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UNIFORM INTEGRABILITY AND MEAN
CONVERGENCE FOR THE

VECTOR-VALUED MCSHANE INTEGRAL

Abstract

We show that a pointwise convergent, uniformly integrable sequence
of Banach space valued, McShane integrable functions converges in mean.
We also show that uniform integrability holds in a vector-valued gener-
alization of the Beppo Levi convergence theorem.

It has been observed in [3, 4, 5], [7] that uniform integrability for the
Henstock-Kurzweil integral is a sufficient condition to “take the limit under
the integral sign.” In this note we point out that uniform integrability for the
McShane integral is actually a sufficient condition for mean or L1 convergence.
Our methods extend easily to functions with values in a Banach space so we
consider this case where the results give significant improvements to the scalar
case. We also show that the conclusion of the vector-valued generalization
of the Monotone Convergence (Beppo Levi) Theorem given in [10] can be
improved to uniform integrability.

We fix the notation and terminology which will be used in the sequel. It
should be noted that we will work in R whereas the results in [3, 4, 5] are for
compact intervals in R. Let X be a (real) Banach space and let R∗ be the
extended real line with the points ± ∞ added. If f is any function f : R→ X,
we always assume that f is extended to R∗ by setting f(± ∞) = 0.

A gauge is a function γ on R∗ whose value at a point t is a neighborhood
γ(t) of t, where γ (t) is bounded whenever t ∈ R. [A neighborhood of ∞ is
an interval of the form (a,∞]; similarly for −∞.] A partition of R is a finite
collection of left-closed intervals {Ii : i = 1, . . . , n} such that Ii ∩ Ij = φ for

i 6= j and R =
n⋃

i=1

Ii (here we agree that (−∞, a) is left-closed). A tagged

partition of R is a finite collection of pairs {(Ii, ti) : i = 1, . . . , n} such that
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{Ii : i = 1, . . . , n} is a partition of R and ti ∈ R∗; ti is called the tag associated
with Ii. Note that it is not required that ti ∈ Ii; this requirement is what
distinguishes the McShane and the Henstock-Kurzweil integral ([1],[7],[8],[3]).
If γ is a gauge on R∗, a tagged partition D = {(Ii, ti) : i = 1, . . . , n} is γ-fine if

Īi⊂ γ(ti) for i = 1, . . . , n. If D = {(Ii, ti) : i = 1, . . . , n} is a tagged partition

and f : R → X, we write S(f,D) =
n∑

i=1

f(ti)` (Ii) for the Riemann sum of f

with respect to D where ` is Lebesgue measure on R [here we make the usual
agreement that 0 · ∞ = 0].

Definition 1. A function f : R→ X is (McShane) integrable over R if there
exists v ∈ X such that for every ε > 0 there exists a gauge γ on R∗ such that
‖S (f,D)− v‖ < ε whenever D is γ -fine.

The vector v is called the (McShane) integral of f over R and is denoted
by
∫
R f . We refer the reader to [8], [3] for basic properties of the McShane

integral.
Let M (R, X) be the space of all X-valued integrable functions defined

on R; if X = R, we abbreviate M (R,R) = M (R). The space M (R) is
complete under the semi-norm ‖f‖1 =

∫
R |f | ([8, VI.4.3]). We define a semi-

norm on M (R, X) by ‖f‖1 = sup{
∫
R |x
′f | : x′ ∈ X ′, ‖x′‖ ≤ 1}; in general,

‖ ‖1 is not complete ([10]; see [4], [2] for properties of the vector-valued Mc-
Shane integral and its comparison with the Pettis and Bochner integrals).
We describe another semi-norm which is equivalent to ‖ ‖1 and is useful in
estimation. Let A be the algebra of subsets of R generated by the left-
closed subintervals of R; thus, every element of A is a finite, pairwise dis-
joint union of left-closed intervals ([9, 2.1.11]). If f ∈ M (R, X), A ∈ A and
CA denotes the characteristic function of A, then CAf is also integrable and
‖f‖′1 = sup{

