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CHARACTERIZATIONS OF VB*G N (N)

Abstract

We introduce the condition (PAC™) that is a slight modification
of the condition (PAC) of Sarkhel and Kar [10]. The main result is
Theorem 4: A function f : [a,b] — R is VB*G N (N) on a subset
E of [a,b] if and only if f € (PAC*) on E. Consequently, the set
{f :]a,b] = R: f € VB'"GN(N) on E} is an algebra, whenever E
is a subset of [a,b]. Using Theorem 1, we find seven characterizations
of VB*G N (N) on a Lebesgue measurable set (Theorem 5). We also
give fifteen characterizations of the class of AC™G functions on a closed
set E, that are continuous at each point of E (Theorem 6). In the last
two sections, using Thomson’s outer measure So-i5, we characterize a
VB*GN(N) function f on a Lebesgue measurable set (Theorem 9). As
a consequence we obtain that: A function f : [a,b] = R is AC*G on a
closed subset E of [a,b] and continuous at each point of E if and only if
So-15(Z) = 0 whenever Z is a null subset of E (Theorem 10).

1 Introduction

The purpose of this paper is to give some characterizations of VB*G N (N) on
an arbitrary real set.

In [10], Sarkhel and Kar introduced the class (PAC) (Definition 4), show-
ing that it is equivalent to the class [VBG] N (N) on a closed set. In [5] we
show that the class (PAC)G (generalized (PAC)) is equivalent to VBGN(N)
on an arbitrary set. In this paper, we introduce the condition (PAC*), that
is a slight modification of (PAC). (We replace expressions like |f(a) — f(b)]
by the oscillation of the function f on the interval [a,b].) Clearly the class
(PAC™) is contained in (PAC). Thus we obtain the main result: A function
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fila,b] > Ris VB*GN(N) on a subset E of [a,b] if and only if f € (PAC*)
on E (see Theorem 4). Consequently, the set {f : [a,b] = R: f € VB*GN(N)
on E} is an algebra, whenever E is a subset of [a,b] (Corollary 3).

In Theorem 1 we obtain the following result. A function f : [a,b] — R is
VB*G on a Lebesgue measurable subset E of [a,b] if and only if it is so on
any null subset of E.

As a consequence of Theorems 1 and 4, we find seven characterizations of
VB*G N (N) on a Lebesgue measurable set (Theorem 5).

In Theorem 2 we obtain the following result. A function f : [a,b] — R is
AC*G on a Lebesque measurable subset E of [a,b] if and only if it is so on
any null subset of E.

Using Theorems 1 and 2, we find fifteen characterizations of the class of
AC*@G functions on a closed set F, that are continuous at each point of F
(Theorem 6).

In the last two sections we study the relationship between Thomson’s outer
measure So-py and VB*G N (N) on a Lebesgue measurable set. In Theorem
8 we obtain that: If f : [a,b] = R is VB*G and continuous at each point
of a set A C [a,b], then m*(f(A)) = 0 if and only if So-ps(A) = 0. Using
this theorem we obtain again that the set {f : [a,b] = R: f € VB*G N (N)
on E} is an algebra, whenever E is a subset of [a,b] (Corollary 7), as well
as the following characterization. A function f : [a,b] — R is VB*G N (N)
on a Lebesgue measurable subset E of [a,b] if and only if there is a countable
subset E1 of E such that So-puf(Z) = 0 whenever Z is a null subset of E'\ E;
(Theorem 9).

As a consequence of Theorem 9, it follows that: A function f : [a,b] — R is
AC*G on a closed subset E of [a,b] and continuous at each point of E if and
only if So-pf(Z) = 0 whenever Z is a null subset of E (Theorem 10). Using
different techniques, this result was obtained before in [3], [4], and rediscovered
by Bongiorno, Di Piazza and Skvortsov in [1].

2 Preliminaries

We denote by m*(X) the outer measure of the set X and by m(A) the Lebesgue
measure of A, whenever A C R is Lebesgue measurable. For the definitions of
VB, AC, AC*, VB* and Lusin’s condition (INV), see [8].

Definition 1. Let E be a real compact set, ¢ = inf(FE), d = sup(F) and
f:E — R. Let {(ck,dr)}r be the intervals contiguous to E and let fg :
[c,d] = R, fr(z) = f(z) if z € E, fg is linear on each [y, di].
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Definition 2. ([9]). A sequence {E,} of sets whose union is F is called
an E- form with parts E,; if, in addition, each part E, is closed in E (i.e.,
E, = P, N E, where P, is a closed set; so P, = E,,), then the E-form is said
to be closed. An expanding F-form is called an FE-chain.

Lemma 1. ([10]). For every closed E-form {E,}, there is a closed E-chain

{Qn} such that Q, = Ur<nQkn, where Qrn C Qrm C Ei for all k and for
m >n >k, and d(Qin,Qjn) > 1/n for i # j. (Here d denotes the usual
metric distance.)

Definition 3. Let f :[a,0] @ R, E C [a,b], and c=inf E, d =sup E.

e Put V*(f; E) = sup{d> -, O(f;lai, b;]) : {{a;,b;]}i~; is a finite set of
nonoverlapping closed intervals with endpoints in E} ([8], p. 228).

e fissaid to be VB* on E if V*(f; E) < 400 ([8], p. 228).

e f is said to be VB*G (respectively AC*G, VBG, ACG) on E if there
is an E-form {E,} such that f is VB* (respectively AC*, VB, AC) on
each E,. f is said to be [V B*G] (respectively [AC*G], [V BG], [ACG])
on F if the E-form is closed. Note that AC*G and ACG here differ from
the definitions given in [8], because f is not supposed to be continuous.

o (Krzyzewski) f is said to be increasing™ on E if f(x) < f(y) whenever
c<zxz<y<dand {z,ytNE # (. fis said to be monotone* on E if
either f or —f is increasing® on E ([4], p. 47).

Definition 4. Let Q CR, f: Q - R, EC @Q and r > 0. Then:

o (Sarkhel, Kar, [10]) V(f; E;r) = sup{3_;_; | f(b:)— f(a)| : {[ai, bi] }2y
is a finite set of nonoverlapping closed intervals with the endpoints in £

and Y 1" (bi—a;) < 1}

(Sarkhel, Kar, [10]) V(f; E;0) = inf,~o V(f; E; 7).

(Sarkhel, Kar, [10]) PV(f;E) = inf{sup, V(f; E,;0) : {E,} is an
E-chain}.

(Sarkhel, Kar, [10]) f is said to be (PAC) on E if PV(f;E) = 0.

[PVI(f; E) =inf{>", V(f; En;0) : {E,} is a closed E-form}.

f is said to be [PAC] on E if [PV|(f; E) = 0.
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3 A Characterization of VB*G on a Lebesgue
Measurable Set

Lemma 2. Let f : [a,b] — R and let E be a closed subset of [a,b]. The
following assertions are equivalent.

(i) f is VB*G on E.
(i) f is VB*G on Z, whenever Z is a null subset of E.
PROOF. See Theorem 1.9.1, (i) of [4] and Theorem 7.1 of [§8], p. 229. O

Theorem 1. Let f : [a,b] = R and let E be a Lebesgue measurable subset of
[a,b]. The following assertions are equivalent.

(i) f is VB*G on E.
(i) f is VB*G on Z, whenever Z is a null subset of E.

PROOF. (i) = (ii) This part is always true, even if F is not assumed to be
Lebesgue measurable.

