Real Analysis Exchange
Vol. 23(1), 1998-99, pp. 161-174

Jakub Jasinski and Ireneusz Rectaw] Mathematics Department, University of
Scranton, Scranton, PA 18510-2192 e-mail: jsj303@tiger.uofs.edu

RESTRICTIONS TO CONTINUOUS AND
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FUNCTIONS

Abstract

We compare some of the restriction properties that can be found
throughout the literature. For example, theorem 10 is a common gener-
alization of three theorems: Blumberg’s theorem [2], Baldwin’s strength-
ening of Blumberg’s theorem [1], and a related Brown-Prikry’s result [8]
on Marczewski’s (s)-measurable functions.

1 Introduction

In 1922 Blumberg [2] proved that for every function f : R — R there exists
a dense set X C R, such that f|x is continuous. Since then many similar
results involving domains and codomains other than R were obtained. Also
many papers can be found, where “continuous” was changed to “differentiable”
or “pointwise discontinuous” (i.e., f : X — R is pointwise discontinuous
(abbreviated PWD) if {x € X : f is continuous at z} is dense in X, see [10]
p.105). For a recent comprehensive account of these results see [6]. In this
note we would like to compare some restriction properties of real functions
defined on separable metric spaces. R is the set of all real numbers and Q is
the set of rationals. For a set S and a cardinal &, [S]® = {S" C S :|5'| = k}.
If #FCP(S)and S’ C S, then Flg ={FNS :FeF}If Fi,Fo CP(9),
then Fy A Fo ={F) A Fy: F; € F;, for i = 1,2}. Unless stated otherwise, X
will always denote an uncountable, separable metric space, J will be a proper
o-ideal on X, and A will be a o- algebra of subsets of X.

Our goal is to show that given a space X, o-algebra A, and a o-ideal
J then for every A—measurable function f : X — R there exists a “large”
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set W C X such that the restricted function f|y is continuous or pointwise
discontinuous. The following six different notions of largeness associated with
an ideal J can be found in restriction theorems stated in [6], [5], [1], [8], [14],
and other papers. W is a subset of X.

W is non-J dense in X (D)
v pY

W is non-J dense in W (DI) clx (W) is non-J dense in X (WD)

{ N\ +

we¢J (N) clx (W) is non-J dense in clx (W) (WDI )

p v

cx(W) ¢ J (WN)

W is non-J dense in X if WNU ¢ J for every nonempty open subset U C X.
clx (W) stands for the closure of W in X. We shall refer to these properties
using the bold abbreviations in parenthesis. Here is the key: D=non-J7-Dense,
DI=non-7-Dense in I tself, N=Not in J, WN=W eakly Not in J (i.e., not
in J after taking the closure of W), etc. In general all six are different classes
of sets and the above diagram indicates all inclusions.

If £ is one of those properties (i.e. D, DI, ..., WN), we define a Contin-
uous Restriction Property (C-RP) or a PointWise Discontinuous Restriction
Property (PWD-RP) related to £. Namely, a function f: X — R has a £-C-
RP [resp. £-PWD-RP] if there exists a set W € £ such that f|w is continuous
[resp. PWD]. We shall say that a pair (A, J) has a £-C-RP [resp. £-PWD-
RP] if every A -measurable function f : X — R has the same property. (A, J)
has A-£-C-RP [resp. A-£-PWD-RP] if the witness set W can be found in A.

Let B(X) be the family of all Borel subsets of X and let BR(X) be the
family of all sets with Baire property while M(X) is the ideal of all subsets of
X meager in X. So for subsets X; C X, M(X;) is the family of all relatively
meager subsets of X;. We have M(X;) C M(X)|x,. For X CRlet £(X) and
N(X) be the Lebesgue measurable and null subsets of X. Classic theorems
imply that (BR(R), M(R)) has BR(R)-D-C-RP, while the (L(R), N (R)) only
has £(R)-DI-C-RP. (See [8] for more details.)
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2 Continuous Restrictions

For an arbitrary pair (A, J) on a separable metric space X we have the fol-
lowing implications.

