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ON THE SETS WHERE A CONTINUOUS
FUNCTION HAS INFINITE ONE-SIDED
DERIVATIVES

Abstract

In the present paper I give a characterization by help of measure
and Borel classes of the set of points at which the continuous func-
tion possesses an infinite one-sided derivative. The main theorem is as
follows. Let E; and FE2 be disjoint subsets of R. There exists a con-
tinuous function f : R — R such that F1 = {z : fi(z) = +oo} and
E> = {z: fi.(z) = —oo} if and only if (i) F1 and Es are of type Fus
and measure zero and (ii) there exist disjoint sets Fi and F> of type Fi,
such that £y C F} and Ey C F5.

1 Introduction

In [4] and [2], the following theorems are proved:

Theorem I. (Theorem 2 of [4]). Let E1 and Es be disjoint subsets of R.
There exists a function f: R — R such that

E ={z: f/_(m) =+o0} and Ey={x: f/_(ac) = —o0}

if and only if m(Ey) = m(Es) = 0, where f is the left-hand derivative and
m denotes the Lebesgue measure.
Analogously for the right-hand derivative.

Theorem II. (The main theorem of [2]). Let Ey and Es be disjoint subsets
of R. There exists a function f: R — R such that

Ei={z: f(z)=+00} and Es={z : f (z) = -0}

if and only if
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(i) Ey and Ey are of type F,s and of measure zero, and

(ii) there exist disjoint sets Fy and Fy of type F, such that E1 C Fy and
By, C F.

In the present paper we prove analogous theorems for the one-sided deriva-
tives of continuous functions. To prove these results we use the construction
from [2].

We shall apply the following notations:

D™ f(z), D_f(x), D" f(z), Dy f(z) — the upper left-hand, lower left-hand,
upper right-hand, lower right-hand Dini derivatives of a function f at a
point x;

J 4 f(x)dx — the Lebesgue integral of f on the set A;
C¢ — the set of all continuity points of the function f;

Dy — the set of all discontinuity points of the function f;

2 Main results

Theorem 1 (Main Theorem).
1) Let f : R — R be a continuous function and let
E, ={x: f;r(x) =400} and By ={x : f;(x) = —o0}.
Then we have

(i) E1 and Eo are of type Fy5 and of measure zero;

(ii) There exist disjoint F,-type sets Fy and Fy such that By C Fy and
Ey, C F.

2) Let By and Es be subsets of R that satisfy the following conditions:

(i) E1 and Ey are of type F,s and of measure zero;

(i) There exist disjoint F,-type sets Fy and Fy such that By C Fy and
Ey, C F.

Then there exists a continuous function f: R — R such that
E,={x: f;(x) =400} and Ep={x : f;(x) = —o0}.
Moreover, if x ¢ E1 U Ey then
Dy f(z) < +o00; DT f(z) > —o00; D_f(z) < +o0; D™ f(z) > —c0.
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To prove this theorem we shall need the following five lemmas.

Lemma 1. Let f : R — R. Then
{z : f;(x) =400} CFy and {z : f;_(x) =—o0} C Fy,
where Fy N Fy =0, F; = A; \ B;, A; € F, and B; C Dy fori=1,2.
PROOF. We have
{z: fi(@) = +oo} ={z : Dy f(x) = +o0} =ML {w : Dy f(x) > n}

and

{z : f;_(:r) =-—o0}={z: DT f(z) = —0} =02 {z : DT f(z) < —n}.

Hence ,

{z : fo(x) =400} C{z : Dyf(x)>n}, neN
and

{z: fjr(m) =—oco} C{z : DT f(z) < —n}, neN
Of course

{z : Dyf(x) >n}n{x: D f(x) < —n} =0.
By Lemma 8 of [5],

{z : Dif(x) <n}NCreGs and {z: DTf(x)>-n}NCseGs.
Hence
{z : Dif(x) >n}UD;€F, and {x:DVf(z)<-n}UD;€F,.
We have
{w: Dof(a)>n} = [z : Dyf(x) >n}UDA\[Dy\{z : Difla) > n}]
and
{a: D*f(z)<—n}=[{z: D" f(a)<—n}UD;|\[Ds\{z: D*f(z)<-n}].
Denoting
o i={z: Dyf(x) >nj,
o b ={z: D" f(x) < —n},
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e Ay ={z : Dy f(z) >n}UDy,
e Ay ={x : D" f(z) < —n}UDy,
we obtain our assertion. O