(ii) = (i) Since FE is Lebesgue measurable, there exists an increasing se-
quence of closed sets {Q,} such that Z = E\ (US,Q,,) is of measure zero.
Clearly f € VB*G on Z. By Lemma 2, f is VB*G on each @,. It follows
that f € VB*G on E. O

4 A Characterization of AC*G on a Lebesgue
Measurable Set

Lemma 3. Let f: [a,b] — R and let E be a closed subset of [a,b]. If fig is
continuous, then the following assertions are equivalent.

(i) f is AC*G on E.
(i) f is AC*G on Z, whenever Z is a null subset of E.
PROOF. See Theorem 1.9.1, (iii) of [4]. O

Theorem 2. Let f : [a,b] = R and let E be a Lebesgue measurable subset of
[a,b]. Then the following assertions are equivalent.

(i) f is AC*G on E.
(i) f is AC*G on Z, whenever Z is a null subset of E.



CHARACTERIZATIONS OF VB*G N (N) 575

PRrROOF. (i) = (ii) This is always true (without Lebesgue measurability).

(ii) = (i) By Theorem 1, clearly f is VB*G on E. So f is Lebesgue measurable
on E. By Lusin’s Theorem ([8], p. 72), it follows that there is an increasing
sequence {E,} of closed sets such that Z = E '\ (U2, E,) is a null set and
fig,, is continuous. Clearly f € AC*G on Z. By Lemma 3, f € AC*G on
each E,,. Therefore f is AC*G on E. O

5 The Conditions (PAC*), [PAC*], PAC*

Definition 5. Let f:[a,b] = R, E C [a,b] and r > 0. Put

o V*(fiE;r) =sup{d i, O(f;la;, b)) : {[a:, b}, is a finite set of non-
overlapping closed intervals with endpoints in F and >, (b;i—a;) < r};

o V*(f; E;0) = inf,o V*(f; E;r);

o PV*(f;E) = inf{sup, V*(f; En;0) : {E,} is an E-chain};

o [PV¥(f:E) = nf{S, V*(f; En;0) : {E,} is a closed E-form};
o WH(E) = nf{S, V*(f; Bn;0) : {Ey} is an E-form};

o V**(fiEsr) = sup{d i, |f(b:;) — f(as)| = {{a;, b}, is a finite set of
nonoverlapping closed intervals with > | (b; — a;) < r such that each
[ai, b;] has at least one endpoint in E};

o V¥ (f; E50) = inf,so V**(f; E57) 5

o PV*(f;E) = inf{sup, V**(f; En;0) : {E,} is an E-chain};

o [PV**|(f; E) =inf{d, V**(f; En;0) : {E,} is a closed E-form};

oy (E) =inf{}  V**(f; En;0) : {E,} is an E-form};
Definition 6. Let f :[a,0] = R, E C [a,].

o fissaid to be (PAC*) on E if PV*(f; E) = 0;

o fissaid to be [PAC*] on E if [PV*](f; E) = 0;

o fis said to be PAC* on E if i3 (E) = 0.

o f is said to be (PAC**) on E if PV**(f; E) = 0;

e f issaid to be [PAC**] on E if [PV**](f; E) = 0;



576 VASILE ENE

e f is said to be PAC** on E if u3*(E) = 0.

Lemma 4. With the notations of Definition 5, we have each of the following
assertions.

(i) V*(f; B;r) < 2V*(f; E;r).
(i) V*(f; E;0) < 2V**(f; E;0).
(iii) PV*(f; E) < 2PV**(f; E).
(iv) [PV*](f; E) < 2[PV**](f; E).
(v) wi(E) < 2u7 (E).
Moreover, if f is continuous at each point of E, then
(vi) V**(f; E50) < V*(f; E50);
(vii) PV**(f; E) < PV*(f; E);
(viii) [PV**](f; E) < [PV*](f; E);
(iz) p3*(E) < pj(E).

PROOF. (i) For any finite set of non-overlapping closed intervals {[a;, b;]}™,
with the endpoints in E and Y ., (b; — a;) <,

> O(filaibi]) <> 2 up, ]If(fc) — flai)| <2V (f; Bsr).
i=1 i=1 *E€le0i
(ii),(iii), (iv),(v) follow by (i). B
(vi) Since f is continuous at each point of E, it is easily seen that V*(f;E;r)

=V*(f; E;r) for all 7 > 0. Let V*(f; E;r) < oo. (Otherwise there is nothing
to prove.) Then for € > 0 there is an r > 0 such that

V(fiE;r) =V*(f; E;r) < V*(f; E;0) + €. (1)

Let (c1,d1), (c2,dz), ... be the intervals contiguous to E, if any, and let co =
inf E,dy = sup E. Choose a positive integer ko such that >, (dx —cx) < 7.

By (1), Zk>k00(f? [ck, di]) < V*(f; E;r) < oo. Hence there is a positive
integer n, > ko such that

Z O(f; ew, di]) <e. (2)

k>ng
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By continuity of f at the points of E, there is a § € (0,7) such that

no

SO ler — 8.c +8)) + O(f: [dy, — 8,di +0])) <e. (3)

k=0

Now, let {[a;, b;]}"; be a finite set of non-overlapping closed intervals such
that each [a;, b;] has at least one endpoint in E and Y .-, (b; — a;) < 6.

If a;,b; € E retain [a;,b;]. If a; € E and b; > do, split [a;, b;] into [a;, do]
and [dy, b;], and use
|f(b:) — fa))| < O(f;[ai, do]) + O(f;[do, bi)). If a; € E and ¢ < b; < dy, for
some k > 1 split [a;, b;] into [a;, cx] and [ek, b;], and use

| f(ai) = f(by)] <

O(f;laicr]) + O(f; lew,cr +6]) ifk<ng,
O(f;[ai, cx]) + O(f; e, di)) if k>ng.

If b; € E and a; < co, split [a;, b;] into [co, bs] and [a;, co], and use
I£(0:) — f(ai)|] < O(f;[co,bi]) + O(f;[co — d,¢0]). I b; € E and ¢ < a; < di,
for some k > 1, split [a;, b;] into [dg, b;] and [a;, di] and use

O(f;[dr,bs])) + O(f;[dp — 6,di]) if k <no,

flai) = f(bi)] <
’ ( )’ {O(f, [d—k,bl])+0(f7 [Ck,dk]) if k> ng.

Since Y"1, (bi — a;) < 8 < r, by (2) and (3), it follows that
Z|f )| < V(fsE5r) + 26 + 2.

Hence, by (1), V**(f; E56) < V*(f;
obtain that V**(f; E;0) < V*(f; E;

f; E;0) + 5e. Since € > 0 is arbitrary, we
P B3 0).
(vii), (viii), (ix) follow by (vi). O

Corollary 1. Let f : [a,b] = R, E C [a,b].

(i) If f is (PAC**) (respectively [PAC**]; PAC**) on E, then f is (PAC*)
(respectively [PAC*]); PAC*) on E, and f is continuous at each point
of the set E.

(ii) If f is (PAC™) (respectively [PAC*]; PAC*) on E and f is continuous
at each point of E, then f is (PAC**) (respectively [PAC**]; PAC**)
on the set E.
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PROOF. (i) For the first part see Lemma 4, (iii), (iv), (v). Let o € E and
suppose for example that f € (PAC**) on E (the other two cases are similar).
For e > 0, there exist a sequence of positive numbers {r,} and an E-chain
{E,} such that

V**(f; En;rn) <€ foralln.

Let n, be a positive integer such that xy € E,,,. Clearly for z € [a, D],
|f(x) - f(:ro)| <V**(f;E,, ;rn,) <€ whenever x € (xg — Ty, To+Tn,) -
Therefore f is continuous at xg.