D-C-RP
v ¢
DI-C-RP WD-C-RP
T (%) N 1
N-C-RP WDI-C-RP
¢ v
WN-C-RP

Examples of pairs (A, J) indicating that, except for (x), none of these impli-
cations may be reversed, can be easily found.

2.1 A=P(X)

In 1923 W. Sierpinski and A. Zygmund [17] proved that whenever | X| = ¢,
then there exists a function z : X — R such that z|y is not continuous for any
Y € [X]°. This implies that under CH (P(X),J) can not have N-C-RP for
any o-ideal J containing all singletons. Without CH however (P(R), [R]=¢)
as well as (P(R), M (X)) may have D-C-RP. (See [1], [15], and Theorem 2
below.) In ZFC Bradford and Goffman [3] proved that whenever an ideal
J does not contain open sets, then (P(X), J) has WD-C-RP iff X has no
meager open subsets. In general we have the following theorem.

Theorem 1. (P(X),J) has WDI-C-RP.

PRrROOF. Let f: X — R and suppose that (P(X), J) does not have the WDI-
C-RP. By Brown’s theorem 2, [5] p.132, we may assume that there exists a
subset X7 C X, X; ¢ J such that M(X;1) C Jlx,. Take X7 = X3 \ Y{V C
X1 : Visopen in X; and V € J}. We have M(X{) € M(X;) C J and
the last does not contain open subsets of X7. Hence we may apply the above
mentioned Bradford-Goffman theorem, [3] p. 667, to X{ and obtain a dense
subset W C X7, such that f|w is continuous. Clearly clx(W) 2 X; and
whenever U is open in X, UNclx (W) # 0, then UN X| ¢ J by the definition
of X7. O

It is known (see [5], p. 128) that for uncountable separable metric spaces X
and any f : X — R there exists a set W C X such that f|y is continuous and
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|[WNU| > w for every nonempty open set U. Observe that by taking J = [X]=¥

in Theorem 1 above we obtain proposition (C) of [5] and additional property
that clx (W) is uncountably dense in itself.

If J1 and J5 are ideals on a set X and Y C X, then we say that [J; is
orthogonal to Jo on Y if Y = Y, UY5 where Y; € J;, i = 1,2. We write
“J1 L Jo on Y”. Let us consider the following property of a space X and an
ideal J:

X:X1 UX2 where X1 EM(X) and M(Xg)gj (1)

It follows from Theorem 1 of [5] that if open subsets of X do not have property
(1), then (P(X),J) has D-PWD-RP. In this context the following theorem is
somewhat surprising.

Theorem 2. Suppose that X and J satisfy (1) and that J AM(X) on any
open set. Let f : X — R be such that for every Borel set B € B(X)\ J the
restricted function f|p has N-C-RP with respect to J|g. Then f has D-C-RP
with respect to J .

PrOOF. Let X = X3 U X» be a partition as in (1). By enlarging X; to a
Borel meager set we may assume that X, Xy € B(X). Let U = (Up)n<w be
an open basis for X5. Non-orthogonality of J and M(X) on open sets implies
that U, ¢ J. Since U, is Borel in X, by the N-C-RP of f|y, we obtain
sets A, C Up, A, ¢ J such that f|a4, is continuous. Let T,, = {z € U, :
JEopen C Up(z € E and A, NE € J)}. X is separable so T, N A, € J
and cly, (T,)\T, € M(X3) C J. Furthermore, since X; is meager, J and
M(X) are non-orthogonal on U,,. Take V,, = U, \ cly, (T,,) and observe that
C, = A, NV, is nonempty and non-7 dense in V,, for all n < w.

Now let W, = Cy, \ U<, clx (Vi) and W = U,, ., Wi Notice that W,, =
(Va N W)\ Ug<r, clx (Vi). Hence W, are open in W. f|w,, is continuous for all
n < w which implies that f|y is also continuous.