Lemma 2. Let u: R — R be a nonnegative integrable function, let M be a set
of measure zero and L* = U2 (a;,b;) such that M C L*. For every interval
(aj,b;) we denote by

b: —a; b: —a;
A],n:(a1+ ']2n+1],(1j+ ]271 j)

/ bj —aj bj —aj
Ajf” = (bJ - on ’bj B on+1

Then for each positive integer k, there exists an open set Ly C L* such that

1) M C Ly,

Ajn AjL)
2) kaﬂAJ‘,n u(z)dr < 2% . s ) and kamA;,n u(z)dr < 2% SR,

3) kam(ajybj) U(I)dz < 2%(1)] — aj);

4) If x, ¢ L* then for every h, we have

/.

LZz[q:o,xo—i—h]ﬂLk for h>0 and Lh:[xo—l—h,xo]ﬁLk for h<O0.

1
u(z)dr < 2—k|h|7 where

h
k

5) For every x, € L* there exists h > 0 (respectively h < 0) such that

1
d h d
/LQU(:E) r < 2k71| | an

(T, o + h) C L* (respectively (z,+ h,x,) C L*).

PROOF. 1)-4) See Codyks’ paper [2] (pp. 435-436).
5) Since z, € L*, there exists j such that z, € (a;,b;). Let A;, and A,
be the intervals defined in our hypothesis. Suppose that

Ajn=(ph.g)) and A}, =(ri ).
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Of course pl, = ¢, and t, =1}, ,, and also

1 ’ ]_ ’
m(Bjnr1) = 5m(Bgn) s mBjp) = 5m(B;,)- (1)

If z, € (aj, aj;bj] then there exists h > 3(b; — a;) such that [z,,x, + h] C

(aj,b;). From condition 3) we obtain

1
/ u(z)dr < / u(z)dr < 5z (bj —aj),
Ly LkN(a;,b;) 2

hence )
dx < —h.
/LZ u(z)dr < h=T

If , € (%tbs b;) then there exists A;’n such that z, € A, . Suppose that

2

’

, 1
(1) = o) 2 3m(A) ).

jn) such that x, +h € A, ,,. From condition 2)

Then there exists h > m(A

we obtain
/,

1 1
/ u(x)de < Q—kh SO / u(z)dr < Qk—_lh
L L

h h
k k

()d</ (@) < & . T Bin)
u(z)dr < u(z)dr < — - ——L22
LunA" 2k 2

h
k Jyn

It follows that

Suppose that

/

. 1
(t) —x,) < §m(Aj,n) .

Then there exists h > 0 such that 2, +h € A, | and h > %m(A;n) .

By (1) we have

1 ,
h > im(Ajm_H) .

It follows that

/ u(x)dx:/ u(:c)dz+/ u(x)dx .
L [zo,th]NLy [th,zo+h]NLg

h
k
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From condition 2) we obtain

1 m(A;
/ u(z)dr < / w(z)de < o - (71") )
(2o, th]NL LynA 2 2
and /
1 m(A;,
/ u(z)dr < / w(z)de < — - (B nt1) .
[th.@o+h] LinA) 2 2
Hence

1 m(A;n) m(A;,n+1>
/L;; u(z)dr < ok ( 5 + 9 ;

in consequence
1

2

Analogously it follows that there exists h < 0 that satisfies condition 5). [

Lemma 3. Let E', E%, Hy, Hy be sets such that E* € F,s5, H; € F,, m(E") =
0, E'C Hy (i =1,2) and Hy 0 Hy — 0. Let

E'= mvon:IEfz ) ErlL = U?;IE%,k , Hi= UEO:1F1§ )
where thk and F}. are closed sets, i = 1,2. Let Gy, be an open set such that

E'UE? C G, and m(G,,) < %, where n = 1,2,.... We may additionally
suppose that

Gui1 CGy, E,CG,, FLCFl,, E\,CE\ ., Ei, CE, CF.

n n

Let us denote by C} and C} some disjoint open sets such that Fi C C}, (i =
1,2). Let u: R — R be defined as follows:

00 1 ifzeqd,
= n ’ h n =
u(z) ;u (z), where up(z) ——

clearly u s an integrable function). Then there exist some sets el C E} and
n n
e2 C E2 where

eil = Uiozle;’,w 6;,19 eF,NGs (i=1,2),

such that the sets eil,k satisfy the following conditions:
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1) e, =E,; CCj, enr Cehprrs BPNEL, Ceyy CEL L CCLL

2) For every positive integer k > 2 there exist some open sets 9 ks I,k and
for k =1 there exists the open set gn 1, such that:

(1) Gn = 0gn,1 D 6;’1;

1 2 ; ; )
b) Gnk—1\ (en,kq U en,kq) DGk D Gnk O (e;,k \ez,kq) ;

¢) the points of the set eﬁl,l are the points of density of the set gn1\ g, 2,
while for k > 2, the points of the set eﬁhk \ e;7k_1 are the points of
density of the set gnk \ g k115

d) for every component I of the set Gy 1, we have

1
/ u(z)dr < 27771([) :
Imgn,k

e) for z, € g;, ), there exists h > 0 such that [z,,7, + h| C g, ;. and there
exists h < 0 such that [z, + h,z,] C g;, ., and

1

h
n,k

where gﬁyk = gnk N [To;To + ] for h >0 and gﬁ,k = gnk N[To+ b,z
for h <0;

f) if co & g}, . then for every h,

1
/gh u(z)dr < ka|h| .

n,k

PRrROOF. For a), b), ¢), d), f) see [2] (pp. 436-440). Condition e) follows from
Lemma 2, 5). O

Corollary 1. (/2], p.440).

1) The sets el and €2 are of type F,;

2) E'Ce, CE, (i=1,2);

3) The points of the set el are the density points of the set
Q= U1 [(Gne \ 95 k1) N Cil s

The points of the set €2 are the density points of the set

Q) = U2 [(gn .k \ 9n 1) N Cil;
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4) QLnQ2 =9.

Lemma 4. (Lemma 6 of [2], p. 440). Let K € G5 and K C G, where G is
an open set. Then K = ﬂj‘?‘;lK(j), where K9 is an open set such that

J+1)

KUY c KW c @, and KV c KOUR.

Corollary 2. The sets efm and eib,k \ e;,k_l n=1,2,...,k=23,...) from
Lemma 8 are of the form:

1) e}, = ﬂ‘;’;ngf;)f, where Ggf)l are open sets satisfying

~+1):

G ()i

n,l - Gn,l C gnal )

2) e \eh 1= ﬂj‘ing};, where GSL are open sets satisfying

QU Y Cguy and GYYV YN UEL,.

PROOF. See Lemma 4. O
Lemma 5. Let the functions vél)(x) and v (x) be defined by

1 if € GUr\ QU

Ufll)(x) ={ 40 ifz€ ﬂ‘]?';lG;j)l

0 elsewhere

and
-1 ifze GU:2\ GUtD:

v (z)={ —0 ifze ﬂ;’;ngljb

0 elsewhere

where GS” = U?’ZIGn{ ' and fo)k are the sets from Corollary 2. We have
el GV G,.

Let

min[vy? (z),u(z)] if z € QL

wil(@) =
0 elsewhere
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and @
max|vy, (z), —u(x)] ifz € Q2
w? (x) = '
0 elsewhere

where u, QL and Q2 are defined in Lemma 3. Then the functions

x x
mﬁ”@g:i/ wV(t)dt  and mﬁﬁugzi/ w'? (t)dt
0 0

have the following properties:

1) 0< D.WY (2) < +oo and 0 < D_W M (z) < +oo forz ¢ E!,
2)0< D+W7(L1)(:E) < 400 and 0 < D_Wr(bl)(a:) < +o0 forxz € E?,

3) —oco < D*W, P (x) <0 and —00 < D-W(2) <0 for x ¢ E2,

4) —00 < DLW (x) <0 and —0o < D_W(2) <0 forx € E!.

The sets E* and E! (i = 1,2) are defined in Lemma 3 and Corollary 1.

Proor. Consider first the case where x € Ik for every k > 2. Let k1 > 2.
Then there exists a component I of the set gy , ~such that x € ;. By the

definition of Wfll), for any h > 0 with [z,z + h] C I7, and for any h < 0 with
[z + h,z] C I; we have

x+h
/ w (t)dt = / w (t)dt < / u(t)dt
x gl g

n,kq kg
where
gZ,kl =[z,z+hlNgpk, for h>0,
and
92,161 =[z+hz]Ngpr, for h<O.