(ii) See Lemma 4, (vii), (viii), (ix). O

6 Characterizations of VB*G N (N) on a Real Set

Theorem 3. Let f,g:[a,b] = R, E C [a,b], a, B € R. The following hold.

(i) PV*(af + Bg; E) < |a|PV*(f; E) + |B|PV*(g; E) . Moreover, if
c=inf B, d =sup B and M = sup,¢. q{|f(2)],]9(z)|} < +oo, then

PV*(f-g;E) < M(PV*(f; E) + PV*(g; E))

and
VA(f-g E) < M(V*(f; E) +V*(g; E)) -

(i) If PV*(g; E) = 0, then PV*(f + ¢; E) = PV*(f; E).
(iti) PV(f; E) < PV*(f; E);
(iv) (Sarkhel and Kar [10]) If m*(E) = 0, then m*(f(E)) < PV(f; E).
(v) If PV*(f;E) < 400, then f € [VB*G] on E.
(vi) PV*(f:E) <3, PV*(f: E,) whenever {E,} is a closed E-form.
(vii) 13 (E) < [PV)(F5 B).
(viii) PV*(f; E) < [PV*](f; E).
(iz) [PV*)(f; E) < 3, [PV*](f; Ev) whenever {E,} is a closed E-form.
(z) w}: P(E) — [0,+0c] is a metric outer measure.

(zi) PV**(af 4+ Bg; E) < |a|PV**(f; E) + |B|PV**(g; E) . Moreover, if
c=infE, d=supE and M = sup,¢[. q{|f(2)],|9(2)]} < +o0, then

PV(f - g; B) < M(PV™(f; E) + PV™(g; E)) -
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(zii) If PV**(g; E) = 0, then PV**(f + g; E) = PV**(f; E) ;

(wiit) p3* (E) < [PV*](f1 E) ;

(ziv) PV (f; E) < [PV*](f; E) ;

(xv) PV**(f;-) : P(E) — [0,+00] is a metric outer measure.

(zvi) [PV**](f; E) < 3, [PV**](f; En) whenever {E,} is a closed E-form.
(zvii) p5* : P(E) — [0,400] is a metric outer measure.

PROOF. (i) We shall use the technique of Theorem 3.1, (i) of [10]. For ¢ >0
there exist two E-chains {A,}, {B,} and two sequences of positive numbers
{r,}, {r,,} such that for all n we have

V*(f; Auir,) S PV'(fiE) + ¢ and V*(g; Busr,) < PV*(g; E) +c.
Let £, =A,NB, and r,, = min{r;, r;;} Then {E,} is an E-chain and

V*(af + Bg; En;0) < V*(af + Bg; En;rn)
< |a|V*(f; Enira) + [BIVF (g5 Ens ra)
< |a|V*(f; Aniry) + BV (g Bui7y)
< |a|PV*(f; E) + |BIPV*(g; E) + €(la] + |B]) -

Therefore
PV*(af + Bg; E) < |a|PV*(f; E) + |B|PV*(g; E) .
We prove the second part. Let a',b' € E, a' <z <y <b. Then
|FW)a(y) — f(@)g(@)| = [9(n)(f(y) — f(x)) + f(2)(g(y) — g(2))] <
< M(If(y) = £(@)| +1g(y) = g(@)]) < M- (O(f5[a’,b]) + Olgs[a’,0]))
Therefore O(f - g; [',b']) < M(O(f;[a’,b']) + O(g; [a,b]). Tt follows that
V(f - 9: En;0) SV (f - g3 Bn;rn) < M(V(f; By n) + V(g5 Eny ) <

< M(V*(f; Eniry) + V*(g; En; 7)) < M(PV*(f; E) + PV*(g; E) + 2¢) .

Therefore
PV*(f-g;E) < M(PV*(f;E)+ PV*(g; E)) .
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Clearly
V(f g E) < M(V*(f; E)+V*(g; E)) .

(ii) We shall use the technique of Theorem 3.1, (ii) of [10]. Since PV*(g; E)
= 0 implies that PV*(—g; E) = 0, we have

PV*(f;E)=PV*(f+9—9;E) < PV*(f +¢;E) + PV*(—g; E)
=PV*(f+g;E) < PV*(f; E)+ PV*(g; E) = PV*([; E).

Therefore PV*(f; E) = PV*(f 4+ ¢; E).

(iii) This is obvious.

(iv) See [10].

(v) There exist an E-chain {E,} and a sequence {r,} of positive numbers,
such that V*(f; E,;rn,) < PV*(f; E) + 1,for all n. For every integer k, let
B = B, N [kT” (k + 1)%@} . Then f € VB* on each E,j. By Theorem 7.1
of [8] (p. 229), f € VB* on E,; so f € VB* on EN E,;. It follows that
f€[VB*G] on E.

(vi) We shall use the technique of Theorem 3.4 of [10]. Let € > 0. For every
k there exist an Ej-chain {Ej,} and a sequence of positive numbers {rg,},
such that V*(f; Exn;mkn) < PV*(f; Ex) + 5 for all n. Now, considering the
closed E-chain {@,} given by Lemma 1 corresponding to the closed E-form
{E.}, and setting H,, = Ug<n(Qkn N Ekyp), it is easy to see that {H,} is
an E-chain. Let r, = min %,rln,rgn,...,rm - If {[ap, b,]} is a finite set
of nonoverlapping closed intervals with the endpoints in H,,, m fixed, with
> (bp —ap) < T, then, since d(Qim, Qjm) > 1/m for i # j, the endpoints of
an interval [a,, by,] must both belong to precisely one of the sets Qrm N Egm,
k=1,2,...,m, and so we clearly have

SO [ap: bpl) < > V(£ Qren N B ) <

k<m

< Z VE(f; Eem; Tem) < Z (PV*(f;Ek) + 2%) .

k<m k<m

Hence V*(f; Himrm) < >, PV*(f; En)+e¢ for all m. Therefore PV*(f; E) <
> PV*(f; E,) + €. But € is arbitrary; so

PV*(f;E) <Y  PV*(f; En).

(vii) This is obvious.
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(viii) Suppose that [PV*|(f;E) = M < 4oo0. (If M = +o0, there is
nothing to prove.) Then for € > 0, it follows that there exist a closed E-form
{E,} and a sequence of positive numbers {r,,} such that Y V*(f;En;ry)
< M + e. By Lemma 1, there exists a closed E-chain {Q,} such that @, =
UR_1Qkn, Qin € Qim C Ey for all k and m > n > k, and

Let p, = min{rl,rg, U Qn} Let {[ap, bp) q:1 be a finite set of nonover-

lapping closed intervals with the endpoints in @Q,, and ZZ:1(bp —ap) < pn-
By (4), both endpoints of an interval [a,, b,] belong to some Q;y,. It follows
that

q n n
Z(’) [ap, b DSZV*(f;Qm;pn)SZV*(f;EZ-;m)<M+e for all n.
p=1

i=1 i=1
Therefore PV*(f; E) < M.