To see that W is non-J dense in X take an arbitrary nonempty open
set T C X. Since X5 is residual in X, Th = X5 N'T contains some Uj. Let
ko = min{k : V;NT5 # 0}. We clearly have Cy,,NT» ¢ J but also Wy, NTs ¢ J
as all sets of the form clx (V) \ Vi are nowhere dense in X5 and are in J by
(1). Naturally WNT ¢ J. O

For separable spaces Shelah’s theorem 1.4, [15], p. 8, gives the following:

Theorem 3. (Shelah [15]) It is relatively consistent with ZFC that for every
function f : 2% — 2% there exists a non-meager subset of A C 2% such that
fla is continuous.

Suppose that X is a complete space. Shelah’s theorem 3 implies that
whenever B ¢ M(X) is a Borel subset of X,, then there exists a set A €
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P(B)\M(B) such that f| is continuous. Theorems 3 and 2 yield the following
fact.

Corollary 4. It is consistent that for any complete space (or a Borel subset
of a complete space without open meager sets) X the pair (P(X), M(X)) has
D-C-RP.

Remark 1. It is worth noting that ideals which are ccc in Borel sets have
property ( 1). Suppose that J is any ccc in Borel sets ideal on X (i.e. B(X)\J
does not contain uncountable pairwise disjoint subfamilies) and suppose that
M(X) ¢ J. Let XY € M(X)\ J be Borel. For an ordinal « try to find a
set Xi* € B(X \ Up, X2)Nn (M(X)\ J). By the cce property this attempt
must fail after ap < wy steps. Sets X3 = J X® and X5 = X \ X; have
the desired properties.

a<ag

Corollary 4 shows that CH can not be eliminated from Theorem 1 of [5].
Namely in Shelah’s model (P(R), M(R)) has D-C-RP (in particular it has
D-PWD-RP) and R does not satisfy condition (B’) of [5] with property P=
M(R).

2.2 A-Measurable Functions

Now we would like to prove a theorem similar to 2 without assuming (1). To
compensate for that we are going to work with A-measurable functions and
assume A-N-C-RP of f|4 for all A € A\ J i.e., assume that there exists a set
B € A|4\ J such that f|g is continuous. Following Bradford and Goffman
[3] (see also [13]) we introduce the following definitions: Let F C X, and let
x € X. Then z is non-J relative to FE if for every open V > x we have
EnNV ¢ J. z is J-heavy relative to E if there exists an open set U 5 = such
that all y € U are non-J relative to E. The first two lemmas are straight
forward generalizations of Lemmas 2 and 3 of [3].

Lemma 5. Any subset E C X can be written as a disjoint union of sets
E = AU By U By such that all members of A are J-heavy relative to E,
B1 € J, and By is nowhere dense in X.

PROOF. Let us define By ={x € E: Upe, CX €U & (UNE) e J}
X is separable. Hence B; € J. Now let Bo = {z € FE : x is non-J but not
J-heavy relative to E'}. Take an arbitrary open set T C X and let z € BoNT.
Since z is not J-heavy, there exists y € T which is not non-7 relative to E.
So there exists an open neighborhood V' of y such that ENV € J. We must
have V' N By = (), which shows that B is nowhere dense. Clearly points of E
that are not in By nor By are J-heavy. O
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For f: X — R we define
Hy(X,J) ={r € X : V«Kopen 2 f(x)(x is J-heavy relative to f~1(K))} (2)

Properties of Hy(X,J) were studied by Piotrowski [13] in a more general
context.

Lemma 6. Let f: X — R. There exist sets By € J and By € M(X) such
that Hy(X,J) = X \ (B1 U Ba).

