Boguslaw Kaczmarski, Pedagogical University of Kielce Piotrkow Trybunalski Branch, Poland

ON THE SETS WHERE A CONTINUOUS FUNCTION HAS INFINITE ONE-SIDED DERIVATIVES

Abstract

In the present paper I give a characterization by help of measure and Borel classes of the set of points at which the continuous function possesses an infinite one-sided derivative. The main theorem is as follows. Let E_1 and E_2 be disjoint subsets of \mathbb{R} . There exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $E_1 = \{x: f'_+(x) = +\infty\}$ and $E_2 = \{x: f'_+(x) = -\infty\}$ if and only if (i) E_1 and E_2 are of type $F_{\alpha\delta}$ and measure zero and (ii) there exist disjoint sets F_1 and F_2 of type F_{σ} such that $E_1 \subset F_1$ and $E_2 \subset F_2$.

1 Introduction

In [4] and [2], the following theorems are proved:

Theorem I. (Theorem 2 of [4]). Let E_1 and E_2 be disjoint subsets of \mathbb{R} . There exists a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$E_1 = \{x : f_{-}^{'}(x) = +\infty\}$$
 and $E_2 = \{x : f_{-}^{'}(x) = -\infty\}$

if and only if $m(E_1) = m(E_2) = 0$, where f'_{-} is the left-hand derivative and m denotes the Lebesque measure.

Analogously for the right-hand derivative.

Theorem II. (The main theorem of [2]). Let E_1 and E_2 be disjoint subsets of \mathbb{R} . There exists a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$E_1 = \{x : f'(x) = +\infty\} \text{ and } E_2 = \{x : f'(x) = -\infty\}$$

if and only if

Key Words: one-sided derivatives, F_{σ} -sets, G_{δ} -sets Mathematical Reviews subject classification: 26A24 Received by the editors October 7,1996

- (i) E_1 and E_2 are of type $F_{\sigma\delta}$ and of measure zero, and
- (ii) there exist disjoint sets F_1 and F_2 of type F_{σ} such that $E_1 \subset F_1$ and $E_2 \subset F_2$.

In the present paper we prove analogous theorems for the one-sided derivatives of continuous functions. To prove these results we use the construction from [2].

We shall apply the following notations:

 $D^-f(x)$, $D_-f(x)$, $D^+f(x)$, $D_+f(x)$ – the upper left-hand, lower left-hand, upper right-hand, lower right-hand Dini derivatives of a function f at a point x;

 $\int_A f(x)dx$ – the Lebesgue integral of f on the set A;

 C_f – the set of all continuity points of the function f;

 D_f – the set of all discontinuity points of the function f;

2 Main results

Theorem 1 (Main Theorem).

1) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let

$$E_1 = \{x : f'_{+}(x) = +\infty\} \text{ and } E_2 = \{x : f'_{+}(x) = -\infty\}.$$

Then we have

- (i) E_1 and E_2 are of type $F_{\sigma\delta}$ and of measure zero;
- (ii) There exist disjoint F_{σ} -type sets F_1 and F_2 such that $E_1 \subset F_1$ and $E_2 \subset F_2$.
- 2) Let E_1 and E_2 be subsets of \mathbb{R} that satisfy the following conditions:
 - (i) E_1 and E_2 are of type $F_{\sigma\delta}$ and of measure zero;
 - (ii) There exist disjoint F_{σ} -type sets F_1 and F_2 such that $E_1 \subset F_1$ and $E_2 \subset F_2$.

Then there exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that

$$E_1 = \{x : f'_{+}(x) = +\infty\} \text{ and } E_2 = \{x : f'_{+}(x) = -\infty\}.$$

Moreover, if $x \notin E_1 \cup E_2$ then

$$D_+ f(x) < +\infty$$
; $D^+ f(x) > -\infty$; $D_- f(x) < +\infty$; $D^- f(x) > -\infty$.

To prove this theorem we shall need the following five lemmas.

Lemma 1. Let $f : \mathbb{R} \to \mathbb{R}$. Then

$$\{x: f_{+}^{'}(x) = +\infty\} \subset F_1 \text{ and } \{x: f_{+}^{'}(x) = -\infty\} \subset F_2,$$

where $F_1 \cap F_2 = \emptyset$, $F_i = A_i \setminus B_i$, $A_i \in F_{\sigma}$ and $B_i \subset D_f$ for i = 1, 2.

