Charles Swartz, Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA, e-mail:cswartz@nmsu.edu

UNIFORM INTEGRABILITY AND MEAN CONVERGENCE FOR THE VECTOR-VALUED MCSHANE INTEGRAL

Abstract

We show that a pointwise convergent, uniformly integrable sequence of Banach space valued, McShane integrable functions converges in mean. We also show that uniform integrability holds in a vector-valued generalization of the Beppo Levi convergence theorem.

It has been observed in [3, 4, 5], [7] that uniform integrability for the Henstock-Kurzweil integral is a sufficient condition to "take the limit under the integral sign." In this note we point out that uniform integrability for the McShane integral is actually a sufficient condition for mean or L^1 convergence. Our methods extend easily to functions with values in a Banach space so we consider this case where the results give significant improvements to the scalar case. We also show that the conclusion of the vector-valued generalization of the Monotone Convergence (Beppo Levi) Theorem given in [10] can be improved to uniform integrability.

We fix the notation and terminology which will be used in the sequel. It should be noted that we will work in \mathbb{R} whereas the results in [3, 4, 5] are for compact intervals in \mathbb{R} . Let X be a (real) Banach space and let \mathbb{R}^* be the extended real line with the points $\pm \infty$ added. If f is any function $f : \mathbb{R} \to X$, we always assume that f is extended to \mathbb{R}^* by setting $f(\pm \infty) = 0$.

A gauge is a function γ on \mathbb{R}^* whose value at a point t is a neighborhood $\gamma(t)$ of t, where $\gamma(t)$ is bounded whenever $t \in \mathbb{R}$. [A neighborhood of ∞ is an interval of the form $(a, \infty]$; similarly for $-\infty$.] A partition of \mathbb{R} is a finite collection of left-closed intervals $\{I_i : i = 1, \ldots, n\}$ such that $I_i \cap I_j = \phi$ for $i \neq j$ and $\mathbb{R} = \bigcup_{i=1}^n I_i$ (here we agree that $(-\infty, a)$ is left-closed). A tagged partition of \mathbb{R} is a finite collection of pairs $\{(I_i, t_i) : i = 1, \ldots, n\}$ such that

Key Words: McShane integral, uniform integrability, mean convergence

Mathematical Reviews subject classification: 28B05

Received by the editors March 25, 1997

 $\{I_i: i = 1, \ldots, n\}$ is a partition of \mathbb{R} and $t_i \in \mathbb{R}^*$; t_i is called the tag associated with I_i . Note that it is not required that $t_i \in I_i$; this requirement is what distinguishes the McShane and the Henstock-Kurzweil integral ([1],[7],[8],[3]). If γ is a gauge on \mathbb{R}^* , a tagged partition $\mathcal{D} = \{(I_i, t_i) : i = 1, \ldots, n\}$ is γ -fine if $\overline{I}_i \subset \gamma(t_i)$ for $i = 1, \ldots, n$. If $\mathcal{D} = \{(I_i, t_i) : i = 1, \ldots, n\}$ is a tagged partition and $f : \mathbb{R} \to X$, we write $S(f, \mathcal{D}) = \sum_{i=1}^n f(t_i)\ell(I_i)$ for the Riemann sum of fwith respect to \mathcal{D} where ℓ is Lebesgue measure on \mathbb{R} [here we make the usual agreement that $0 \cdot \infty = 0$].

Definition 1. A function $f : \mathbb{R} \to X$ is (McShane) integrable over \mathbb{R} if there exists $v \in X$ such that for every $\varepsilon > 0$ there exists a gauge γ on \mathbb{R}^* such that $\|S(f, \mathcal{D}) - v\| < \varepsilon$ whenever \mathcal{D} is γ -fine.

The vector v is called the (McShane) integral of f over \mathbb{R} and is denoted by $\int_{\mathbb{R}} f$. We refer the reader to [8], [3] for basic properties of the McShane integral.