PROOF. Let (Gy)n<w be an open basis in R and let S,, = f~1(G,) = A" U
BT U By where the last union is like in lemma 5. Take By = |J,,,, B and
By = ,,«., BY. Now select an arbitrary x € X \ (B; U B) and an open set
K > f(x). Find n < wsuch that G,, € K and f(z) € G,,. x is J-heavy relative
to S, so in particular it is J-heavy relative to the bigger set f~!(K). For the
other inclusion take K = G,,, n < w and it follows immediately. O

For any ideal J on a metric space X we define J* to be the o-ideal
generated by J and M(X). The next lemma is easy to verify.

Lemma 7. Let Z be a separable metric space and let J be an ideal on Z with
TAM(Z) on any open set. If U C Z is open and V C U is non-J* dense in
U,, then J AM(V) on any open subset of V.

Lemma 8. Let Z be a zero-dimensional separable metric space. Assume that
J is a o-ideal and A O J UB(Z) is a o-algebra on Z. Suppose that an A
-measurable function f:Z — R and Y € A are such that

1) JAM(Z) on any open subset of Z
2) Y is non-J dense in itself

5) Y CHY(2,57)

4) fly is continuous

5) VAe A\J3B € Ala\ T f|B is continuous.

If e > 0, then there exist pairwise disjoint open subsets U = (Up)n<w Of
Z and subsets Y,, CV,, CU,, Y, € A such that

6) diam(U,) < ¢
7) UU is dense in Z
8) Vi, are non-J* dense in U,
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9) Y, are non-J dense in itself
10) fly, is continuous
1) Y CU 0, Ya
12) Y, CH{(V,,J%)
13) |f(x) — f(2')] < € whenever z,x’ € V,, for some n < w.

PROOF. We shall first define the even numbered sets U,,, V,,, and Y,, to satisfy
condition 11) and then define the odd numbered ones to satisfy 7). Select
y € Y. By 3) there exists an clopen neighborhood U, of y with diam(U,) < ¢
such that

F! <(f(y) - % Fly) + ;)> is non-7* dense in U (3)
4) implies the existence of a clopen set U,/ > y such that |f(z) — f(2")| < 5
whenever x, 2’ € Y NU,/. Let U, = U, N U,’ and observe that

3

YU, € FHFW) - 5. 7@ +3) (4)
Then (Uy)y ey is a clopen cover of Y. There is a countable set {y,, : n < w} C
Y such that (Uy, )n<w is a subcover of Y. Set G,, = Uy, \ Uy<, Ur. Then
(Gn)n<w is a disjoint open cover of Y and by possibly deleting some sets we
may assure that G,, NY # ) for all n < w. For each n < w we put Us, = G,,,
Vo = U2 N fﬁl((f(an) - %7f(y2n) + %)); and Y3, = U, NY.

Assumption 2) implies that Y, is non-7 dense in itself. 4) gives continuity
of fly,, . Inclusion (4) shows that

and condition (3) implies that V3, is non-J* dense in Us,,. Since (G, )n<., Was
a cover of Y, the union |J,,_,, Y2, = Y. 13) follows from the definition of Va,.
Hence we have verified all conditions except 7) and 12). While 7) will be taken
care of by the odd U,-s, 12) for even indices follows from the following claim

Claim: Y5, C Hf(Vay,J*) for all n < w.

Let x € Ys, and let K 5 f(z) be an open subset of R. Take K1 = K N
(f(an) - %af(an)+ %) By (5) f(x) € (f(y2n) - %>f(y2n)+%>v S0 f(SL‘) € K.
By the assumption 3) there exists an open subset U C Z such that f~1(K;)NU
is non-J* dense in U. It follows that f~'(K;) N U N G, is non-J* dense in
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U=Un G,. But since f~1(K;) N G, is a subset of V5, we obtain that
FUEK) N Vo N U is non-J* dense in U. Thus = € Hy¢(Vap, T%).