PROOF. We have

$$\{x: f'_{+}(x) = +\infty\} = \{x: D_{+}f(x) = +\infty\} = \bigcap_{n=1}^{\infty} \{x: D_{+}f(x) > n\}$$

and

$$\{x: f'_{+}(x) = -\infty\} = \{x: D^{+}f(x) = -\infty\} = \bigcap_{n=1}^{\infty} \{x: D^{+}f(x) < -n\}.$$

Hence

$$\{x: f'_{+}(x) = +\infty\} \subset \{x: D_{+}f(x) > n\}, \quad n \in \mathbb{N}$$

and

$$\{x: f'_{+}(x) = -\infty\} \subset \{x: D^{+}f(x) < -n\}, \quad n \in \mathbb{N}.$$

Of course

$${x : D_+ f(x) > n} \cap {x : D^+ f(x) < -n} = \emptyset.$$

By Lemma 8 of [5],

$$\{x: D_+f(x) \le n\} \cap C_f \in G_\delta \text{ and } \{x: D^+f(x) \ge -n\} \cap C_f \in G_\delta.$$

Hence

$$\{x : D_+ f(x) > n\} \cup D_f \in F_\sigma \text{ and } \{x : D^+ f(x) < -n\} \cup D_f \in F_\sigma.$$

We have

$$\{x\,:\, D_+f(x)>n\}=[\{x\,:\, D_+f(x)>n\}\cup D_f]\setminus [D_f\setminus \{x\,:\, D_+f(x)>n\}]$$

and

$$\{x: D^+f(x) < -n\} = \left[\{x: D^+f(x) < -n\} \cup D_f \right] \setminus \left[D_f \setminus \{x: D^+f(x) < -n\} \right].$$

Denoting

- $F_1 = \{x : D_+ f(x) > n\},\$
- $F_2 = \{x : D^+ f(x) < -n\},\$

•
$$A_1 = \{x : D_+ f(x) > n\} \cup D_f$$
,

•
$$A_2 = \{x : D^+ f(x) < -n\} \cup D_f$$
,

we obtain our assertion.

Lemma 2. Let $u : \mathbb{R} \to \mathbb{R}$ be a nonnegative integrable function, let M be a set of measure zero and $L^* = \bigcup_{j=1}^{\infty} (a_j, b_j)$ such that $M \subset L^*$. For every interval (a_j, b_j) we denote by

$$\Delta_{j,n} = \left(a_j + \frac{b_j - a_j}{2^{n+1}}, a_j + \frac{b_j - a_j}{2^n}\right)$$

$$\Delta'_{j,n} = \left(b_j - \frac{b_j - a_j}{2^n}, b_j - \frac{b_j - a_j}{2^{n+1}}\right)$$

Then for each positive integer k, there exists an open set $L_k \subset L^*$ such that

- 1) $M \subset L_k$;
- 2) $\int_{L_k \cap \Delta_{j,n}} u(x) dx < \frac{1}{2^k} \cdot \frac{m(\Delta_{j,n})}{2^k}$ and $\int_{L_k \cap \Delta'_{j,n}} u(x) dx < \frac{1}{2^k} \cdot \frac{m(\Delta'_{j,n})}{2^k}$.
- 3) $\int_{L_k \cap (a_j,b_j)} u(x) dx < \frac{1}{2^k} (b_j a_j);$
- 4) If $x_o \notin L^*$ then for every h, we have

$$\int_{L_k^h} u(x)dx < \frac{1}{2^k}|h|, \quad where$$

 $L_k^h = [x_o, x_o + h] \cap L_k \text{ for } h > 0 \text{ and } L_k^h = [x_o + h, x_o] \cap L_k \text{ for } h < 0.$

5) For every $x_o \in L^*$ there exists h > 0 (respectively h < 0) such that

$$\int_{L_k^h} u(x)dx < \frac{1}{2^{k-1}}|h| \quad and$$

$$(x_o, x_o + h) \subset L^*$$
 (respectively $(x_o + h, x_o) \subset L^*$).

PROOF. 1)-4) See Codyks' paper [2] (pp. 435-436).

5) Since $x_o \in L^*$, there exists j such that $x_o \in (a_j, b_j)$. Let $\Delta_{j,n}$ and $\Delta'_{j,n}$ be the intervals defined in our hypothesis. Suppose that

$$\Delta_{j,n} = (p_n^j, q_n^j) \quad \text{and} \quad \Delta_{j,n}^{'} = (r_n^j, t_n^j) \,.$$

Of course $p_n^j = q_{n+1}^j$ and $t_n^j = r_{n+1}^j$, and also

$$m(\Delta_{j,n+1}) = \frac{1}{2}m(\Delta_{j,n}), \quad m(\Delta'_{j,n+1}) = \frac{1}{2}m(\Delta'_{j,n}).$$
 (1)