Let $M(\mathbb{R}, X)$ be the space of all X-valued integrable functions defined on \mathbb{R} ; if $X = \mathbb{R}$, we abbreviate $M(\mathbb{R}, \mathbb{R}) = M(\mathbb{R})$. The space $M(\mathbb{R})$ is complete under the semi-norm $||f||_1 = \int_{\mathbb{R}} |f| ([8, \text{VI.4.3}])$. We define a seminorm on $M(\mathbb{R}, X)$ by $||f||_1 = \sup\{\int_{\mathbb{R}} |x'f| : x' \in X', ||x'|| \leq 1\}$; in general, $|| ||_1$ is not complete ([10]; see [4], [2] for properties of the vector-valued Mc-Shane integral and its comparison with the Pettis and Bochner integrals). We describe another semi-norm which is equivalent to $|| ||_1$ and is useful in estimation. Let \mathcal{A} be the algebra of subsets of \mathbb{R} generated by the leftclosed subintervals of \mathbb{R} ; thus, every element of \mathcal{A} is a finite, pairwise disjoint union of left-closed intervals ([9, 2.1.11]). If $f \in M(\mathbb{R}, X), A \in \mathcal{A}$ and C_A denotes the characteristic function of A, then $C_A f$ is also integrable and $||f||'_1 = \sup\{||f_{\mathbb{R}}C_A f|| = ||f_A f|| : A \in \mathcal{A}\}$ defines a semi-norm on $M(\mathbb{R}, X)$ which is equivalent to $|| ||_1$ ([10]).

We next define uniform (McShane) integrability and show that uniform integrability implies convergence in $\| \|_1$. A family \mathcal{F} of X-valued functions defined on \mathbb{R} is uniformly integrable if for every $\varepsilon > 0$ there exists a gauge γ on \mathbb{R}^* such that $\| S(f, \mathcal{D}) - \int_{\mathbb{R}} f \| < \varepsilon$ for every $f \in \mathcal{F}$ and \mathcal{D} γ -fine; that is, the gauge is independent of the functions in \mathcal{F} .

For our next theorems we require an important result called the Henstock Lemma. If $\mathcal{D} = \{(I_i, t_i) : i = 1, ..., n\}$ is any collection of pairwise disjoint, left-closed subintervals $\{I_i\}$ and $t_i \in \mathbb{R}^*$, then \mathcal{D} is called a partial tagged partition of \mathbb{R} (it is not required that $\bigcup_{i=1}^{n} I_i = \mathbb{R}$); if γ is a gauge on \mathbb{R}^* , \mathcal{D} is γ -fine if $\overline{I}_i \subset \gamma(t_i)$ for i = 1, ..., n. We again write $S(f, \mathcal{D}) = \sum_{i=1}^{n} f(t_i) \ell(I_i)$. **Lemma 2.** (Henstock) Let $f \in M(\mathbb{R}, X)$ and $\varepsilon > 0$. Suppose the gauge γ on \mathbb{R}^* is such that $\|S(f, \mathcal{D}) - \int_{\mathbb{R}} f\| < \varepsilon$ for every γ -fine tagged partition \mathcal{D} of \mathbb{R} . If \mathcal{D} is any γ -fine partial tagged partition and $I = \bigcup_{i=1}^{n} I_i$, then $\|S(f, \mathcal{D}) - \int_{I} f\| \leq \varepsilon$.

See [4] for Lemma 2.

We first establish an interesting preliminary result.

Theorem 3. Let $f_k \in M(\mathbb{R}, X)$ for every $k \in \mathbb{N}$. If $\{f_k\}$ is uniformly integrable over \mathbb{R} , then

$$\lim_{b \to \infty} \left\| C_{[b,\infty)} f_k \right\|_1' = 0$$

uniformly for $k \in \mathbb{N}$.