By Lemma 3, e), there exist hy > 0 with [,z + hy] C I;, and h'1 < 0 with
[z + Ry, 2] C I; such that

W 1
A 1%@W§LMU@M<%”WM

n,k1

and

’

e M (¢)dt < t)dt LEY
g wy,” (t)dt < W u(t) <2k17_1| 1l

gn,kl
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hence

1 , x+h/1 L
~r=1 /Ml </ wil (t)dt .

By this inequality we have

o < Wi @+ ) WD (@) [ Wl (t)at _ 1
- hy B hi 2k1—1"

and )
W@ +n) - W@ [ Wl (t)de 1
R} B ) 2k1—1"

0<

Let ko > k1. Then there exists a component 5 of the set gy ;. such that
x € I5. Similarly as above, we obtain that there exist hy > 0 and hl2 < 0 such
that

(@ + hy) — W (2) 1

n
0 S h2 < 2]{,‘271 ’
and
o W@+ h) W@ 1
I, S gh1
and so on.

By Lemma 3 it follows that m(1,,) — 0 if k,, — co. Then h,, — 0 and h,, —
0. Finally if z € g, ,, for every k then D+W7(ll)(x) =0 and D,W,(Ll)(x) =0.

Consider the case where z ¢ E} and = ¢ g} , for k > k,, where k, is
a positive integer. From Lemma 3, E} = Uy, E} ; and E,, = e, ;. Since

x ¢ E,, it follows that x ¢ E,, , for every k. Hence z ¢ ¢}, ;. By Corollary 2,

en1 = N2, G(j)l. It follows that there exists some j; such that z ¢ G
Since x ¢ E1 De,Dely\en (see Lemma 3), we obtain that = ¢ e, , \ en

By Corollary 2, e), 5\ e}, | = = N2 1Gn 5 . Then there exists some ja such that
z ¢ GY3.
Continuing the above procedure we have
1 1 1
€ ¢ en,k:afl \6n7k072 C En7

and there exists ji,_1 such that = ¢ G(Jko 1)1 Let

Jo = max(j1, j2, - jk,—1} -



ON CONTINUOUS FUNCTIONS AND ONE-SIDED DERIVATIVES 353

From the properties of the sets an )k (see Corollary 2), we get

x ¢ Uk<kOG£iok)l U Ei

This implies the fact that: the distance of the point x to the set Up<y, G(]O—H)1

is positive, therefore to U<k, G, JDH)I the distance is positive too. Then there
exists an open interval A such that z € A and

AN (Uk<k G ]O—H)l) =0.
There exist h > 0 with [z,2+ h] C A, and h < 0 with [z + h,z] C A] such

that -
Wz +h) - WP (@) [Tl ()t

< = L =
0= h h
fﬁ . wi (t)dt ng wi (t)dt
i T ’

where ~ gl = [z,x+h]\ g}, . Since x ¢ g%, by Lemma 3, f), we have

Son wi (t)dt Sor 1

In ko n ko

I - Ihl 2ke

From Lemma 3 we obtain the following fact: if ¢ ¢ g, 5, then ¢ ¢ g, for
k > ko, therefore t ¢ GY)! for k > k, and j > 1 (see Corollary 2). If
t€lx,x+h]thent ¢ Uk<koG£ff,’€+1)1. It follows that if t €~ g}rt,ko then

g G =, G and 0 <wlD (1) < o

This implies that

‘We have
0< DWW (z) < jo+1,

(x)
0< DWWV (x) <jo+1,
0< D W (2) <jo+1,
0< DWWV (x) <jo+1.
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Hence, for = ¢ E} we have
0< DWW (z) <400 and 0< D W (z) < +oo.