∥∥∫
R CAf

∥∥ =
∥∥∫

A
f
∥∥ : A ∈ A} defines a semi-norm on M (R, X)

which is equivalent to ‖ ‖1 ([10]).
We next define uniform (McShane) integrability and show that uniform

integrability implies convergence in ‖ ‖1. A family F of X-valued functions
defined on R is uniformly integrable if for every ε > 0 there exists a gauge γ
on R∗ such that

∥∥S (f,D)−
∫
R f
∥∥ < ε for every f ∈ F and D γ-fine; that is,

the gauge is independent of the functions in F .
For our next theorems we require an important result called the Henstock

Lemma. If D = {(Ii, ti) : i = 1, . . . , n} is any collection of pairwise disjoint,
left-closed subintervals {Ii} and ti ∈ R∗, then D is called a partial tagged

partition of R (it is not required that
n⋃

i=1

Ii = R); if γ is a gauge on R∗, D is

γ-fine if Ii ⊂ γ (ti) for i = 1, . . . , n. We again write S (f,D) =
n∑

i=1

f (ti) ` (Ii).
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Lemma 2. (Henstock) Let f ∈ M (R, X) and ε > 0. Suppose the gauge
γ on R∗ is such that

∥∥S (f,D)−
∫
R f
∥∥ < ε for every γ-fine tagged parti-

tion D of R. If D is any γ-fine partial tagged partition and I =
n⋃

i=1

Ii, then∥∥S (f,D)−
∫
I
f
∥∥ ≤ ε.

See [4] for Lemma 2.

We first establish an interesting preliminary result.

Theorem 3. Let fk ∈ M (R, X) for every k ∈ N. If {fk} is uniformly inte-
grable over R, then

lim
b→∞

∥∥C[b,∞)fk
∥∥′
1

= 0

uniformly for k ∈ N.

Proof. Let ε > 0. There exists a gauge γ with γ (z) bounded for every
z ∈ R such that

∥∥∫
R fk − S (fk,D)

∥∥ < ε when D is γ-fine. Fix such a D =
{(Ii, ti) : 1 ≤ i ≤ m} and assume that I1 = [b,∞), t1 = ∞. If a ≥ b, let A

be an element of A with A ⊂ [a,∞) and A =
n⋃

i=1

Ji, Ji a left-closed interval

and {Ji} pairwise disjoint. Then J = {(Ji,∞) : 1 ≤ i ≤ n} is a γ-fine partial
tagged partition so Henstock’s Lemma implies that∥∥∥∥∫

A

fk − S (fk,J )

∥∥∥∥ =

∥∥∥∥∫
A

fk

∥∥∥∥ ≤ ε.
Since A ∈ A is arbitrary,

∥∥C[a,∞)fk
∥∥′
1
≤ ε for a ≥ b.

We next establish our mean convergence result.

Theorem 4. Let fk : R→ X be integrable for every k ∈ N and suppose {fk}
converges pointwise to f . If {fk} is uniformly integrable, then f is integrable
and ‖fk − f‖1 → 0.

Proof. Let ε > 0. There exists a gauge γ with γ (z) bounded for every z ∈ R
such that

∥∥∫
R fk − S (fk,D)

∥∥ < ε whenever D is γ-fine.

Fix a tagged partition D = {(Ii, ti) : 1 ≤ i ≤ m} which is γ-fine. Since {fk}
is pointwise convergent and fk (± ∞) = 0, there exists N such that k, j ≥ N

implies ‖S (fk,D)− S (fj ,D)‖ =

∥∥∥∥ m∑
i=1

(fk (ti)− fj (ti)) ` (Ii)

∥∥∥∥ < ε. Therefore,
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if k, j ≥ N , we have∥∥∥∥∫
R
fk −

∫
R
fj

∥∥∥∥ ≤ ∥∥∥∥∫
R
fk − S (fk,D)

∥∥∥∥+ ‖S (fk,D)− S (fj ,D)‖

+

∥∥∥∥S (fj ,D)−
∫
R
fj

∥∥∥∥ < 3ε.

Hence, limk

∫
R fk = L exists in X.