If $x_o \in (a_j, \frac{a_j+b_j}{2}]$ then there exists $h \ge \frac{1}{2}(b_j-a_j)$ such that $[x_o, x_o+h] \subset (a_j, b_j)$. From condition 3) we obtain

$$\int_{L_k^h} u(x) dx \le \int_{L_k \cap (a_j, b_j)} u(x) dx < \frac{1}{2^k} (b_j - a_j),$$

hence

$$\int_{L_k^h} u(x) dx < \frac{1}{2^{k-1}} h \,.$$

If $x_o \in (\frac{a_j+b_j}{2},b_j)$ then there exists $\Delta_{j,n}'$ such that $x_o \in \overline{\Delta}_{j,n}'$. Suppose that

$$(t_n^j - x_o) \ge \frac{1}{2} m(\Delta'_{j,n}).$$

Then there exists $h \geq \frac{1}{2}m(\Delta'_{j,n})$ such that $x_o + h \in \overline{\Delta}'_{j,n}$. From condition 2) we obtain

$$\int_{L_k^h} u(x) dx \leq \int_{L_k \cap \Delta_{j,n}'} u(x) dx < \frac{1}{2^k} \cdot \frac{m(\Delta_{j,n}')}{2} \,.$$

It follows that

$$\int_{L_h^h} u(x) dx < \frac{1}{2^k} h \quad \text{ so } \quad \int_{L_h^h} u(x) dx < \frac{1}{2^{k-1}} h \,.$$

Suppose that

$$(t_n^j - x_o) < \frac{1}{2} m(\Delta'_{j,n}).$$

Then there exists h>0 such that $x_o+h\in\overline{\Delta}'_{j,n+1}$ and $h\geq\frac{1}{2}m(\Delta'_{j,n})$. By (1) we have

$$h > \frac{1}{2}m(\Delta'_{j,n+1}).$$

It follows that

$$\int_{L_k^h} u(x)dx = \int_{[x_o, t_n^j] \cap L_k} u(x)dx + \int_{[t_n^j, x_o + h] \cap L_k} u(x)dx.$$

From condition 2) we obtain

$$\int_{[x_o, t_n^j] \cap L_k} u(x) dx \le \int_{L_k \cap \Delta'_{j,n}} u(x) dx < \frac{1}{2^k} \cdot \frac{m(\Delta'_{j,n})}{2}.$$

and

$$\int_{[t_{n}^{j},x_{o}+h]}u(x)dx \leq \int_{L_{k}\cap\Delta_{j,n+1}^{'}}u(x)dx < \frac{1}{2^{k}}\cdot\frac{m(\Delta_{j,n+1}^{'})}{2}.$$

Hence

$$\int_{L_{k}^{h}} u(x) dx < \frac{1}{2^{k}} \left(\frac{m(\Delta_{j,n}^{'})}{2} + \frac{m(\Delta_{j,n+1}^{'})}{2} \right) \,,$$

in consequence

$$\int_{L_k^h} u(x)dx < \frac{2}{2^k}h = \frac{1}{2^{k-1}}h.$$

Analogously it follows that there exists h < 0 that satisfies condition 5). \square

Lemma 3. Let E^1 , E^2 , H_1 , H_2 be sets such that $E^i \in F_{\sigma\delta}$, $H_i \in F_{\sigma}$, $m(E^i) = 0$, $E^i \subset H_i$ (i = 1, 2) and $H_1 \cap H_2 = \emptyset$. Let

$$E^{i} = \bigcap_{n=1}^{\infty} E_{n}^{i} \,, \quad E_{n}^{i} = \bigcup_{k=1}^{\infty} E_{n,k}^{i} \,, \quad H_{i} = \bigcup_{k=1}^{\infty} F_{k}^{i} \,,$$

where $E_{n,k}^i$ and F_k^i are closed sets, i = 1, 2. Let G_n be an open set such that $E^1 \cup E^2 \subset G_n$ and $m(G_n) < \frac{1}{2^n}$, where $n = 1, 2, \ldots$. We may additionally suppose that

$$G_{n+1} \subset G_n$$
, $E_n^i \subset G_n$, $F_k^i \subset F_{k+1}^i$, $E_{n,k}^i \subset E_{n,k+1}^i$, $E_{n+1,k}^i \subset E_{n,k}^i \subset F_k^i$.

Let us denote by C_k^1 and C_k^2 some disjoint open sets such that $F_k^i \subset C_k^i$ (i = 1, 2). Let $u : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$u(x) = \sum_{n=1}^{\infty} u_n(x)$$
, where $u_n(x) = \begin{cases} 1 & \text{if } x \in G_n \\ 0 & \text{if } x \notin G_n \end{cases}$

(clearly u is an integrable function). Then there exist some sets $e_n^1 \subset E_n^1$ and $e_n^2 \subset E_n^2$ where

$$e_n^i = \bigcup_{k=1}^{\infty} e_{n,k}^i \,, \quad e_{n,k}^i \in F_{\sigma} \cap G_{\delta} \quad (i=1,2) \,,$$

such that the sets $e^i_{n,k}$ satisfy the following conditions:

- 1) $e_{n,1}^i = E_{n,1}^i \subset C_1^i$, $e_{n,k}^i \subset e_{n,k+1}^i$, $E^i \cap E_{n,k}^i \subset e_{n,k}^i \subset E_{n,k}^i \subset C_k^i$.
- 2) For every positive integer $k \geq 2$ there exist some open sets $g_{n,k}^*$, $g_{n,k}$, and for k = 1 there exists the open set $g_{n,1}$, such that:
 - a) $G_n = g_{n,1} \supset e_{n,1}^i$;
 - b) $g_{n,k-1} \setminus \left(e_{n,k-1}^1 \cup e_{n,k-1}^2\right) \supset g_{n,k}^* \supset g_{n,k} \supset \left(e_{n,k}^i \setminus e_{n,k-1}^i\right);$
 - c) the points of the set $e_{n,1}^i$ are the points of density of the set $g_{n,1} \setminus g_{n,2}^*$, while for $k \geq 2$, the points of the set $e_{n,k}^i \setminus e_{n,k-1}^i$ are the points of density of the set $g_{n,k} \setminus g_{n,k+1}^*$;
 - d) for every component I of the set $g_{n,k}^*$ we have

$$\int_{I \cap g_{n,k}} u(x) dx < \frac{1}{2^k} m(I);$$

e) for $x_o \in g_{n,k}^*$ there exists h > 0 such that $[x_o, x_o + h] \subset g_{n,k}^*$ and there exists h < 0 such that $[x_o + h, x_o] \subset g_{n,k}^*$, and

$$\int_{g_{n,k}^h} u(x)dx < \frac{1}{2^{k-1}}|h|\,,$$

where $g_{n,k}^h = g_{n,k} \cap [x_o, x_o + h]$ for h > 0 and $g_{n,k}^h = g_{n,k} \cap [x_o + h, x_o]$ for h < 0;

f) if $c_o \notin g_{n,k}^*$ then for every h,

$$\int_{g_{n,k}^h} u(x)dx < \frac{1}{2^k}|h|.$$

PROOF. For a), b), c), d), f) see [2] (pp. 436-440). Condition e) follows from Lemma 2, 5). $\hfill\Box$

Corollary 1. (/2/, p.440).

- 1) The sets e_n^1 and e_n^2 are of type F_{σ} ;
- 2) $E^i \subset e_n^i \subset E_n^i$ (i=1,2);
- 3) The points of the set e_n^1 are the density points of the set

$$\Omega_n^1 = \bigcup_{k=1}^{\infty} [(g_{n,k} \setminus g_{n,k+1}^*) \cap C_k^1];$$

The points of the set e_n^2 are the density points of the set

$$\Omega_n^2 = \bigcup_{k=1}^{\infty} [(g_{n,k} \setminus g_{n,k+1}^*) \cap C_k^2];$$

4)
$$\Omega_n^1 \cap \Omega_n^2 = \emptyset$$
.

Lemma 4. (Lemma 6 of [2], p. 440). Let $K \in G_{\delta}$ and $K \subset G$, where G is an open set. Then $K = \bigcap_{j=1}^{\infty} K^{(j)}$, where $K^{(j)}$ is an open set such that

$$K^{(j+1)} \subset K^{(j)} \subset G$$
, and $\overline{K}^{(j+1)} \subset K^{(j)} \cup \overline{K}$.

Corollary 2. The sets $e_{n,1}^i$ and $e_{n,k}^i \setminus e_{n,k-1}^i$ (n = 1, 2, ..., k = 2, 3, ...) from Lemma 3 are of the form:

1) $e_{n,1}^i = \bigcap_{j=1}^{\infty} G_{n,1}^{(j)_i}$, where $G_{n,1}^{(j)_i}$ are open sets satisfying

$$\overline{G}_{n,1}^{(j+1)_i} \subset G_{n,1}^{(j)_i} \subset g_{n,1};$$

2) $e^i_{n,k} \setminus e^i_{n,k-1} = \cap_{j=1}^{\infty} G^{(j)_i}_{n,k}$, where $G^{(j)_i}_{n,k}$ are open sets satisfying

$$G_{n,k}^{(j+1)_i} \subset G_{n,k}^{(j)_i} \subset g_{n,k}$$
 and $\overline{G}_{n,k}^{(j+1)_i} \subset G_{n,k}^{(j)_i} \cup E_{n,k}^i$.

PROOF. See Lemma 4.