(ix) We may suppose that ) [PV*|(f;E,) < +oo. (Otherwise there is
nothing to prove.) Let € > 0. Then for every positive integer k, there exist a
closed Ej-form {Fj,} and a sequence of positive numbers {ry,} such that

* * €
DV (Fs Brnirin) < [PV Ex) + o -
But {Ekn }k,n is a closed E-form, and

SN VS Brnirin) < e+ Y _[PVII(f1 Ex).
k n k

It follows that [PV*|(f; E) < e+ > [PV*](f; Ex). Since e is arbitrary, we
obtain that [PV*|(f; E) < Z [PV*|(f; Ex) -

(x) Clearly uf(@ = 0 and p} is an increasing set-function, i.e., u3(A) <
p¢(B) whenever A C B C E. As in (ix) we obtain that

1 (UnE) < S (B . (5)

Let Fy, Es be such that d(Fy, E3) = r > 0. Suppose that ,u}(El UEs) < +00.
(If 3 (E1U Ep) = +o0, by (5), it follows that p;(EyUEs) = p}(E1) +p}(E2).)
For € > 0 there exist an E; U Es-form {P,} and a sequence of positive numbers
{rn} such that

ZV*(f;Pn§Tn) < H;(E1 UEQ) + €
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Let Py, = E1 N Py, Py, = B3N P, and p, = min{r,,r}. Fix some n and let
{la;,b;]} be a finite set of nonoverlapping closed intervals with the endpoints
in Py, and S(b; — a;) < pp/2. Let {[a;/, b;»/]} be a finite set of nonoverlapping
closed intervals with the endpoints in P, and Z(b; — a;-l) < pn/2. Suppose

that there exists a;; € [a;, b;] N [a,

1) 71

’ ’

b.]. Then

R
! p " p
d(ai7aij) < ?n and d(aij7bj) < 7";
S0 d(a/» b/‘/) < pn < r, a contradiction. Therefore [a/» b{] N [a;./, b;,/] — ). Hence

STIF®) = Fla)|+ > 1) = f(a))| <V (f; Paipn)-

It follows that V* (f;Pln; ”7") +V* (f;Pgn; %) < V*(f;Pn;pn)- Then

5B + ) < 3V (£:Pmi ) + v (£ P2 )
<D VI3 Paipn) €D VI(f3 Paira) < (B U Es) +e.

Since € is arbitrary and p} is an outer measure, we obtain that p} (E1UEy) =
wi(Br) + pi(E2).

(xi) The proof is similar to (i).

(xii) The proof is similar to (ii).

(xiii) This is obvious.

(xiv) Suppose that [PV**|(f;E) = M < 4oo. (If M = 400, there
is nothing to prove.) For e > 0 there exist a closed E-form {E,} and a
sequence of positive numbers {r,} such that > V**(f;E,;r,) < M + €.
Let @, = U E;. Then {Q,} is a closed E-chain. Fix some n and let
pn = min{ry,rg,..., . Let {[ap,bp]}f):1 be a finite set of nonoverlapping
closed intervals having at least one endpoint in @, and Zgzl(bp —ap) < pp.
It follows that for each n,

q n n
ST = Flap)| S V(i Bizpa) <3V (f1 Eizri) < M +e.
p=1 i=1 i=1
Therefore PV**(f; E) < M.

(xv) Clearly PV**(f;0) = 0 and PV**(f;-) is an increasing set function.
Let {Ex} be an E-form and e > 0. For every k there exist an Ej-chain {Ej,}
and a sequence of positive numbers {r,} such that

Kok Kok €
V**(f; Egn; Tien) < PV (f;Ek)+27, for all n.
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If H, = U}_, Eyy, then {H,} is an E-chain. Let r, = min{ri,,..., 7y} Fix
some m and let {[a,,by]}]_; be a finite set of nonoverlapping closed intervals
having at least one endpoint in H,, and Zfl’:l(bp —ap) < . Then we have

D O 1Fbp) = Flap)l <Y V(s Bemirm) < Y V(s Bromi Thom)
p=1 k=1 k=1
< Z(PV** fiEp) + Z) ZPV** f5 Ex) +
k=1 k=1

Therefore PV**(f; E) < >, PV**(f; Ey,) + €. Since € is arbitrary, we obtain
that PV**(f; E) <>, PV**(f; Ey). That PV**(f; E{UEy) = PV**(f; E1)+
PV**(f; Ey) whenever d(Ey, Ey) =1 > 0, follows as in the proof of (x).
(xvi) The proof is similar to (ix).
(xvii) The proof is similar to (x). O

Lemma 5. Let f : [a,b] > R and E C [a,b], ¢c = infE, d = supE. If
f € VB* on E, then there exists a function F : [a,b] — R having the following
properties.

(i) Fg = [ and F € VB on [a,b].
(ii) O(f;]a, B]) = O(F; o, B]) whenever o, B € E, a < B.

PROOF. Let {(ck,dr)}r be the set of intervals contiguous to E. For every
positive integer k, let ¢ < ap < B < dj, and

Mp= sup f(z), mp= inf f(x).

me[ck,dk] Ee[ck,dk]
Define F': [a,b] = R by

f(o) if x € [a, ]
f(d)y ifzeld,b

f(z) ifzekl
F(z) =

M, if v = ay

mp if x = B

linear on each [ck, ax], [ak, Bkl, [Bk, dk)
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(i) Clearly F|E =f Let Ata=129 <z <...<uz, = Db be a partition
of [a,b]. If, for example, (z;_1,x;) N E # 0, then let 2} | = inf(x;_1,2;,) N E
and y; ; = sup(z;_1, ;) N E. This means that there exists a new partition
Ay of [a,b], finer than A, such that for each component interval I of A; we
have int(I) N E = ), or both endpoints of I belong to E. Therefore

n

VA(F) =Y |F(zi1) = F(x;)] < Va,(F) S V(F;E) + Y V(F; e, di)).-
i=1 k

By Theorem 7.1 of [8] (p. 229), f is VB* on E;so VB on E. But
V(F, [Ck, dk]) < 3O(F7 [Ck, dk]) = 30(f, [C}C, dk])

and >, O(f;[ck,dr]) < 400 (see Theorem 8.5 of [8], p. 232). Therefore
V(F;la,b]) < 400. Hence F E VB on [a,b].

(i) Let « < B, a,8 € E. Then sup,cq g f(2) sup{sup(f([e, B] N

E), My : k is a positive 1nteger such that (cx,dk) C (o, 8)} = sup,epq, g ().
Analogously7 it follows that inf,c(o, g f(2) = infye[q,6) F (7). Thus we obtain
that O(f; [a, B]) = O(F; [, B]).- O

Lemma 6. Let f : [a,b] — R, and let E be a closed subset of [a,b], o € E.
If f e VB* on E, then for every € > 0 there is a § > 0 such that

V(f; EN(zo,z0+9)) <e and V*(f; EN(xg—0,m0)) <e

Moreover, if {I,}n is a sequence of abutting closed intervals with UI,, = (xg —
0,x0) or Ul, = (xg,x0 +0), then Y V*(f; ENI,) <e

PRrROOF. Let F : [a,b] — R be the function given by Lemma 5, and define
Vr : la,b] = R by

0 ifx=a
VF(l‘) =
V(F;la,z]) if z € (a,b]

Clearly Vp is an increasing function on [a,b]. It follows that there exist
Vi(zo—) = ¢~ and Vp(xo+) = ¢T, and that they are both finite. Then
there is a § > 0 such that

Vi ((zo — 6,20)) C (0~ —€,07) and Vp((zo,z0+0)) C (€, 07 +¢).
Let , 8 € (xg,x0 + ) N E. By Lemma 5, (ii). We have
O(f3la, B]) = O(Fs e, B]) < V(Fila, f]) = Vr(B8) = Vr(a).
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Therefore V*(f; EN(zg, xo+0)) < £t +e—0T =€. Cleatly Y, V*(f; ENI,) <

YL V(F; L) =, (Ve(Bn) — Vi(an)) < €, where {I,,},, = {[an, Bn]}n are as
in the hypothesis. O

Lemma 7. Let f : [a,b] = R, E C [a,b]. If f € AC*G on E, then p;(E) = 0.