We claim that
∫
R f = L. Let E be γ-fine. Pick n0 such that k ≥ n0 implies∥∥∫

R fk − L
∥∥ < ε. As above there exists n1 ≥ n0 such that whenever k ≥ n1,

it follows that ‖S (f, E)− S (fk, E)‖ < ε. Then

‖L− S (f, E)‖ ≤
∥∥∥∥L− ∫

R
fn1

∥∥∥∥+

∥∥∥∥∫
R
fn1 − S (fn1 , E)

∥∥∥∥
+ ‖S (fn1

, E)− S (f, E) ‖ < 3ε

and the claim is established.
For the last statement we may assume that f = 0 since fk−f → 0 pointwise

and {fk − f} is uniformly integrable. With D fixed as above, assume that
I1 = [b,∞) and I2 = (−∞, a) and set I = R \ I1 ∪ I2. Let A be an arbitrary

element of A with A =
n⋃

j=1

Jj , Jj a left-closed interval, {Jj} pairwise disjoint.

Then E = {(Ii ∩ Jj , ti) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is γ-fine so Henstock’s Lemma

implies

∥∥∥∥∥ m∑
i=1

n∑
j=1

{∫
Ii∩Jj

fk − fk (ti) ` (Ii ∩ Jj)
}∥∥∥∥∥ ≤ ε. Hence,

∥∥∥∥∫
A

fk

∥∥∥∥ ≤ ε+

∥∥∥∥∥∥
m∑
i=1

n∑
j=1

fk (ti) ` (Ii ∩ Jj)

∥∥∥∥∥∥ = ε+

∥∥∥∥∥
m∑
i=3

fk (ti) ` (Ii ∩A)

∥∥∥∥∥
≤ ε+ sup

3≤i≤m
‖fk (ti)‖ ` (I) ,

and k can be taken large enough so the last term is less than ε. Since A is
arbitrary, it follows that ‖fk‖′1 ≤ 2ε for large k.

It has been previously observed that f is integrable and uniform integra-
bility of a pointwise convergent sequence {fk} implies that lim

∫
R fk =

∫
R f

([7], [3, 4, 5]). Since ‖ ‖1 and ‖ ‖′1 are equivalent, the conclusion of Theo-
rem 4 implies that lim

∫
A
fk =

∫
A
f uniformly for A ∈ A giving a significant

improvement particularly in the vector-valued result for the McShane integral.
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In [10] we established a convergence theorem for vector-valued McShane
integrable functions which easily implies the Monotone Convergence (Beppo
Levi) Theorem for scalar-valued functions. We now show that the conclusion
of this generalized Monotone Convergence Theorem can be improved from
‖ ‖1-convergence to uniform integrability.

Since we are working over R instead of a bounded interval we need a
preliminary lemma.

Lemma 5. There exists a positive McShane integrable function ϕ : R→ (0,∞)
and a gauge γ (= γϕ) such that 0 ≤ S (ϕ,D) ≤ 1 whenever D is a γ-fine partial
tagged partition.

Proof. Let ϕ be positive with
∫
R ϕ = 1

2 . Let γ be a gauge with
∣∣ 1
2 − S (ϕ,D)

∣∣ <
1
2 whenever D is a γ-fine tagged partition of R. Since ϕ is positive, the result
follows immediately from Henstock’s Lemma.

Theorem 6. Let fk ⊂M (R, X) and suppose
∞∑
k=1

fk = f pointwise with

∞∑
k=1

‖fk‖1 < ∞. If Fn =
n∑

k=1

fk, then (i) {Fn} is uniformly integrable, (ii) f

is integrable and (iii) ‖Fn − f‖1 → 0.

Proof. Let ε > 0. For each n pick a gauge γn with γn(z) bounded for

every z ∈ R such that

∥∥∥∥∫
R
Fn − S (Fn,D)

∥∥∥∥ < ε/2n whenever D is γn-fine. Pick

n0 such that
∞∑

k=n0

‖fk‖ < ε, and for every t ∈ R pick n (t) ≥ n0 such that

k ≥ j ≥ n (t) implies

∥∥∥∥∥ k∑
i=j

fi (t)

∥∥∥∥∥ < εϕ (t), where ϕ and γϕ are as in Lemma 5.

Define a gauge γ on R by γ (t) =

(
n(t)⋂
j=1

γj (t)

)
∩ γϕ (t) for t ∈ R and

γ (± ∞) =

(
n0⋂
j=1

γj (± ∞)

)
∩ γϕ (± ∞) and set n (± ∞) = n0. Suppose D

= {(Ii, ti) : 1 ≤ i ≤ m} is γ-fine. To establish (i), first note that D is γi-fine

for i = 1, . . . , n0 implies that

∥∥∥∥∫
R
Fi − S (Fi,D)

∥∥∥∥ < ε/2i < ε.