Lemma 5. Let the functions $v_n^{(1)}(x)$ and $v_n^{(2)}(x)$ be defined by

$$v_n^{(1)}(x) = \begin{cases} 1 & \text{if } x \in G^{(j)_1} \setminus G^{(j+1)_1} \\ +\infty & \text{if } x \in \bigcap_{j=1}^{\infty} G_n^{(j)_1} \\ 0 & \text{elsewhere} \end{cases}$$

and

$$v_n^{(2)}(x) = \begin{cases} -1 & \text{if } x \in G^{(j)_2} \setminus G^{(j+1)_2} \\ -\infty & \text{if } x \in \cap_{j=1}^{\infty} G_n^{(j)_2} \\ 0 & \text{elsewhere} \end{cases}$$

where $G_n^{(j)_i} = \bigcup_{k=1}^{\infty} G_{n,k}^{(j)_i}$ and $G_{n,k}^{(j)_i}$ are the sets from Corollary 2. We have

$$e_n^i \subset G_n^{(j)_i} \subset G_n$$
.

Let

$$w_n^{(1)}(x) = \begin{cases} \min[v_n^{(1)}(x), u(x)] & \text{if } x \in \Omega_n^1 \\ 0 & \text{elsewhere} \end{cases}$$

and

$$w_n^{(2)}(x) = \begin{cases} \max[v_n^{(2)}(x), -u(x)] & \text{if } x \in \Omega_n^2 \\ 0 & \text{elsewhere} \end{cases}$$

where u, Ω_n^1 and Ω_n^2 are defined in Lemma 3. Then the functions

$$W_n^{(1)}(x) = \int_0^x w_n^{(1)}(t) dt \quad and \quad W_n^{(2)}(x) = \int_0^x w_n^{(2)}(t) dt$$

have the following properties:

1)
$$0 \le D_+ W_n^{(1)}(x) < +\infty$$
 and $0 \le D_- W_n^{(1)}(x) < +\infty$ for $x \notin E_n^1$,

2)
$$0 \le D^+W_n^{(1)}(x) < +\infty$$
 and $0 \le D^-W_n^{(1)}(x) < +\infty$ for $x \in E^2$,

3)
$$-\infty < D^+W_n^{(2)}(x) \le 0$$
 and $-\infty < D^-W_n^{(2)}(x) \le 0$ for $x \notin E_n^2$,

4)
$$-\infty < D_+W_n^{(2)}(x) \le 0$$
 and $-\infty < D_-W_n^{(2)}(x) \le 0$ for $x \in E_n^1$.

The sets E^i and E_n^i (i = 1, 2) are defined in Lemma 3 and Corollary 1.

PROOF. Consider first the case where $x \in g_{n,k}^*$ for every $k \geq 2$. Let $k_1 \geq 2$. Then there exists a component I_1 of the set g_{n,k_1}^* such that $x \in I_1$. By the definition of $W_n^{(1)}$, for any h > 0 with $[x, x + h] \subset I_1$, and for any h < 0 with $[x + h, x] \subset I_1$ we have

$$\int_{x}^{x+h} w_n^{(1)}(t)dt = \int_{g_{n,k_1}^h} w_n^{(1)}(t)dt \le \int_{g_{n,k_1}^h} u(t)dt,$$

where

$$g_{n,k_1}^h = [x, x+h] \cap g_{n,k_1}$$
 for $h > 0$,

and

$$g_{n,k_1}^h = [x+h, x] \cap g_{n,k_1}$$
 for $h < 0$.

By Lemma 3, e), there exist $h_1 > 0$ with $[x, x + h_1] \subset I_1$, and $h_1' < 0$ with $[x + h_1', x] \subset I_1$ such that

$$\int_{x}^{x+h_{1}} w_{n}^{(1)}(t)dt \le \int_{g_{n,k_{1}}^{h_{1}}} u(t)dt < \frac{1}{2^{k_{1}-1}} |h_{1}|,$$

and

$$\int_{x}^{x+h_{1}^{'}}w_{n}^{(1)}(t)dt \leq \int_{g_{n,k_{1}}^{h_{1}^{'}}}u(t)dt < \frac{1}{2^{k_{1}-1}}|h_{1}^{'}|\,,$$

hence

$$-\frac{1}{2^{k_1-1}}|h_1^{'}| < \int_{x}^{x+h_1^{'}} w_n^{(1)}(t)dt.$$

By this inequality we have

$$0 \le \frac{W_n^{(1)}(x+h_1) - W_n^{(1)}(x)}{h_1} = \frac{\int_x^{x+h_1} w_n^{(1)}(t)dt}{h_1} < \frac{1}{2^{k_1-1}},$$

and

$$0 \le \frac{W_n^{(1)}(x + h_1') - W_n^{(1)}(x)}{h_1'} = \frac{\int_x^{x + h_1'} w_n^{(1)}(t) dt}{h_1'} < \frac{1}{2^{k_1 - 1}}.$$

Let $k_2 > k_1$. Then there exists a component I_2 of the set g_{n,k_2}^* such that $x \in I_2$. Similarly as above, we obtain that there exist $h_2 > 0$ and $h_2' < 0$ such that

$$0 \le \frac{W_n^{(1)}(x+h_2) - W_n^{(1)}(x)}{h_2} < \frac{1}{2^{k_2-1}},$$

and

$$0 \le \frac{W_n^{(1)}(x + h_2') - W_n^{(1)}(x)}{h_2'} < \frac{1}{2^{k_2 - 1}},$$

and so on.