PROOF. Since f € AC*G on E, there exists an E-form {E,} such that f is
AC* on each E,. Let ¢ > 0. For ¢/2", let r,, > 0 be given by the fact that
f€AC* on E,. Then V*(f; Ep;ry) < €/2™. Hence

PHE) <D V(i Eni0) <Y V*(f;Enira) <e.

It follows that u}(E) = 0. O

Lemma 8. Let f : [a,b] = R, E C [a,b], m*(f(E)) = 0. If there exists an
E-form {Ey,} such that f is monotone* on each E,, then }3(E) = 0.

PROOF. Clearly m*(f(E,)) = 0 for each n. We may suppose without loss
of generality that f is increasing® on each E,. Let € > 0. Then there exists
an open set Gy, = U2 (ans, Bni) such that f(E,) C G, and m(Gy) < €/2™.
Let E,; = {z € E, : f(z) € (@ni, Bni)}- For o, 8 € Eny, o < B, we have
O(f;[a, B]) = f(B) — f(a). It follows that V*(f; Eyni) < Bni — an;. Hence

WHE) < 3V Bni0) < 303 (B — ) <c.

Therefore yi}(E) = 0. O
Lemma 9. Let f : [a,b] = R, f € VB on [a,b]. Consider the curve
C:X(t) =t Y(t) = (1), telab

and let Z = {x € [a,b] : f (z) does not exist (finite or infinite)}. Let S :
[a,b] = R, where S(x) is the length of the curve C on the interval [a,x]. Then
m*(S(Z)) = 0.

PrROOF. Let C;y = {x € [a,b] : f is continuous at x}. Then [a,b] \ Cy is
countable (see [7], p. 219). Let N = Z N Cy. Then m*(S(N)) = 0 (see [8],
pp. 125-126). It follows that m*(S(Z)) = 0. O

Lemma 10. Let f : [a,b] = R, f € VB* on [a,b]. Let Z = {x € [a,b] : f
does not exist, finite or infinite}. Then p}(Z) = 0.
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PROOF. Let S be the function from Lemma 9. Then m*(S(Z)) = 0. Let
e >0 and G = U2, (ay, ), with {(as, Bi)}i a sequence of nonoverlapping
open intervals, such that S(Z) C G, m(G) < € and S(Z) N (e, Bi) # 0. Let
Z;={x e Z:5) € (a,B:)}. Fora < a < p <bwe have that O(f; [, 8]) <
S(B) — S(a) (because S is increasing). It follows that V*(f;Z;) < 5 — a .
Therefore p}(Z) < 32, V*(f; Zi;0) < 32, V*(f; Zi) < >2;(Bi — i) < €. Since
¢ is arbitrary we obtain that u}(Z) = 0. O

Lemma 11 (Bruckner). ([2], pp. 196-197). Let f : [a,b] — R, E C [a,?].
If f € VB*G on E, then there exists a countable set F4 C E such that f is
continuous at each point of E\ E.

Lemma 12. Let f : [a,b] = R, E C [a,b]. If f € VB*N(N) on E, then
py(E) = 0.

PROOF. Let F : [a,b] — R be the function from Lemma 5. By Lemma 5, (ii)
we have that ,u}(E) = ui(E). Let A= {z € [a,b] : F (x) exists and is finite}.
By Lemma 7, p%(A) = 0. Hence p(ANE)=0. Let B={z € E: F (z) =
+oo}. Clearly m*(F(B)) = 0 and there exists a B-form {B,} such that F
is monotone* on each B,, (see the technique of [8], p. 235). By Lemma 8,
we(B) = 0. Let C = {z € [a,b] : F'(x) does not exist, finite or infinite}. It
follows that p5(C) = 0 (see Lemma 10). Hence u}(C' N E) = 0. It follows
that p}.(E) = 0 (see Theorem 3, (x)). O

Lemma 13. Let f : [a,b] - R, E C [a,b] and D = {x € E : f is not
continuous at x}. If f € VB* on E, then:

(i) D is a countable set;

(ii) V*(f;Q;r) < V*(f; E;r) whenever Q is a closed subset of E\ D and
r > 0.

PRrOOF. By Theorem 7.1 of [8] (p. 229), f € VB* on E.

(i) This follows by Lemma 11.

(ii) Let {[a;, b))}, be a finite set of nonoverlapping closed intervals with
the endpoints in @ and >_.", (b; —a;) < r. Since f is continuous at each point
of Q, for € > 0, there exists {[a;, §;]}™, a finite set of nonoverlapping closed
intervals, with the endpoints in E and Z;il(ﬁi — ;) < r, such that

’ € " €
O(féfi)<% and O(féfi)<@7
where I; is the closed interval with the endpoints a;, «;, and Ig/ is the closed
interval with the endpoints b;, 3;. We have four situations.
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If [a;, b5] C [eu, Bi], then O(f;[ai, bi]) < O(f; [e, Bi])-

[Om ﬁz] - [G/M ] then O(f, [CLZ‘, bl]) SO(f, [(Li, CkJ)—‘-O(f, [ah Bz]HO(f, [ﬁ“ bz])
( [041761‘]) + ﬁ
If a; < a; < b; < B, then O(f;[ai, bi]) < O(f;ai, Bi]) < O(f;]as, a;)]) +
(f7 [azaﬁzb (f [auﬁz])—i-Lm.

If ; < a; < B; < by, then O(f; [a“bi]) < O(f; i, bi]) < O(f; e, Bi]) +
O(f;[Bi,bi]) < O(f; [evi, Bi]) + m'

It follows that Y., O(f; [az, bi]) < S+ 20 O(fsas, Bi]) < §+V*(f; Eir) .
Therefore V*(f;Q;r) < § + V*(f; E;r). Since € is arbltrary, we obtain that
VA Qsr) < VA Eir). O

Lemma 14. Let f : [a,b] = R, £ C [a,b]. If f € VB* on E and p}(E) =0,
then [PV*](f; E) = 0. Hence PV*(f;FE) =0.

PROOF. Let € > 0. Then there exist an E-form {F,} and a sequence of
positive numbers {r,} such that >, V*(f; En;7s) < § (because p}(E) = 0).
Since f is VB* on E, it follows that f is VB* on E. Let D = {d,da,...} be
the set of all discontinuity points of f in E. (That D is a countable set follows
by Lemma 13.) By Lemma 6, there exist I,, = (pn,d,) and J,, = (dy, gn) such
that if I,, = Uglnk, Jn = UpJnk and {Lu bk, {Jnk b are nonoverlapping closed
intervals, then

* Fal * - €
S VAHENLy)+ YV (fs BN Ink) < 5o -
k k

Let Q = E\ (Un(Pn,qn)). Then @ is a compact set and f is continuous
at each point of ). Let @, = Q@ N E,,. By Lemma 13, (ii), it follows that
V*(f; Qn;r) < V*(f; En;r). Then

{E N Qn}n U {E N Ink}n,k U {E N Jnk}n,k U {dn}n
is a closed E-form. It follows that
S VHFQuira) + DY VHHENLi)+ Y Y VA EN ) <e
n n k n k
Since V*(f;{d,}) = 0 for each n and e is arbitrary, we obtain that [PV*](f; E)
= 0. That PV*(f; E) = 0 follows by Theorem 3, (viii). O

Corollary 2. Let f : [a,b] = R, E C [a,b]. If f € VB*N (N) on E, then
[PV*](f; E) = 0.
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PrROOF. By Lemma 12, f € VB* on E and p}(E) = 0. Now by Lemma 14 it
follows that [PV*](f; E) = 0. O

Lemma 15. Let f : [a,b] - R, £ C [a,b]. If u}(E) < 400, then f € VB*G
on E.