Consider the case where € E?. By Lemma 3, there exists some k such that
T € E’r27.7k' By Lemma 3, 1), we have E2 N Eik C eiyk, hence x € 2. Then

n
there exists some k, such that = € efb ko—1- Since

Ink, C Inko—1 \ (ei,koq U ei,ko—l) )

it follows that x ¢ g, , and x ¢ E,,. From this fact we have
0<D*W(z) < +o0 and 0< D WV (z) < +00.
Analogously we can prove 3) and 4). O

PROOF. [Proof of Theorem 1]
1) This follows from Theorem 1 of [3] and Lemma 1, where B; = By = 0.
2) The proof is as that of Theorem 2 of [2] (see pp. 445-449), using prop-
erties 1)—4) from Lemma 5. O

Theorem 2. Let f : R — R be a function such that every point x € Dy is
isolated in Dy. Then there exist Fy, Fy € F, with Fy N Fy = 0 such that

{z : f;(x) =400} C Fy and {x: f;_(x) =—o0} C Fy.

Proor. This theorem follows from Lemma 1. Since By C Dy and By C Dy
it follows that every point of By or Bs is isolated in By, By. The sets By and
By are at most countable. From the definition of an isolated point we have
that:

R\B; =, I} UP, and R\ By=U,I2UP;,

where I}, I? are intervals such that I} N Ii = @ for k # 1 (i = 1,2) and
I,i, = (a};,b};) with a};, bfc € B;, P; is the set of all accumulation points of B;.
Of course U I’ is an open set and P; are closed sets. Hence R\ By € F,
and R\ By € F,. It follows that F; € A; \ B; € F,, (i = 1,2). This proves our

theorem. O

Remark 1. From Theorem 1 of [3] and our Theorem 2, it follows that in
Theorem 1 we may replace condition “f : R — R, f a continuous function”
with “f : R — R such that every point € Dy is an isolated point of D¢”.



355

ON CONTINUOUS FUNCTIONS AND ONE-SIDED DERIVATIVES

3 Infinite one-sided derivatives and Baire functions

Theorem 3. Let f : R — R be a Baire function of o class (f € By). Then
there exist some sets F;, i = 1,2,3,4, such that
{o: fie) = —oc} C B,

{w: fi(x) = Fo0} C Fy,
—OO} C Fy,

f@)=+}CF, {z:f (2)

{z : f
where FQ,F4 € Fa+1, Fl,F3 S Ga+1, and Fl ﬂFQ = @, F3 OF4 = @

PRrROOF. The case a = 0 follows from Theorem 1, 1).

Let o > 0. We have
{z: fi(2) =+oo} = {x : D f(z) = +oo} = "2 {z : Dif(z) > p}

{z: fi(z) = —o0} = {a : DV f(z) = —oc} = MLy {w : DV f(x) < —p}.

and
Hence /
{z : fi(x) = +oo} C {z : D* f(x) > p}
and )
{z : fi(z) = —o0} C{x: Dt f(x) < —p},
where p € N. Let
F7n,n(x) = sup f(Jj + h’) _ f('r) ,
m<h<g h
)~ JEEN =@
’ L<h<i h
Fae) = sup TEFWZIE)
0<h<i
(x+h)— f(z)
h

We have
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By (1], Finn € By and Hy, ,, € B,. Consequently F,,, H,, € Byy1. We prove
that

Dt f(x) = nhﬁn;o F,(z) and D4f(z)= nhﬁnéo H,(z).
Let y = limy, o0 Fr(x). Then there exist y, < Fy,(z) such that y, — y if
n — oo. Since y,, < F,(x) and by the definition of F,,(x), we know that there
exists h,, € (0, 1] such that

F,(z) >
(@) > ST

> Yn -

Hence

n—o00 hn,

=y and DT f(z)>y.

Let z, < DV f(z), z, — DT f(x). For every n there exists h,, € (0, 2] such

that
hn,
Hence F,(z) > z, and y = lim,_o F,(z) > DT f(z). Finally Dt f(z) =
lim,, o0 F (). Analogously D f(z) = limy, 0o Hp(z).
From the definitions of the limits we have:

> Zn .

D*f(x) = inf{F,(x)} and D.f(z)= SITILP{Hn(w)}-
Hence
{z : DT f(z) < —p} C U {z : F.(x) < —p},
{0 Dof(@) > —p} C U {a + Hylx) > p}.

Because F,, Hy, € Bsy1, it follows that {z : F,(z) < —p} € F,41 if a is even,
and {z : Hy(x) > p} € Goq1 if @ is odd. It follows that the sets

Fr =02 {z : Fp(x) < —p} and F=U2 {x : H,(x) > p}

are identical. From the properties of F,, and H,, we have F} N Fy = ().
For F3, Fy and the left-hand derivatives the proof is similar. O
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