PROOF. Let $\varepsilon > 0$. There exists a gauge γ with $\gamma(z)$ bounded for every $z \in \mathbb{R}$ such that $\left\|\int_{\mathbb{R}} f_k - S(f_k, \mathcal{D})\right\| < \varepsilon$ when \mathcal{D} is γ -fine. Fix such a $\mathcal{D} = \{(I_i, t_i) : 1 \leq i \leq m\}$ and assume that $I_1 = [b, \infty), t_1 = \infty$. If $a \geq b$, let A be an element of \mathcal{A} with $A \subset [a, \infty)$ and $A = \bigcup_{i=1}^n J_i, J_i$ a left-closed interval and $\{J_i\}$ pairwise disjoint. Then $\mathcal{J} = \{(J_i, \infty) : 1 \leq i \leq n\}$ is a γ -fine partial tagged partition so Henstock's Lemma implies that

$$\left\|\int_{A} f_{k} - S\left(f_{k}, \mathcal{J}\right)\right\| = \left\|\int_{A} f_{k}\right\| \leq \varepsilon.$$

Since $A \in \mathcal{A}$ is arbitrary, $\|C_{[a,\infty)}f_k\|'_1 \leq \varepsilon$ for $a \geq b$.

We next establish our mean convergence result.

Theorem 4. Let $f_k : \mathbb{R} \to X$ be integrable for every $k \in \mathbb{N}$ and suppose $\{f_k\}$ converges pointwise to f. If $\{f_k\}$ is uniformly integrable, then f is integrable and $||f_k - f||_1 \to 0$.

PROOF. Let $\varepsilon > 0$. There exists a gauge γ with $\gamma(z)$ bounded for every $z \in \mathbb{R}$ such that $\left\| \int_{\mathbb{R}} f_k - S(f_k, \mathcal{D}) \right\| < \varepsilon$ whenever \mathcal{D} is γ -fine.

Fix a tagged partition $\mathcal{D} = \{(I_i, t_i) : 1 \le i \le m\}$ which is γ -fine. Since $\{f_k\}$ is pointwise convergent and $f_k (\pm \infty) = 0$, there exists N such that $k, j \ge N$ implies $\|S(f_k, \mathcal{D}) - S(f_j, \mathcal{D})\| = \left\|\sum_{i=1}^m (f_k(t_i) - f_j(t_i))\ell(I_i)\right\| < \varepsilon$. Therefore,

if $k, j \geq N$, we have

$$\left\| \int_{\mathbb{R}} f_k - \int_{\mathbb{R}} f_j \right\| \leq \left\| \int_{\mathbb{R}} f_k - S(f_k, \mathcal{D}) \right\| + \left\| S(f_k, \mathcal{D}) - S(f_j, \mathcal{D}) \right\| \\ + \left\| S(f_j, \mathcal{D}) - \int_{\mathbb{R}} f_j \right\| < 3\varepsilon.$$

Hence, $\lim_k \int_{\mathbb{R}} f_k = L$ exists in X.

We claim that $\int_{\mathbb{R}} f = L$. Let \mathcal{E} be γ -fine. Pick n_0 such that $k \ge n_0$ implies $\left\|\int_{\mathbb{R}} f_k - L\right\| < \varepsilon$. As above there exists $n_1 \ge n_0$ such that whenever $k \ge n_1$, it follows that $\|S(f, \mathcal{E}) - S(f_k, \mathcal{E})\| < \varepsilon$. Then

$$\|L - S(f, \mathcal{E})\| \leq \left\|L - \int_{\mathbb{R}} f_{n_1}\right\| + \left\|\int_{\mathbb{R}} f_{n_1} - S(f_{n_1}, \mathcal{E})\right\| \\ + \|S(f_{n_1}, \mathcal{E}) - S(f, \mathcal{E})\| < 3\varepsilon$$

and the claim is established.

For the last statement we may assume that f = 0 since $f_k - f \to 0$ pointwise and $\{f_k - f\}$ is uniformly integrable. With \mathcal{D} fixed as above, assume that $I_1 = [b, \infty)$ and $I_2 = (-\infty, a)$ and set $I = \mathbb{R} \setminus I_1 \cup I_2$. Let A be an arbitrary element of \mathcal{A} with $A = \bigcup_{j=1}^n J_j$, J_j a left-closed interval, $\{J_j\}$ pairwise disjoint. Then $\mathcal{E} = \{(I_i \cap J_j, t_i) : 1 \le i \le m, 1 \le j \le n\}$ is γ -fine so Henstock's Lemma implies $\left\| \sum_{i=1}^m \sum_{j=1}^n \left\{ \int_{I_i \cap J_j} f_k - f_k(t_i) \ell(I_i \cap J_j) \right\} \right\| \le \varepsilon$. Hence, $\left\| \int_{i=1}^m f_k(t_i) \ell(I_i \cap J_i) \right\| = \varepsilon + \left\| \sum_{j=1}^m f_k(t_j) \ell(I_i \cap A) \right\|$