PROOF. Since pi}(E) < 400, there exist an E-form {E,} and a sequence {r,}
of positive numbers such that >, V*(f; En;rn) < p3(E) + 1. It follows that
V*(f; En;n) < ,u;Z(E) + 1. Consequently, f € VB* on E,, where

Epp = Ey N [k%",(k—irl)%” . k=0,41,42,43, ... .
It follows that f € VB*G on E. O

Theorem 4 (Main Theorem). Let f : [a,b] = R, E C [a,b]. The following
assertions are equivalent.

(i) f€VB*GN(N) on E.
(ii) f € [PAC*] on E.
(iii) f € PAC* on E.

(iv) f € (PAC*) on E.

PROOF. (i) = (ii) By Theorem 7.1 of [8] (p. 229), f € [VB*G]|N(N) on E.
Then there exists a closed E-form {E,} such that f € VB*N(N) on each E,.
By Corollary 2, f € [PAC*] on each E,. By Theorem 3, (ix), it follows that
fe[PAC*] on E.

(ii) = (iil) See Theorem 3, (vii).

(iii) = (ii) By Lemma 15, f € VB*G = [VB*G] on E. Then there is a
closed E-form {E,} such that f € VB* on each E,. But u}(E,) = 0. By
Lemma 14 we obtain that [PV*](f; E,,) = 0. Now by Theorem 3, (ix) we have
that [PV*](f; E) =0. Hence f € [PAC*] on E.

(ii) = (iv) See Theorem 3, (viii).

(iv) = (i) By Theorem 3, (v), f € VB*G on E, and by Theorem 3, (iii)
and (iv), we obtain that f € (N) on E. O

Corollary 3. Let E C [a,b] and A= {f :[a,b] = R : f € VB*GN(N) on
E}. Then A is an algebra.
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PrOOF. Let f,g € A, o, € R. By Theorem 4, (i), (iv) we obtain that
fy,g € (PAC*) on E. Hence PV*(f; E) = PV*(g; E) = 0. By Theorem 3, (i),
PV*(af + Bg; E) = 0; so af + Bg € (PAC*) = VB*G N (N) (see Theorem
4, (i), (iv)). It follows that A is a real linear space. Let {E,},, be an E-form
such that f,g € VB*N(N) on each E,. But f,g € VB* on E,; so f and g are
bounded on each [c,, d,], where ¢, = inf E,,, d,, = sup E,,. By Theorem 4, (i),
(iv), we have that f,g € (PAC*) on E,,. By Theorem 3, (i), PV*(f-g; E,) = 0.
Hence f-g € (PAC*) on each E,, and f-g € VB* on E,. Again by Theorem
4, (i), (iv), it follows that f-g € (N) on each E,; so f-g € VB*G N (N) on
E. O

7 Characterizations of VB*G N (N) on a Lebesgue
Measurable Set

Theorem 5. Let f : [a,b] = R and let E be a Lebesgue measurable subset of
[a,b]. The following assertions are equivalent.

(i) f € VB*GN(N) on E.
(ii) f € [PAC*] on E.
(i) f € PAC* on E.
(iv) f e (PAC*) on E.
(v) f e VB*GN(N) on Z, whenever Z is a null subset of E.
(vi) f € [PAC*] on Z, whenever Z is a null subset of E.
(vii) f € PAC* on Z, whenever Z is a null subset of E.
(viii) f € (PAC*) on Z, whenever Z is a null subset of E.

PRrROOF. By Theorem 4, we obtain that (i) < (i) < (iii) < (iv) and (v) <
(vi) & (vil) & (viii). For (i) < (v) see Theorem 1. O

Theorem 6. Let f : [a,b] — R and let E be a closed subset of [a,b]. The
following assertions are equivalent.

(i) f € AC*G on E and f is continuous at each point of E.
(i) f € VB*GN(N) on E and f is continuous at each point of E.

(iii) f € (PAC*) on E and f is continuous at each point of E.
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(iv) f € [PAC*] on E and f is continuous at each point of E.
(v) f € PAC* on E and f is continuous at each point of E.
(vi) f € (PAC*) on E.

(vii) f € [PAC**] on E.

(viii) f € PAC* on E.

(ix) f € AC*G on Z whenever Z is a null subset of E and f is continuous
at each point of E.

(x) f € VB*GN (N) on Z, whenever Z is a null subset of E and f is
continuous at each point of E.

(zi) f € [PAC*| on Z, whenever Z is a null subset of E and f is continuous
at each point of E.

(zii) f € PAC* on Z, whenever Z is a null subset of E and f is continuous
at each point of E.

(ziii) f € (PAC*) on Z, whenever Z is a null subset of E and f is continuous
at each point of E.

(ziv) [ is [PAC**] on Z, whenever Z is a null subset of E.
(zv) f is PAC*™* on Z, whenever Z is a null subset of E.
(zvi) f is (PAC**) on Z, whenever Z is a null subset of E.

PRrROOF. (i) < (ii) follows by Theorem 8.8 of [8] (p. 233). (ii) & (iii) & (iv)
< (v) follow from Theorem 4. (iii) < (vi), (iv) < (vii) and (v) < (viii) follow
from Corollary 1. (i) < (ix) follows by Lemma 3. (ii) & (x) & (xi) < (xii)
& (xiii) follow by Theorem 5, (i), (v), (vi), (vii), (viii). (xiv) < (xi), (xv) <
(xii) and (xvi) < (xiii) follow from Corollary 1. O

8 Thomson’s Outer Measure S,-fi¢

Definition 7. ([11], pp. 99-101). Let E C [a,b] and let § : E — (0, +00).

o BE) =A{(ly,2;z) : z € [y,2] C (x —0(x),z+d(x)) and x € E} and
A3 ={ly, 2] : (ly, z]; 2) € B3[E]}-

o 55[E] = {(ly,2; ) : 2 € EN{y, 2} and [y, 2] C (x — 6(2),2 +6(x))} and
As ={ly, 2] : (ly, 2], #) € Bs[EN}-
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o A family A of intervals is said to be a S,-cover of E if there exists a
0: E — (0,+00) such that A D As. Clearly As is a S,-cover of E [12].

Definition 8 (Thomson). [12]. Let f : [a,0] = R, E C [a,b]. Let A be a
So-cover of E and § : E — (0, +00). Put

o V¥(f;A) = sup{3 7 [f(bs) — flai)l ¢ {lai,bi]}}y is a finite set of

nonoverlapping closed intervals belonging to A};
o So-pup(E) = inf{V*(f; A) : Ais a S,-cover};
o Vi(fs B) = V*(f; As) and Vi (f; E) = V™ (f; AD);
Proposition 1. Let f : [a,b] > R, E C [a,b] and § : E — (0,+00). Then
Vi (FE) =V (f; As) =V (£:A9) =V (f5E) and So-ps(E)=infs V*(f345).
PRrROOF. By definitions, we clearly have
V5 (f5B) = VE(f545) S V(1A = Vi (f ).

Let {[a;, ]}, be any finite set of non-overlapping closed intervals with
[ai, b;] € AJ. Then there exists z; € E such that z; € [a;,b;] C (mi—é(mi),xi—l-
(5(3:1)) Hence [a;, z;], [z, b;] € As. Then

Z|f(bi> — flay)| < nym) — fla))| + Z\f(bi) — fl@)] S V(£ As) .

Hence V*(f; AY) < V*(f;As), as remained to be shown.
The second part is obvious from definitions. O

Definition 9. ([4], p. 89). Let f : [a,b] = R and E C [a,b]. f is said
to be Ypo (respectively Yp) on E if for every null subset Z of E and for
every € > 0, there is a 6 : Z — (0,+00) such that Y1 |f(d;) — f(ci)| < e,
whenever {[c;,d;]}_, is a finite set of nonoverlapping closed intervals, with
(lei, di], t;) € BF[Z] (vespectively ([ci, di], t;) € Bs[Z]).