By Lemma 3 it follows that $m(I_n) \to 0$ if $k_n \to \infty$. Then $h_n \to 0$ and $h'_n \to 0$. Finally if $x \in g_{n,k}^*$ for every k then $D_+W_n^{(1)}(x) = 0$ and $D_-W_n^{(1)}(x) = 0$.

Consider the case where $x \notin E_n^1$ and $x \notin g_{n,k}^*$ for $k \geq k_o$, where k_o is a positive integer. From Lemma 3, $E_n^1 = \bigcup_{k=1}^\infty E_{n,k}^1$ and $E_n^1 = e_{n,1}^1$. Since $x \notin E_n^1$ it follows that $x \notin E_{n,k}^1$ for every k. Hence $x \notin e_{n,1}^1$. By Corollary 2, $e_{n,1}^1 = \bigcap_{j=1}^\infty G_{n,1}^{(j)_1}$. It follows that there exists some j_1 such that $x \notin G_{n,1}^{(j)_{1,1}}$. Since $x \notin E_n^1 \supset e_n^1 \supset e_{n,2}^1 \setminus e_{n,1}^1$ (see Lemma 3), we obtain that $x \notin e_{n,2}^1 \setminus e_{n,1}^1$. By Corollary 2, $e_{n,2}^1 \setminus e_{n,1}^1 = \bigcap_{j=1}^\infty G_{n,2}^{(j)_1}$. Then there exists some j_2 such that $x \notin G_{n,2}^{(j)_{2,2}}$.

Continuing the above procedure we have

$$x \notin e_{n,k_0-1}^1 \setminus e_{n,k_0-2}^1 \subset E_n^1$$
,

and there exists j_{k_o-1} such that $x \notin G_{n,k_o-1}^{(j_{k_o-1})_1}$. Let

$$j_o = \max(j_1, j_2, \dots, j_{k_o-1}).$$

From the properties of the sets $G_{n,k}^{(j)_i}$ (see Corollary 2), we get

$$x \notin \bigcup_{k < k_o} G_{n,k}^{(j_o)_1} \cup E_n^1$$
.

This implies the fact that: the distance of the point x to the set $\bigcup_{k < k_o} \overline{G}_{n,k}^{(j_o+1)_1}$ is positive, therefore to $\bigcup_{k < k_o} G_{n,k}^{(j_o+1)_1}$ the distance is positive too. Then there exists an open interval Δ such that $x \in \Delta$ and

$$\Delta \cap \left(\bigcup_{k < k_o} G_{n,k}^{(j_o+1)_1} \right) = \emptyset.$$

There exist h>0 with $[x,x+h]\subset \Delta,$ and h<0 with $[x+h,x]\subset \Delta]$ such that

$$0 \le \frac{W_n^{(1)}(x+h) - W_n^{(1)}(x)}{h} = \frac{\int_x^{x+h} w_n^{(1)}(t)dt}{h} = \frac{\int_{g_{n,k_o}}^h w_n^{(1)}(t)dt}{|h|} + \frac{\int_{\sim g_{n,k_o}}^h w_n^{(1)}(t)dt}{|h|},$$

where $\sim g^h_{n,k_o} = [x,x+h] \setminus g^h_{n,k_o}$. Since $x \notin g^*_{n,k}$, by Lemma 3, f), we have

$$\frac{\int_{g_{n,k_o}^h} w_n^{(1)}(t)dt}{|h|} \le \frac{\int_{g_{n,k_o}^h} u(t)dt}{|h|} < \frac{1}{2^{k_o}} < 1.$$

From Lemma 3 we obtain the following fact: if $t \notin g_{n,k_o}$ then $t \notin g_{n,k}$ for $k \geq k_o$, therefore $t \notin G_{n,k}^{(j)_1}$ for $k \geq k_o$ and $j \geq 1$ (see Corollary 2). If $t \in [x, x+h]$ then $t \notin \bigcup_{k < k_o} G_{n,k}^{(j_o+1)_1}$. It follows that if $t \in \mathcal{C}$ g_{n,k_o}^h then

$$t \notin G_n^{(j_o+1)_1} = \bigcup_{k=1}^{\infty} G_{n,k}^{(j_o+1)_1}$$
 and $0 \le w_n^{(1)}(t) \le j_o$.