$$\left\| \int_{A} f_{k} \right\| \leq \varepsilon + \left\| \sum_{i=1} \sum_{j=1} f_{k}(t_{i}) \ell\left(I_{i} \cap J_{j}\right) \right\| = \varepsilon + \left\| \sum_{i=3} f_{k}(t_{i}) \ell\left(I_{i} \cap A\right) \right\|$$
$$\leq \varepsilon + \sup_{3 \leq i \leq m} \left\| f_{k}(t_{i}) \right\| \ell\left(I\right),$$

and k can be taken large enough so the last term is less than ε . Since A is arbitrary, it follows that $||f_k||'_1 \leq 2\varepsilon$ for large k.

It has been previously observed that f is integrable and uniform integrability of a pointwise convergent sequence $\{f_k\}$ implies that $\lim_{\mathbb{T}} \int_{\mathbb{R}} f_k = \int_{\mathbb{R}} f$ ([7], [3, 4, 5]). Since $\| \|_1$ and $\| \|'_1$ are equivalent, the conclusion of Theorem 4 implies that $\lim_{\mathbb{T}} \int_A f_k = \int_A f$ uniformly for $A \in \mathcal{A}$ giving a significant improvement particularly in the vector-valued result for the McShane integral.

306

In [10] we established a convergence theorem for vector-valued McShane integrable functions which easily implies the Monotone Convergence (Beppo Levi) Theorem for scalar-valued functions. We now show that the conclusion of this generalized Monotone Convergence Theorem can be improved from $\|\|_1$ -convergence to uniform integrability.

Since we are working over $\mathbb R$ instead of a bounded interval we need a preliminary lemma.

Lemma 5. There exists a positive McShane integrable function $\varphi : \mathbb{R} \to (0, \infty)$ and a gauge $\gamma (= \gamma_{\varphi})$ such that $0 \leq S(\varphi, \mathcal{D}) \leq 1$ whenever \mathcal{D} is a γ -fine partial tagged partition.

PROOF. Let φ be positive with $\int_{\mathbb{R}} \varphi = \frac{1}{2}$. Let γ be a gauge with $\left|\frac{1}{2} - S(\varphi, \mathcal{D})\right| < \frac{1}{2}$ whenever \mathcal{D} is a γ -fine tagged partition of \mathbb{R} . Since φ is positive, the result follows immediately from Henstock's Lemma.

Theorem 6. Let $f_k \subset M(\mathbb{R}, X)$ and suppose $\sum_{k=1}^{\infty} f_k = f$ pointwise with $\sum_{k=1}^{\infty} \|f_k\|_1 < \infty$. If $F_n = \sum_{k=1}^n f_k$, then (i) $\{F_n\}$ is uniformly integrable, (ii) f is integrable and (iii) $\|F_n - f\|_1 \to 0$.

PROOF. Let $\varepsilon > 0$. For each *n* pick a gauge γ_n with $\gamma_n(z)$ bounded for every $z \in \mathbb{R}$ such that $\left\| \int_{\mathbb{R}} F_n - S(F_n, \mathcal{D}) \right\| < \varepsilon/2^n$ whenever \mathcal{D} is γ_n -fine. Pick n_0 such that $\sum_{k=n_0}^{\infty} \|f_k\| < \varepsilon$, and for every $t \in \mathbb{R}$ pick $n(t) \ge n_0$ such that $k \ge j \ge n(t)$ implies $\left\| \sum_{i=j}^k f_i(t) \right\| < \varepsilon \varphi(t)$, where φ and γ_{φ} are as in Lemma 5.