So, now fix n > n0. Set d1 = {i : 1 ≤ i ≤ m,n (ti) ≥ n} and d2 = {i : 1 ≤
i ≤ m,n (ti) < n}, and note D1 = {(Ii, ti) : i ∈ d1} is γn-fine by the definition
of γ. Set I = ∪{Ii : i ∈ d1} . We have, using Henstock’s Lemma,
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∥∥∥∥∥∥
∫
R

Fn − S (Fn,D)

∥∥∥∥∥∥ ≤
≤

∥∥∥∥∥∥
∫
I

Fn − S (Fn,D1)

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
i∈d2

n∑
j=1


∫
Ii

fj − fj (ti) ` (Ii)


∥∥∥∥∥∥ (1)

≤ ε/2n +

∥∥∥∥∥∥
∑
i∈d2

n(ti)∑
j=1


∫
Ii

fj − fj (ti) ` (Ii)


∥∥∥∥∥∥+

+

∥∥∥∥∥∥
∑
i∈d2

n∑
j=n(ti)+1

∫
Ii

fj

∥∥∥∥∥∥+

∥∥∥∥∥∥
∑
i∈d2

n∑
j=n(ti)+1

fj (ti) ` (Ii)

∥∥∥∥∥∥
< ε+ T1 + T2 + T3,

with obvious notation for the Ti.

First, we estimate T3:

T3 ≤
∑
i∈d2

∥∥∥∥∥∥
n∑

j=n(ti)+1

fj (ti)

∥∥∥∥∥∥ ` (Ii) ≤
∑
i∈d2

εϕ (ti) ` (Ii) = εS (ϕ,D2) ≤ ε,

where D2 = {(Ii, ti) : i ∈ d2} .
Next,

T2 = sup

{∣∣∣∣∣< x′,
∑
i∈d2

n∑
j=n(ti)+1

∫
Ii

fj >

∣∣∣∣∣ : ‖x′‖ ≤ 1

}

≤ sup

{ ∑
i∈d2

n∑
j=n(ti)+1

∫
Ii

|x′fj | : ‖x′‖ ≤ 1

}

≤ sup

{ ∑
i∈d2

n∑
j=n0

∫
Ii

|x′fj | : ‖x′‖ ≤ 1

}

≤ sup

{
n∑

j=n0

∫
R
|x′fj | : ‖x′‖ ≤ 1

}
≤

n∑
j=n0

‖fk‖1 < ε.

For T1, let s = max{n (ti) : i ∈ d2}. Then
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T1 =

∥∥∥∥∥ ∑i∈d2

{∫
Ii

Fn(ti) − Fn(ti)(ti)` (Ii)

}∥∥∥∥∥
=

∥∥∥∥∥∥∥
s∑

k=1

∑
i

n(ti)=k

{∫
Ii

Fn(ti) − Fn(ti)(ti)` (Ii)

}∥∥∥∥∥∥∥
≤

s∑
k=1

∥∥∥∥∥∥∥
∑
i

n(ti)=k

{∫
Ii
Fn(ti) − Fn(ti)(ti)` (Ii)

}∥∥∥∥∥∥∥ ≤
s∑

k=1

ε/2k < ε,

by Henstock’s Lemma since {(Ii, ti) : n (ti) = k} is γk-fine.

From (1), it follows that

∥∥∥∥∫
R
Fn − S (Fn,D)

∥∥∥∥ < 4ε as required, and (i)

holds.
Conditions (ii) and (iii) now follow from Theorem 4.
For the McShane integral we have from Theorem 6 a version of the Mono-

tone Convergence Theorem (MCT) for the McShane integral. The conclusion
in part (i) strengthens the “usual” conclusions in the MCT (see for example
[3, 10.10]).

Corollary 7. (MCT). Let fk : R→ R be integrable for every k ∈ N and

suppose that fk (t) ↑ f (t) for every t. If sup

{∫
R
fk : k ∈ N

}
< ∞, then (i)

{fk} is uniformly M -integrable, (ii) f is integrable and (iii)
∫
R
fk ↑

∫
R
f .