The condition Ypo was introduced by P. Y. Lee in [6]. He called it “the
strong Lusin condition” (abbreviated SLC).

Corollary 4. Let f : [a,b] = R and E C [a,b]. The following assertions are
equivalent.

(Z) fEYD on F.

(i) f € Ypo on E.
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(11t) So-ps(Z) =0 whenever Z is a null subset of E (i.e. So-puy is absolutely
continuous on E).

PROOF. See Proposition 1. O
Theorem 7. Let f,g:[a,b] > R, ECJa,bl,c=infE,d=supFE, o, € R.
(1) So-tiaftpg(E) < lal- So-pg(E) + |B| - Sompig(E).
(11) If So-pig(E) =0, then Sp-fir14(E) = So-pif(E).
(i) 1F supyeeq {1 @), l9(@)[} = M < +oo, then
Sotiyg(E) < M- (Sopiy(E) + So-ptg(E)) -

(iv) PV**(f; F) < Syrpiy (E).
PRrROOF. Recall Proposition 1. Let § : E — (0, +00).
(i) We have
So-iaf+pg(E) < Vs (af + Bg; E) < laf - V5 (f; E) + 18] - Vi (g; E) .

Hence So‘ﬂaf+ﬁg<E) < |af 'SO'Mf(E> + 18] '80'U9<E) :

(ii) Clearly Sy-pg(E) = 0 implies that S,-p—y(E) = 0. By (i), we have

Sortif (B) = Sotigsgo(E) < Sortigsg(E) + Sty (E)
= Surttgig(E) < Sortty (E) + Sortiy (E) = Soriiy ().

Therefore So-p1f(E) = So-fif+4(E).

(iii) Let z,y € [e,d], ¢ < <y < d. Then

1f(y) - 9(y) = f(@) - 9(@)| = |9(y) - (F(y) = f(@)) + f(2)(9(y) — 9())]
<M - (1f(y) = f@)]+19(y) — g(2)]) -

We have So-pif.4(E) < Vi (f - g; E) < M - (Vi (f; E) + Vi (g; E)) . Therefore
)

Sopifg(E) < M - (Sopif (E) + Sompig(E
(iv) We may suppose that So-pf(E) = M < +oo. For € > 0 there is a
d: E — (0,+00) such that Vi*(f; E) < M + €. Let

}, k=1,2,3,....

Then {E}} is an E-chain. Fix some k and let {[a;,b;]}7, be a finite set of
nonoverlapping closed intervals having at least one endpoint in Ej, such that

T =

Ek{$€E:5(x)>
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Yot (bi — a;) < 1/k. We may suppose without loss of generality that each

a; € E),. Then b; € (ai,ai + i) C (ai,ai + 5(ai)); SO

Z|f )| < Vi (f;E) < M +e.

Then V**(f; Ex;1/k) < M +e. Hence V**(f; Ey;0) < M + e for each k. Since
€ is arbitrary, we obtain that PV**(f; E) < M. O

Lemma 16 (Thomson). (Theorem 43.1 of [12], p. 101). Let f : [a,b] — R,
E Cla,b]. Then m*(f(E)) < So-ps(E).

Lemma 17. Let f : [a,b] = R, E C [a,b].

(1) If f is increasing® on E, then S,-pur(A) < 2m*(f(A)), whenever A C
{zx € E: f is continuous at x}.

(i1) If f is increasing on [a,b], then Sy-pr(A) < m*(f(A)), whenever A C
{z € E: f is continuous at x}.

PROOF. Suppose that m*(f(A)) < +oo. (If m*(f(A)) = +o0, there is nothing
to prove.) For € > 0, let G be an open set such that f(4) C G and m(G) <
m*(f(A)) + e. Let {(c,B:)}i be the components of G. Since f is continuous
at each point of A, there exists a § : A — (0, 4+00) such that

f((:zc —d0(x),z + 5(96))) C (i, Bi), whenever f(z) € (ai,fi)-

Let {[a;, b;]}7 be a finite set of nonoverlapping closed intervals such that each
[a;, b;] contains a point z; € A with [a;,b;] C (z; — 0(2;), 2 + 6(2;)). Suppose
that a1 < by < as < by <...<ay, < by . Then each [f(a;), f(b;)] C G.

(i) Clearly, {[f(a:), f0I},, e and {[f(ai), FB)]}L, ,_qq - consist

both of nonoverlapping closed intervals. It follows that

Z(f(bi) — fla:)) = Z (f(bi) = flai)) + Z (f(bi) = f(as))
i=1 1=1,i=even i=1,i=odd

<2-m(G) < 2m*(f(A)) + 2¢.

Hence V;"°(f; A) < 2m*(f(A)) + 2e. Now by Proposition 1, we obtain that
(f

So-p(A) < 2m*(f(A ))
(ii) Clearly {[f (as, f(b:)]}™, are nonoverlapping closed intervals. It follows
that

D (f(0) = f(a)) <m(G) < m*(f(A)) +e.

i=1
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Hence Vi"°(f; A) < m*(f(A4)) + e. Now by Proposition 1, we obtain that
So-tiy(A) < m*(f(A)). H

Corollary 5. Let f : [a,b] = R and E C {z € [a,b] : f is continuous at x}.
(i) If f is increasing® on E and m*(f(E)) =0, then Sy-ps(E) = 0.
(i1) If f is increasing on [a,b], then m*(f(E)) = So-pif(E). (This is the
second part of Theorem 13.3 of [8], p. 100.)

Corollary 6. Let f : [a,b] = R and E = {z € [a,b] : Df(x) > 0 and f is
continuous at x}. If m*(f(E)) =0, then Sp-py(E) = 0.

PROOF. Let

fO) = fl@) 1
t—x n

EnZ{CEEE:

Let B! = {2’71,1;”1} NE,,i=0,+1,+2,.... Then E = U, ;E}. Let J! be

an open interval such that EY C J! and m(J.) < 3/(4n). Let x,y € J,
z < y. At least one of them belonging to E’. Then f(y) — f(z) > 1(y —z).
Hence f is increasing® on each E!. Clearly m*(f(E.)) = 0. It follows that
So-pf(EL) = 0 (see Corollary 5, (i)). Since S,-us is an outer measure, we
obtain that Sy-pf(E) = 0. O

Lemma 18. Let f : [a,b] — R and let X = {z € [a,b] : f (x) = 0}. Then
So-piy(X) = 0.
PROOF. See Lemma 42.1 of [12], p. 99. O

Lemma 19. (Theorem 9.1 of [8], p. 125). Let f : [a,b] — R, and let N =
{x € [a,b] : f is continuous at z; f (x) does not exist (finite or infinite)}. If
f€VB ona,b], then m*(f(N)) = So-pf(N) = m*(N) = 0.

PrROOF. That m*(f(N)) = m*(N) = 0 follows immediately from Theorem
9.1 of [8] (see (9.2) and (9.3), p. 125). Consider the curve:

C:X(t)=t, Y(t)=f(), telab],

and let S(t) be its length on the interval [a,t]. In the proof of Theorem 9.1
of [8] (p. 126), it is shown that m*(S(N)) = 0. By Corollary 5, Sp,-ps(N) =
m*(S(N)) = 0 (because S is a strictly increasing function on [a,b]). But
|f(t2) — f(t1)] < S(t2) — S(t1), whenever a < t; <t < b; so

0< So'luf(N) < SO_I’(‘S(N) =0.