Define a gauge γ on \mathbb{R} by $\gamma(t) = \left(\bigcap_{j=1}^{n(t)} \gamma_j(t)\right) \cap \gamma_{\varphi}(t)$ for $t \in \mathbb{R}$ and

 $\gamma(\pm \infty) = \left(\bigcap_{j=1}^{n_0} \gamma_j(\pm \infty)\right) \cap \gamma_{\varphi}(\pm \infty) \text{ and set } n(\pm \infty) = n_0. \text{ Suppose } \mathcal{D}$ $= \{(I_i, t_i) : 1 \le i \le m\} \text{ is } \gamma\text{-fine. To establish (i), first note that } \mathcal{D} \text{ is } \gamma_i\text{-fine}$ for $i = 1, \ldots, n_0$ implies that $\left\|\int_{\mathbb{D}} F_i - S(F_i, \mathcal{D})\right\| < \varepsilon/2^i < \varepsilon.$

So, now fix $n > n_0$. Set $d_1 = \{i : 1 \le i \le m, n(t_i) \ge n\}$ and $d_2 = \{i : 1 \le i \le m, n(t_i) < n\}$, and note $\mathcal{D}_1 = \{(I_i, t_i) : i \in d_1\}$ is γ_n -fine by the definition of γ . Set $I = \bigcup \{I_i : i \in d_1\}$. We have, using Henstock's Lemma,

$$\begin{aligned} \left\| \int_{\mathbb{R}} F_n - S\left(F_n, \mathcal{D}\right) \right\| &\leq \\ &\leq \left\| \int_{I} F_n - S\left(F_n, \mathcal{D}_1\right) \right\| + \left\| \sum_{i \in d_2} \sum_{j=1}^n \left\{ \int_{I_i} f_j - f_j\left(t_i\right) \ell\left(I_i\right) \right\} \right\| \quad (1) \\ &\leq \varepsilon/2^n + \left\| \sum_{i \in d_2} \sum_{j=1}^{n(t_i)} \left\{ \int_{I_i} f_j - f_j\left(t_i\right) \ell\left(I_i\right) \right\} \right\| + \\ &+ \left\| \sum_{i \in d_2} \sum_{j=n(t_i)+1}^n \int_{I_i} f_j \right\| + \left\| \sum_{i \in d_2} \sum_{j=n(t_i)+1}^n f_j\left(t_i\right) \ell\left(I_i\right) \right\| \\ &< \varepsilon + T_1 + T_2 + T_3, \end{aligned}$$

with obvious notation for the T_i .

First, we estimate T_3 :

$$T_{3} \leq \sum_{i \in d_{2}} \left\| \sum_{j=n(t_{i})+1}^{n} f_{j}(t_{i}) \right\| \ell\left(I_{i}\right) \leq \sum_{i \in d_{2}} \varepsilon \varphi\left(t_{i}\right) \ell\left(I_{i}\right) = \varepsilon S\left(\varphi, \mathcal{D}_{2}\right) \leq \varepsilon,$$

where $\mathcal{D}_2 = \{(I_i, t_i) : i \in d_2\}$. Next,

$$T_{2} = \sup \left\{ \left| < x', \sum_{i \in d_{2}} \sum_{j=n(t_{i})+1}^{n} \int_{I_{i}} f_{j} > \right| : ||x'|| \leq 1 \right\}$$

$$\leq \sup \left\{ \sum_{i \in d_{2}} \sum_{j=n(t_{i})+1}^{n} \int_{I_{i}} |x'f_{j}| : ||x'|| \leq 1 \right\}$$

$$\leq \sup \left\{ \sum_{i \in d_{2}} \sum_{j=n_{0}}^{n} \int_{I_{i}} |x'f_{j}| : ||x'|| \leq 1 \right\}$$

$$\leq \sup \left\{ \sum_{j=n_{0}}^{n} \int_{\mathbb{R}} |x'f_{j}| : ||x'|| \leq 1 \right\} \leq \sum_{j=n_{0}}^{n} ||f_{k}||_{1} < \varepsilon.$$

