_{0} d\nu \|. \square$$

Corollary 2.6. In order that consistent X-valued bounded vector measures μ and ν have a bounded common extension, it is necessary and sufficient that $SC^0(\mu,\nu) < \infty$.

Inspection of the proof of theorem 2.5 yields a useful sharpening of this result:

Corollary 2.7. In the supremum used to define $SC^0(\mu, \nu)$, it suffices to restrict attention to the chains $\emptyset = C_0 \subseteq C_1 \subseteq \ldots \subseteq C_{N+1} = \Omega$, where $C_i \in \mathcal{A}$ if i is even, and $C_i \in \mathcal{B}$ if i is odd.

3 Global conditions on fields

Let \mathcal{A} and \mathcal{B} be fields of subsets of Ω . Then \mathcal{A} and \mathcal{B} are *independent* if $\mathcal{A} \cap \mathcal{B} = \{\emptyset, \Omega\}$. As in [1] the following result follows from the theory of the previous section.

Theorem 3.1. Let \mathcal{A} and \mathcal{B} be independent fields of subsets of Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B} , respectively (consistency means only that $\mu(\Omega) = \nu(\Omega)$). Then μ and ν have a bounded common extension ρ on $\mathcal{A} \vee \mathcal{B}$ such that $\|\rho\| = \max\{\|\mu\|, \|\nu\|\}$.

PROOF. We apply Theorem 2.5 and Corollary 2.7. Independence essentially limits the length of chains as in Corollary 2.7. It is sufficient to consider chains of the form

$$\emptyset \subseteq A \subseteq \Omega$$
 for $A \in \mathcal{A}$ or $\emptyset \subseteq B \subseteq \Omega$ for $B \in \mathcal{B}$.

The supremum $SC^0(\mu, \nu)$ is thus taken over quantities of the form

$$\|\epsilon_0\mu(A) + \epsilon_1\mu(\Omega - A)\|$$

or

$$\|\epsilon_0\nu(B) + \epsilon_1\nu(\Omega - B)\|,$$

where $\epsilon_i = \pm 1$, for i = 0, 1. The result follows.

Fields \mathcal{A} and \mathcal{B} over Ω are weakly independent, a notion due to Lipecki, if whenever $\Omega = A_1 \cup \ldots \cup A_n$ and $\Omega = B_1 \cup \ldots \cup B_m$ are partitions of Ω into nonempty sets $A_i \in \mathcal{A}$ and $B_i \in \mathcal{B}$, then there is some k and some l such that $A_k \cap B_i \neq \emptyset$ (each i) and $A_i \cap B_l \neq \emptyset$ (each i). The following is an improvement on a result of Lipecki [6] and a generalization of a result in [1].

Theorem 3.2. Let \mathcal{A} and \mathcal{B} be weakly independent fields of subsets of a set Ω and suppose that μ and ν are consistent vector measures on \mathcal{A} and \mathcal{B} (this means only that $\mu(\Omega) = \nu(\Omega)$). Then there is a common extension ρ of μ and ν such that $\|\rho\| \leq \|\mu\| + \|\mu(\Omega)\| + \|\nu\|$.

PROOF. Apply Theorem 2.5 and Corollary 2.7. Weak independence limits the length the chains as in Corollary 2.7. They are either of the form $\emptyset \subseteq A \subseteq B \subseteq \Omega$ or $\emptyset \subseteq B \subseteq A \subseteq \Omega$ for $A \in \mathcal{A}$ and $B \in \mathcal{B}$. The supremum $SC^0(\mu, \nu)$ is thus taken over quantities

$$\|\epsilon_0\mu(A) + \epsilon_1(\nu(B) - \mu(A)) + \epsilon_2(\nu(\Omega) - \nu(B))\|$$

or

$$\|\epsilon_0 \nu(B) + \epsilon_1 (\mu(A) - \nu(B)) + \epsilon_2 (\mu(\Omega) - \mu(A)) \|.$$

Both of these are bounded by

$$\|\mu\| + \|\mu(\Omega)\| + \|\nu\|.$$

Question: Does theorem 2.5 continue to hold in the case when **X** is any Banach space?

References

- [1] A. Basile, K. P. S. Bhaskara Rao and R. M. Shortt, *Bounded common extensions of charges*, Proc. Amer. Math. Soc. **121** (1994), 137-143.
- [2] K. P. S. Bhaskara Rao and M Bhaskara Rao, *Theory of charges*, Academic Press, London and New York, 1983.
- [3] J. Diestel and J. J. Uhl, Vector measures, American Mathematical Society, Providence, Rhode Island, 1977.
- [4] D. B. Goodner, *Projections in normed linear spaces*, Trans. Amer. Math. Soc. **69** (1950), 89–108.
- [5] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. **72** (1952), 323–326.
- [6] Z. Lipecki, On common extensions of two quasi-measures, Czechoslovak Math. J. 36 (1986), 489–494.
- [7] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc.68 (1950), 28–46
- [8] K. D. Schmidt and G. Waldschaks, Common extensions of order bounded vector measures, Rend. Circ. Mat. Palermo Ser.II 28, Suppl. 117–124.