Proof. Set g0 = 0 and gk = fk − fk−1 for k ≥ 1. Then
n∑

k=1

gk = fn → f

pointwise and

∞∑
k=1

∫
R

|gk| = lim
n

n∑
k=1

∫
R

(fk − fk−1) = lim
n

∫
R

fk = sup
k

∫
R

fk <∞.

Hence, Theorem 6 gives the result.
Similarly, it was noted by McLeod that the same improvement can be

obtained for the Monotone Convergence Theorem for the Henstock-Kurzweil
integral ([7, p. 98] ; a similar result is obtained by Gordon ([3, 13.18] ), but
his proof uses Lebesgue integration.

We can use the MCT of Corollary 7 to obtain a similar generalization of
the Dominated Convergence Theorem (DCT) for the McShane integral. A
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sequence fk : R→X is said to be uniformly McShane or M -Cauchy if for
every ε > 0 there exists a gauge γ and N such that ‖S (fi,D)− S (fj ,D)‖ < ε
for i, j ≥ N and D γ-fine. As in Theorem 4 of [5], we have

Proposition 8. Let fk : R→X be integrable for every k ∈ N. Then {fk} is
uniformly M -Cauchy if and only if {fk} is uniformly integrable and lim

∫
R
fk

exists.

Corollary 9. (DCT) Let fk : R → R be integrable for every k ∈ N and
suppose fk → f pointwise. Assume there exists g : R → R, integrable and
such that |fi − fj | ≤ g for all i, j. Then (i) {fk} is uniformly integrable, (ii)
f is integrable and (iii)

∫
R
|fk − f | → 0.

Proof. Set tjk = ∨{|fm − fn| : j ≤ m ≤ n ≤ k}. For each j {tjk}k is in-
creasing and converges to the function tj = ∨{|fm − fn| : j ≤ m ≤ n} with
0 ≤ tj ≤ g. Corollary 7 implies that tj is integrable and

∫
R
tj ≤

∫
R
g. Now

0 ≤ tj+1 ≤ tj and tj → 0 pointwise so Corollary 7 implies that
∫
R
tj ↓ 0.

Let ε > 0. There exists N such that
∫
R
tN < ε, and there exists a gauge

γ such that

∣∣∣∣∫
R
tN − S (tN ,D)

∣∣∣∣ < ε when D is γ-fine. If i, j ≥ N , we have

|S (fi,D)− S (fj ,D)| ≤ S (|fi − fj | ,D) ≤ S (tN ,D) <
∫
R
tN + ε < 2ε when

D is γ-fine. Hence, {fi} is uniformly M -Cauchy. It follows from Proposition
8 that {fi} is uniformly integrable and (i) holds.

Conditions (ii) and (iii) follow from Theorem 6.

McLeod obtained a similar improvement in the DCT for the Henstock-
Kurzweil integral ([7, p. 98] ); Gordon also obtained this result but employed
the Lebesgue integral ([3, 13.17]).

Finally, in conclusion it should be noted that the results above are also valid
with R being replaced by Rn; only the notation becomes more cumbersome.

If I = [a, b) is a bounded interval, it is straightforward to generalize the
Henstock-Kurzweil integral to functions f : I → X. If HK (I,X) is the space
of all X-valued Henstock-Kurzweil integrable functions defined on I, then

HK (I,X) has a natural semi-norm defined by ‖f‖ = sup

{∥∥∥∥ t∫
a

f

∥∥∥∥ : a ≤ t ≤ b
}

([6, 11.1]).

Problem: Are there analogues of Theorems 4 and 6 for the Henstock-
Kurzweil integral?
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The proofs of these results above are not valid for the Henstock-Kurzweil
integral. In Theorem 4 McShane tagged partitions were used and the proof
of Theorem 6 used the absolute integrability of the scalar-valued McShane
integral in estimating T2 so different techniques would be required.

The referee has observed that the sequence fk(t) = (sin t)/t for 1 ≤ t ≤ 2kπ
and fk(t) = 0 for t > 2kπ gives a counter-example to Theorem 3 for the
Henstock-Kurzweil integral.
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