For T_1 , let $s = \max\{n(t_i) : i \in d_2\}$. Then

$$T_{1} = \left\| \sum_{i \in d_{2}} \left\{ \int_{I_{i}} F_{n(t_{i})} - F_{n(t_{i})}(t_{i})\ell(I_{i}) \right\} \right\|$$

$$= \left\| \sum_{k=1}^{s} \sum_{\substack{i \in d_{2} \\ n(t_{i})=k}} \left\{ \int_{I_{i}} F_{n(t_{i})} - F_{n(t_{i})}(t_{i})\ell(I_{i}) \right\} \right\|$$

$$\leq \sum_{k=1}^{s} \left\| \sum_{\substack{i \in d_{2} \\ n(t_{i})=k}} \left\{ \int_{I_{i}} F_{n(t_{i})} - F_{n(t_{i})}(t_{i})\ell(I_{i}) \right\} \right\| \leq \sum_{k=1}^{s} \varepsilon/2^{k} < \varepsilon,$$

by Henstock's Lemma since $\{(I_i, t_i) : n(t_i) = k\}$ is γ_k -fine.

From (1), it follows that $\left\| \int_{\mathbb{R}} F_n - S(F_n, \mathcal{D}) \right\| < 4\varepsilon$ as required, and (i) holds.

Conditions (ii) and (iii) now follow from Theorem 4.

For the McShane integral we have from Theorem 6 a version of the Monotone Convergence Theorem (MCT) for the McShane integral. The conclusion in part (i) strengthens the "usual" conclusions in the MCT (see for example [3, 10.10]).

Corollary 7. (MCT). Let $f_k : \mathbb{R} \to \mathbb{R}$ be integrable for every $k \in \mathbb{N}$ and suppose that $f_k(t) \uparrow f(t)$ for every t. If $\sup\left\{\int_{\mathbb{R}} f_k : k \in \mathbb{N}\right\} < \infty$, then (i) $\{f_k\}$ is uniformly M-integrable, (ii) f is integrable and (iii) $\int_{\mathbb{R}} f_k \uparrow \int_{\mathbb{R}} f$.

PROOF. Set $g_0 = 0$ and $g_k = f_k - f_{k-1}$ for $k \ge 1$. Then $\sum_{k=1}^n g_k = f_n \to f$ pointwise and

$$\sum_{k=1}^{\infty} \int_{\mathbb{R}} |g_k| = \lim_n \sum_{k=1}^n \int_{\mathbb{R}} (f_k - f_{k-1}) = \lim_n \int_{\mathbb{R}} f_k = \sup_k \int_{\mathbb{R}} f_k < \infty.$$

Hence, Theorem 6 gives the result.

Similarly, it was noted by McLeod that the same improvement can be obtained for the Monotone Convergence Theorem for the Henstock-Kurzweil integral ([7, p. 98]; a similar result is obtained by Gordon ([3, 13.18]), but his proof uses Lebesgue integration.

We can use the MCT of Corollary 7 to obtain a similar generalization of the Dominated Convergence Theorem (DCT) for the McShane integral. A

sequence $f_k : \mathbb{R} \to X$ is said to be uniformly McShane or *M*-Cauchy if for every $\varepsilon > 0$ there exists a gauge γ and *N* such that $||S(f_i, \mathcal{D}) - S(f_j, \mathcal{D})|| < \varepsilon$ for $i, j \geq N$ and $\mathcal{D} \gamma$ -fine. As in Theorem 4 of [5], we have

Proposition 8. Let $f_k : \mathbb{R} \to X$ be integrable for every $k \in \mathbb{N}$. Then $\{f_k\}$ is uniformly *M*-Cauchy if and only if $\{f_k\}$ is uniformly integrable and $\lim_{\mathbb{R}} \int_{\mathbb{R}} f_k$

exists.

Corollary 9. (DCT) Let $f_k : \mathbb{R} \to \mathbb{R}$ be integrable for every $k \in \mathbb{N}$ and suppose $f_k \to f$ pointwise. Assume there exists $g : \mathbb{R} \to \mathbb{R}$, integrable and such that $|f_i - f_j| \leq g$ for all i, j. Then (i) $\{f_k\}$ is uniformly integrable, (ii) f is integrable and (iii) $\int_{\mathbb{D}} |f_k - f| \to 0$.