To define the odd U,, 2 V,, 2 Y,, we proceed as in lemma 4 of [3]. Let R =
{za s a < Kk} for some x < ¢ be a well-ordering of Hy(Z \ cl.(U, <., U2n), T¥)-
Orthogonality of J and M(Z) on every open set and lemma 6 imply that R is
dense in Z\ cl.(U,,., U2n)- Suppose that we have defined sets U}, 2 V/, 2 Y,
for all & < B < wy. Let zg, be the first element of RN Z \ cl,(U Uz, U
Ua<p Uw)- Let Ul be a neighborhood of zg, disjoint from cl.(U, ,, Uz2n U
Ua<p Un), of diameter less than e, and such that Vi = f~1(f(25,) =5, f(25,)+
5) N U is non-J* dense in Uj. It follows from Lemma 6 that Hy(Vj, J*)
contains a subset A € A\ J. By assumption 5), there exists a non-J dense
in itself subset Y € Ala \ J such that f|y, is continuous.

After countably many steps, say v < wi, the choice of z,, will no longer be
possible and this is when (J, ., U, will becomes dense in Z \ cl.(U,,,, U2n)-
It suffices to renumerate sets U’,, V! and Y, a < v as Uspt1, Vont1, and
Y2n+1, n < w. O]

n<w

Lemma 9. If A contains all Borel subsets of X and an A-measurable function
f:X — R has N-C-RP with respect to J, then it also has A-N-C-RP with
respect to the same ideal.

PROOF. Suppose that W € P(X) \ J is such that f|w is continuous. There
exists a G5 subset G C X and a continuous function g : G — R such that
flw C g, see [9]. Since the difference f|g — g is also A -measurable, the set
Wi = (fle — g)~1({0}) is in ANJ. Clearly f|w, is continuous. O

Theorem 10. Let X be a separable metric space and let J a o-ideal on X,
T AM(X) on every open set. Suppose that A D J UB(X) is a o-algebra on
X. If f: X - R is A-measurable and f|a has N-C-RP whenever A € A\ J,
then f has A- D-C-RP.

ProOOF. Without loss of generality we may assume that X is zero-dimensional.
(It suffices to remove a meager set to assure that.) Let A = w<¥\ {@}. We
construct three trees of subsets of X : (U;)rea, (Vi )rea , and (Y7 ) ea.

Claim. There exists an A-measurable non-7 dense in itself subset Y C
H;(X,J*) such that f|y is continuous.

A D JUB(X) and Lemma 6 applied to J* imply that Hf (X, J*) € A\J*.
fla;(x,7+) has N-C-RP so there exists a set Y’ C H;(X,J*), Y’ ¢ J such
that f|y+ is continuous. Since A O B(X), Lemma 9 may be used to extend Y’
to a subset of Hy(X,J*), Y" € A such that f|y is still continuous. Define
Y =Y'\{z €Y”:3E Copen X(x € Eand ENY" € J)}. Y € Ais
nonempty because X is separable and non-7 dense in itself.
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To obtain the first level of the three trees apply Lemma 8 with Z = XY =
Y, and € = 1. Now let k& > 0. To obtain sets (Urn)rcwr news (Ven)rews news
and sets (Yr-n)rewk news from level k + 1 we apply Lemma 8 for each 7 € w”
with Z=V,,Y =Y, and ¢ = #1- Then simply put Uy, = Uy, Viry =
Vyn, and Y;~, = Y, where U,, V,, and Y,, are from the Lemma and satisfy
conditions 6)-13). Observe that the assumption 1) is preserved from one step
to another due to Lemma 7.

Now let W' = Upcy, Ureor Yr- It is easy to see that for every k € w the
union (J .« Ur is dense in X. To show that W is non-J dense in X let T' be
a nonempty open subset on X. Due to decreasing diameters of U, there exists
ak € wanda T € wk such that U, C T. This implies that TNW 2 Y, ¢ J.

It suffices to verify that f|w is continuous. Let € W. For almost all k € w
there exist sequences 7 € w® such that x € ;. Y, C V. NW and V> N W is

open in W with diam(f(V;)) < 1. O

The following applications illustrate the strength of theorem 10.

Corollary 11. (H. Blumberg [2]) If X is a Baire space, then (P(X),{0}) has
D-C-RP.