This implies that

$$\frac{\int_{g_{n,k_o}^h} w_n^{(1)}(t)dt}{|h|} \le j_o.$$

We have

$$0 \le D^+ W_n^{(1)}(x) < j_o + 1,$$

$$0 \le D_+ W_n^{(1)}(x) < j_o + 1,$$

$$0 \le D^- W_n^{(1)}(x) < j_o + 1,$$

$$0 \le D_- W_n^{(1)}(x) < j_o + 1.$$

Hence, for $x \notin E_n^1$ we have

$$0 \le D_+ W_n^{(1)}(x) < +\infty$$
 and $0 \le D_- W_n^{(1)}(x) < +\infty$.

Consider the case where $x \in E^2$. By Lemma 3, there exists some k such that $x \in E_{n,k}^2$. By Lemma 3, 1), we have $E^2 \cap E_{n,k}^2 \subset e_{n,k}^2$, hence $x \in e_n^2$. Then there exists some k_o such that $x \in e_{n,k_o-1}^2$. Since

$$g_{n,k_o}^* \subset g_{n,k_o-1} \setminus \left(e_{n,k_o-1}^1 \cup e_{n,k_o-1}^2\right)$$
,

it follows that $x \notin g_{n,k_0}^*$ and $x \notin E_n^1$. From this fact we have

$$0 \le D^+ W_n^{(1)}(x) < +\infty$$
 and $0 \le D^- W_n^{(1)}(x) < +\infty$.

Analogously we can prove 3) and 4).

PROOF. [Proof of Theorem 1]

1) This follows from Theorem 1 of [3] and Lemma 1, where $B_1 = B_2 = \emptyset$.

2) The proof is as that of Theorem 2 of [2] (see pp. 445-449), using properties 1)–4) from Lemma 5. $\hfill\Box$

Theorem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that every point $x \in D_f$ is isolated in D_f . Then there exist $F_1, F_2 \in F_\sigma$ with $F_1 \cap F_2 = \emptyset$ such that

$$\{x: f_{+}^{'}(x) = +\infty\} \subset F_{1} \quad and \quad \{x: f_{+}^{'}(x) = -\infty\} \subset F_{2}.$$

PROOF. This theorem follows from Lemma 1. Since $B_1 \subset D_f$ and $B_2 \subset D_f$ it follows that every point of B_1 or B_2 is isolated in B_1 , B_2 . The sets B_1 and B_2 are at most countable. From the definition of an isolated point we have that:

$$\mathbb{R} \setminus B_1 = \bigcup_{n=1}^{\infty} I_n^1 \cup P_1$$
 and $\mathbb{R} \setminus B_2 = \bigcup_{n=1}^{\infty} I_n^2 \cup P_2$,

where I_n^1 , I_n^2 are intervals such that $I_k^i \cap I_1^i = \emptyset$ for $k \neq 1$ (i = 1, 2) and $I_k^i = (a_k^i, b_k^i)$ with $a_k^i, b_k^i \in B_i$, P_i is the set of all accumulation points of B_i . Of course $\bigcup_{n=1}^{\infty} I_n^i$ is an open set and P_i are closed sets. Hence $\mathbb{R} \setminus B_1 \in F_{\sigma}$ and $\mathbb{R} \setminus B_2 \in F_{\sigma}$. It follows that $F_i \in A_i \setminus B_i \in F_{\sigma}$ (i = 1, 2). This proves our theorem.

Remark 1. From Theorem 1 of [3] and our Theorem 2, it follows that in Theorem 1 we may replace condition " $f : \mathbb{R} \to \mathbb{R}$, f a continuous function" with " $f : \mathbb{R} \to \mathbb{R}$ such that every point $x \in D_f$ is an isolated point of D_f ".

3 Infinite one-sided derivatives and Baire functions

Theorem 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a Baire function of α class $(f \in \mathcal{B}_{\alpha})$. Then there exist some sets F_i , i = 1, 2, 3, 4, such that

$$\{x: f'_{+}(x) = +\infty\} \subset F_1, \quad \{x: f'_{+}(x) = -\infty\} \subset F_2,$$

$$\{x: f_{-}^{'}(x) = +\infty\} \subset F_3, \quad \{x: f_{-}^{'}(x) = -\infty\} \subset F_4,$$

where $F_2, F_4 \in F_{\alpha+1}, F_1, F_3 \in G_{\alpha+1}, \text{ and } F_1 \cap F_2 = \emptyset, F_3 \cap F_4 = \emptyset.$

Proof. The case $\alpha=0$ follows from Theorem 1, 1).