PROOF. Set $t_{jk} = \vee \{|f_m - f_n| : j \le m \le n \le k\}$. For each $j \{t_{jk}\}_k$ is increasing and converges to the function $t_j = \vee \{|f_m - f_n| : j \le m \le n\}$ with $0 \le t_j \le g$. Corollary 7 implies that t_j is integrable and $\int_{\mathbb{R}} t_j \le \int_{\mathbb{R}} g$. Now $0 \le t_{j+1} \le t_j$ and $t_j \to 0$ pointwise so Corollary 7 implies that $\int_{\mathbb{R}} t_j \downarrow 0$.

Let $\varepsilon > 0$. There exists N such that $\int_{\mathbb{R}} t_N < \varepsilon$, and there exists a gauge

 γ such that $\left| \int_{\mathbb{R}} t_N - S(t_N, \mathcal{D}) \right| < \varepsilon$ when \mathcal{D} is γ -fine. If $i, j \geq N$, we have $|S(f_i, \mathcal{D}) - S(f_j, \mathcal{D})| \leq S(|f_i - f_j|, \mathcal{D}) \leq S(t_N, \mathcal{D}) < \int_{\mathbb{R}} t_N + \varepsilon < 2\varepsilon$ when \mathcal{D} is γ -fine. Hence, $\{f_i\}$ is uniformly *M*-Cauchy. It follows from Proposition 8 that $\{f_i\}$ is uniformly integrable and (i) holds.

Conditions (ii) and (iii) follow from Theorem 6.

McLeod obtained a similar improvement in the DCT for the Henstock-Kurzweil integral ([7, p. 98]); Gordon also obtained this result but employed the Lebesgue integral ([3, 13.17]).

Finally, in conclusion it should be noted that the results above are also valid with \mathbb{R} being replaced by \mathbb{R}^n ; only the notation becomes more cumbersome.

If I = [a, b) is a bounded interval, it is straightforward to generalize the Henstock-Kurzweil integral to functions $f : I \to X$. If HK(I, X) is the space of all X-valued Henstock-Kurzweil integrable functions defined on I, then HK(I, X) has a natural semi-norm defined by $||f|| = \sup \left\{ \left\| \int_{a}^{t} f \right\| : a \le t \le b \right\}$ ([6, 11.1]).

<u>Problem</u>: Are there analogues of Theorems 4 and 6 for the Henstock-Kurzweil integral?

The proofs of these results above are not valid for the Henstock-Kurzweil integral. In Theorem 4 McShane tagged partitions were used and the proof of Theorem 6 used the absolute integrability of the scalar-valued McShane integral in estimating T_2 so different techniques would be required.

The referee has observed that the sequence $f_k(t) = (\sin t)/t$ for $1 \le t \le 2k\pi$ and $f_k(t) = 0$ for $t > 2k\pi$ gives a counter-example to Theorem 3 for the Henstock-Kurzweil integral.

References

- J. De Pree and C. Swartz, Introduction to Real Analysis, Wiley, N.Y., 1987.
- [2] D. Fremlin and J. Mendoza, "On the Integration of Vector-Valued Functions," Illinois J. Math., 38 (1994), 127-147.
- [3] R. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, 1994.
- [4] R. Gordon, "The McShane Integral of Banach-Valued Functions," Illinois J. Math, 34 (1990), 557-567.
- [5] R. Gordon, "Another Look at a Convergence Theorem for the Henstock Integral," Real Anal. Exch., 15 (1989/90), 724-728.
- [6] Lee Peng Yee, Lanzhou Lectures on Henstock Integration, World Sci. Publ., Singapore, 1989.
- [7] R. McLeod, The Generalized Riemann Integral, Math. Assoc. Amer., Providence, 1980.
- [8] E. J. McShane, Unified Integration, Academic Press, N.Y., 1983.
- [9] C. Swartz, Measure, Integration and Function Spaces, World Sci. Publ. Singapore, 1994.
- [10] C. Swartz, "Beppo Levi's Theorem for the Vector-Valued McShane Integral and Applications," Bull. Belgian Math. Soc., to appear.