PRrROOF. Apply Theorem 10 with A = P(X) and J = {0}. O

Let w < k < c. It is well known (see [16]) that if X € [R]* and f: X — R,
then, under Martin’s Axiom, there exists a set Y € [X]® such that f|y is
continuous. Theorem 10 gives the following.

Corollary 12. (S. Baldwin [1]) Assume Martin’s Aziom. Let w < K < ¢,
cf (k) > w. Suppose that X C R contains no meager open subsets and f : X —
R. Then (P(X),[X]<*) has D-C-RP.

Proor. Clearly, under Martin’s Axiom [X]|<® XM (X) on every open set.
Apply theorem 10 with A = P(X) and J = [X]<". O

A set S C X is called (s)-measurable if for every perfect set P C X there
exists a perfect subset P’ C P such that either PN S =0 or P’ C S. (sp) is
the ideal of hereditarily (s)-measurable sets. It is well known (see Marczewski
[11]) that whenever X is complete, then f : X — R is (s)-measurable iff
for every perfect set P C X there exists a perfect subset Q C P such that
flo is continuous. It follows that f is (s)-measurable iff f|4 has (s)-N-C-RP
whenever A € (s)\ (sg). The following corollary follows from the more general
theorem 3 of [8]:

Corollary 13. (Brown and Prikry [8]) If X is a complete space without iso-
lated points, then ((s),(so)) has (s)-D-C-RP.
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PRrROOF. It is well known that (so)AM(X) on any open subset of X and that
(s) contains all Borel subsets. Theorem 10 completes the proof. O

3 PWD Restrictions

Now we would like to look at the diagram of pointwise discontinuous restriction
properties.

D-PWD-RP
(1) N (2)

DI-PWD-RP WD-PWD-RP
+(3) N(4) +(5)
N-PWD-RP WDI-PWD-RP
N (6)  (7)
WN-PWD-RP

Clearly for any class £ the £-C-RP implies the corresponding £-PWD-RP. In
addition to that, the following properties are equivalent.

¢ WD-C-RP <= WD-PWD-RP
¢ WDI-C-RP <= WDI-PWD-RP

¢ WN-C-RP <= WN-PWD-RP

Hence, we are going to focus on the left side of the diagram. The original
Blumberg’s theorem [2] implies that (P(R), J) has WD-C-RP for any ideal J
without open sets. The following theorem shows that WD-C-RP# N-PWD-
RP ((4) can not be turned by —90°).

Theorem 14. Let J = {MUC : M € M(R) and C € [R]~‘}. Then (P(R), J)
does not have the N-PWD-RP.

PROOF. Let z : R — R be the Zygmund-Sierpinski function [17]. Let A C R
and suppose that G = {x € A : z|4 is continuous at x} is dense in A. Since G
is a relative G 5 subset of A, A\ G € M(A) C J. z is the Zygmund-Sierpinski
function; so G € [A]<¢ C J. It follows that A € J.
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Example 15. Implication (1) can not be reversed. Let K C R be a nowhere
dense perfect set. Take X = KUQ and J = [X|=%. X = Un<w Xn where X,
are pairwise disjoint and nowhere dense in X. Assume X; = K. Let f : X — R,
f(z) = n for x € X,. Well known arguments (see [3] p. 667) shows that
(P(X),J) does not have D-PWD-RP. On the other hand (P(K), [K]=“) has
D-PWD-RP (see [4]); so (P(X),J) has DI-PWD-RP.

Remark 2. Assume that J contains all singletons. Under CH (P(X), J) has
DI-PWD-RP iff it has N-PWD-RP. Suppose that (P(X), J) does not have DI
-PWD-RP. By Brown’s theorem 2 of [5] X = J,,_,, Xn where M(X,) C J.
Take z : X — R to be the Zygmund-Sierpinski function on X. Suppose that
z| 4 is pointwise discontinuous for some A € P(X)\ J. There exists an n < w
such that ANX,, ¢ 7. We can find a set B, A 2 B 2 AN X, such that z|p is
PWD and |B\ (AN X,)| <w. The set G = {x € B : z|p is continuous at x}
is a dense G5 in B. Hence B\ G € M(B) C J. Since B ¢ J, |G| > w which
contradicts the Zygmund-Sierpinski property under CH.