Let $\alpha > 0$. We have

$$\{x\,:\,f_{+}^{'}(x)=+\infty\}=\{x\,:\,D_{+}f(x)=+\infty\}=\cap_{p=1}^{\infty}\{x\,:\,D_{+}f(x)>p\}$$

and

$$\{x: f'_{+}(x) = -\infty\} = \{x: D^{+}f(x) = -\infty\} = \bigcap_{p=1}^{\infty} \{x: D^{+}f(x) < -p\}.$$

Hence

$$\{x: f'_{+}(x) = +\infty\} \subset \{x: D^{+}f(x) > p\}$$

and

$$\{x: f'_{+}(x) = -\infty\} \subset \{x: D^{+}f(x) < -p\},\$$

where $p \in \mathbb{N}$. Let

$$F_{m,n}(x) = \sup_{\frac{1}{m} \le h \le \frac{1}{n}} \frac{f(x+h) - f(x)}{h},$$

$$H_{m,n}(x) = \inf_{\frac{1}{m} \le h \le \frac{1}{n}} \frac{f(x+h) - f(x)}{h},$$

$$F_n(x) = \sup_{0 < h \le \frac{1}{n}} \frac{f(x+h) - f(x)}{h},$$

$$H_n(x) = \inf_{0 < h \le \frac{1}{x}} \frac{f(x+h) - f(x)}{h}.$$

We have

$$F_n(x) = \lim_{m \to \infty} F_{m,n}(x) , \quad H_n(x) = \lim_{m \to \infty} H_{m,n} ,$$

 $F_n(x) \ge F_{n+1}(x) , \quad H_n(x) \le H_{n+1}(x) .$

By [1], $F_{m,n} \in \mathcal{B}_{\alpha}$ and $H_{m,n} \in \mathcal{B}_{\alpha}$. Consequently $F_n, H_n \in \mathcal{B}_{\alpha+1}$. We prove that

$$D^+f(x) = \lim_{n \to \infty} F_n(x)$$
 and $D_+f(x) = \lim_{n \to \infty} H_n(x)$.

Let $y = \lim_{n \to \infty} F_n(x)$. Then there exist $y_n < F_n(x)$ such that $y_n \to y$ if $n \to \infty$. Since $y_n < F_n(x)$ and by the definition of $F_n(x)$, we know that there exists $h_n \in (0, \frac{1}{n}]$ such that

$$F_n(x) \ge \frac{f(x+h_n) - f(x)}{h_n} > y_n.$$

Hence

$$\lim_{n \to \infty} \frac{f(x + h_n) - f(x)}{h_n} = y \quad \text{and} \quad D^+ f(x) \ge y.$$

Let $z_n < D^+f(x)$, $z_n \to D^+f(x)$. For every n there exists $h_n \in (0, \frac{1}{n}]$ such that

$$\frac{f(x+h_n)-f(x)}{h_n}>z_n.$$

Hence $F_n(x) > z_n$ and $y = \lim_{n \to \infty} F_n(x) \ge D^+ f(x)$. Finally $D^+ f(x) = \lim_{n \to \infty} F_n(x)$. Analogously $D_+ f(x) = \lim_{n \to \infty} H_n(x)$.

From the definitions of the limits we have:

$$D^+ f(x) = \inf_n \{ F_n(x) \}$$
 and $D_+ f(x) = \sup_n \{ H_n(x) \}$.

Hence

$$\{x: D^+f(x) < -p\} \subset \bigcup_{n=1}^{\infty} \{x: F_n(x) < -p\},$$

$$\{x: D_+f(x) > -p\} \subset \bigcup_{n=1}^{\infty} \{x: H_n(x) > p\}.$$

Because $F_n, H_n \in \mathcal{B}_{\alpha+1}$, it follows that $\{x : F_n(x) < -p\} \in F_{\alpha+1}$ if α is even, and $\{x : H_n(x) > p\} \in G_{\alpha+1}$ if α is odd. It follows that the sets

$$F_1 = \bigcup_{n=1}^{\infty} \{x : F_n(x) < -p\}$$
 and $F_2 = \bigcup_{n=1}^{\infty} \{x : H_n(x) > p\}$

are identical. From the properties of F_n and H_n we have $F_1 \cap F_2 = \emptyset$. For F_3 , F_4 and the left-hand derivatives the proof is similar.

References

[1] S. Banach, Sur les fonctions derivees des fonctions mesurables, Fundam. Math. 3 (1922), 128–132.

- [2] M. Codyks, On the sets of points at which the derivative is suitable equal $+\infty$ and ∞ , Mat. Sb. **43** (1957), no. 85, 429–450, in Russian.
- [3] B. Kaczmarski, On the set of points at which a function has no one-sided derivative, Demonstratio Math. 18 (1985), no. 4, 1127–1141.
- [4] B. Kaczmarski, On the set of points at which a function has infinite onesided derivative, Real Analysis Exchange 16 (1990-1991), no. 2, 421–424.
- [5] Z. Zahorski, Sur la premiere derivée, Trans. Amer. Math. Soc. 69 (1950), 1–54.