4 Baire, Lebesgue, and Other Measurable Functions

If A is the Baire, Lebesgue, universally measurable, or other classic o-algebra
of sets, then restriction properties for (A, J4), where J4 is the ideal of sets
hereditarily in A, are discussed in [8]. Here we look at restriction properties
for A with arbitrary ideals J other than J4.

If X is meager on itself, then BR(X) = P(X) and this case has been
discussed above. It follows from a well known theorem of Nikodym [12] that if
X does not contain nonempty meager open subsets, then (BR(X), M(X)) has
BR(X)-D-C-RP. Using the same technique we can show that (BR(X)AJ, J*)
has (BR(X) A J)-D-C-RP as long as J AM(X) on every open set. It remains
to examine pairs (BR(X),J) where J L M(X). In such case there exists a
nowhere dense set F' ¢ 7. It is easy to find a discrete set D C X \ F, such that
clx (D) D F. This last observation may be applied in a more general situation
and yields the following facts.

Proposition 16. If M(X) ¢ J, then the pair (P(X),J) has BR(X)-N-
PWD-RP.

Corollary 17. (BR(X),J) has N-PWD-RP for any o-ideal J .

In general N-PWD-RP is the best restriction property that we can hope
for (BR(X),J) where J 1 M(X).

Example 18. Let X = R = PUS where P is some nowhere dense perfect set.
Let MC(P) ={P'UP" : P' € M(P) and P" € [P]<‘}. Define J = {P'US":
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P" € MC(P) and S" C S}. Clearly M(X) L J on X. (BR(X),J) does not
have DI-PWD-RP because of the following BR (X )-measurable function

0 if zes8
f(x):{ z(x) if xe€P,

where z is the Zygmund-Sierpinski function on P. If W was a non-J dense
in itself, then W C P. If f|w was PWD, then the set G = {z € W : flw is
continuous at z} is a dense G 5 subset of W so W\ G € M(P). This implies
that G ¢ J and in particular |G| = ¢, but that contradicts the Zygmund-
Sierpinski property.

From Proposition 16 we easily obtain

Corollary 19. If X has positive outer measure, then (P(X),N (X)) has N-
PWD-RP.

Here also no stronger restriction property is provable due to Example 18.
Corollary 19 also follows from Theorem E of [7] on points of differentiability.
More couterexamples for other o-algebras follow from the next theorem.

Theorem 20. Let A be a o-algebra of subsets of R and assume that there
exists a set X ¢ MC = {MUC : M € M(R) and C € [R]<‘} such that
P(X) C A. If we define MCx = {ACR: ANX € MC}, then (A, MCx)
does not have the N-PWD-RP.

Proor. Follow Example 18 with P = X. O

Corollary 21. There exists a o-ideal J on R such that (L(R),J) does not
have N-PWD-RP.

PRrROOF. Use Theorem 20 with X being a second category measure zero set. [

Corollary 22. Assume CH. If A is one of the following o-algebras: (s) -
measurable, universally measurable, or B(R) AUN(R) ={BA N : B € B(X)
and N is universally null}, then there exists a o-ideal J such that (A, J) does
not have the N-PWD-RP.

Proor. Use Theorem 20 with X being a Lusin set. O

Remark 3. In the random real model (B(R) AUN(R),J) has N-PWD-RP
for all 7. Recall that in this model UN(R) C [R]=%* C M(R). It follows that
B(R) AUN(R) C BR(R) and Corollary 17 implies N-PWD-RP.

The authors are very grateful to Zbyszek Piotrowski for interesting dis-
cussions. We also would like to thank Jack Brown. His comments eliminated
several errors and clarified some of our proofs.
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