Therefore Sy-pup(N) = 0. O
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Lemma 20. Let f: [a,b] = R, E C[a,b], AC {x € E: f is continuous at
z}, and let f :[a,b] = R, f = fg () (see Definition 1). If f € VB* on E,
then So-py(A) = So-p(A).

PROOF. Let g = f— f. Since f is continuous at each point of A, the function
g has this property as well. Suppose that there are infinitely many intervals
contiguous to E U {a, b}, and let’s denote them by {(a;, b;)}52,. Let

Ay :Aﬂ{a,b,al,bhag,bg,...} and A, :A\Al

Since ¢ is continuous at each point of A, we have that S,-p4({z}) = 0 for
every x € A. It follows that S,-114(A1) = 0 (because A; is at most countable
and S,-ptg is an outer measure). For € > 0 let n, be a positive integer such
that 327 O(f;[ai, bi]) < €. Then

Z O(g; [ai, bs]) < 2e. (6)

1=n,+1

Let G = (a,b) \ (U2, [a;, b;]) and let 6 : Ay — (0, +00) be a positive function
such that (v —d(z),z +0(x)) C G. Let {[c;,d;]}}—, be a finite set of nonover-
lapping closed intervals such that each [c;,d,;] contains a point z; € Ay with
[cj,d;j] C (z; —d(x;),x; + 6(z;)). Since any interval (a;,b;) with ¢ > n, + 1
contains at most two points of the set {¢1,d1, ¢ca,ds, ..., cpn,dy}, and g =0 on
E, by (6), 371 19(d;) —g(cj)| < 2¢; s0 V5™°(f; Az) < 4e. By Proposition 1, it
follows that S,-pg(A2) = 0. Clearly So-p14(A) = 0. Now, by Theorem 7, (ii),
we obtain that So-p1f(A) = So-p5(A). O

Lemma 21. Let f : [a,b] = R, E C [a,b], N = {x € E : f (x) does not
exist (finite or infinite)} and N, = N N{z € [a,b] : [ is continuous at x}. If
f€VB*G on E, then

(i) f is derivable almost everywhere on E and m*(f(N)) = 0;
(”) 'So‘,u'f(No) =0.

PROOF. (i) See Theorem 7.2 of [8], p. 230.
(ii) Since S,-py is an outer measure, it is sufficient to suppose that f € V.B* on

E. Let f be the function defined in Lemma 20. Then Sp-j15(N,) = So-p7(No)-
Let

Ny ={z € N,: f/(m) =0};
Ny={zeN,:f(z)>0}
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Ns={xeN,: f(z) <0}
Ny ={x e N, : f () does not exist (finite or infinite)};
N = {x € [a,b] : f is continuous at z; f (x) does not exist (finite or infinite)}.

Then Ny C N and f is VB on [a,b]. By Lemma 19, So—,uf(N) = 0. Therefore

So-pt7(Na) = 0. By Lemma 18, S,-p7(N1) = 0, and by (i), m*(f(N2)) =
0. Hence S,-u 7(N2) = 0 (see Corollary 6). Analogously, it follows that
SO-,uf(Ng) = 0. Therefore SO—/A];(NO) =0. O

Remark 1. Lemma 21 is an extension of Theorem 7.2 of [8] (p. 230), Theorem
44.2 and Theorem 44.1 of [12] (pp. 103-104).

Theorem 8. (An Extension of Corollary 43.4 of [12], p. 103).

Let f : [a,b] > R, E C [a,b] and A C {xz € E : f is continuous at x}. If
f € VB*G on E, then the following assertions are equivalent.

(i) m*(f(A)) = 0.
(ii) Spp7(A) = 0.

PROOF. (i) = (ii) Let N = {z € A: f'(z) does not exist (finite or infinite)}.
By Lemma 21, (ii), we have that So-p17(N) = 0.

Let B= A\ N.

Let By = {z € B: f (z) = 0}. Then Sp-1;(B1) = 0 (see Lemma 18).
Let By = {z € B: f (z) > 0}. Then Sp-;(Ba) = 0 (see Corollary 6).
Let By = {x € B: f () < 0}. Then S,-uu(Bs) = 0 (see Corollary 6).

Therefore S,-pp(A) = 0.
(ii) = (i) See Lemma 16. O

Corollary 7. (Identical with Corollary 3). Let E C [a,b]. Then
A={f:]a,b)] > R: f e VB*GN(N) on E}

is an algebra.
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PrOOF. Let f,g € A and «, € R. By Lemma 11, there exists a countable
set Fp C F such that both functions f and g are continuous at each point of
E\E;. Clearly af+8g € VB*G on E. We have to show that af+8g € (N) on
E\ E;. Let Z be a null subset of E\ Ey. Then m*(f(Z)) = m*(g(Z)) = 0. By
Theorem 8, So-pf(Z) = So-119(Z) = 0. It follows that So-praf484(Z) =0 (see
Theorem 7, (i)). Hence by Lemma 16, we obtain that m*((af + 8¢)(Z)) = 0.
Therefore af + Bg € (N) on E\ Ej.

It is well known that f-g € VB*G on E. We show that f-g € (N)
on E. Since f,g € VB*G on E, there exists a sequence {E,}, of sets such
that £ = U,E, and f,g € VB* on each E,. Then f,g € VB* on E,, (see
Theorem 7.1 of [8], p. 229). Let ¢, = inf E,, and d,, = sup E,,;. Then f and
g are bounded by some number M, on [c,,d,]. By Lemma 11, there exists a
countable subset E;I C F, such that f and g are both continuous at each point
of E,\E,,. Let Z be anull subset of E,,\ E,,. Then m*(f(Z)) = m*(g(Z)) =0,
and by Theorem 8, So-p15(Z) = So-11g(Z) = 0. It follows that S,-ps.4(Z2) =0
(see Theorem 7, (iii)). Now, by Lemma 16, we obtain that m*((f-¢)(Z)) = 0.
Hence f - g € (N) on each FE,,. Therefore f-g € (N) on E. O

9 Characterizations of a VB*G N (N) Function f on a
Lebesgue Measurable Set, Using S,-i¢

Theorem 9. Let f : [a,b] = R and let E be a Lebesgue measurable subset of
[a,b]. The following assertions are equivalent.

(i) fe VB*GN(N) on E.
(ii) f € VB*GN(N) on Z, whenever Z is a null subset of E.

(i) there exists a countable subset E1 of E such that So-pp(Z) = 0, whenever
Z is a null subset of E\ Ej.

PROOF. Let Ey = {x € E: f is not continuous at x}.

(i) = (ii) This is obvious.

(ii) = (i) Clearly f € (N) on E, and by Theorem 1, f € VB*G on E.
Therefore f € VB*GN(N) on E.

(i) = (iii) By Lemma 11, E; is at most countable. Let Z be a null subset
of E\ Ey1. Then m*(f(Z)) = 0. By Theorem 8, we obtain that S,-115(Z) = 0.

(iii) = (ii) Let Z be a null subset of E. Then Z = Z; U Z,, where Z; =
ZNE;and Zy = ZN(E\ E1). By Lemma 16, we obtain that m*(f(Z2)) =
So-11f(Z2) = 0. By Theorem 40.1 of [12] (p. 94), it follows that f € VB*G
on Zs. Hence f € VB*G on Z. Since the set f(Z7) is at most countable, it
follows that m*(f(Z)) = 0. O
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Lemma 22. Let f : [a,b] = R, and let E be a null subset of [a,b]. If f €
AC*G on E, then So-pf(E) = 0.

PROOF. Suppose that f € AC* on E, and for ¢ > 0 let § > 0 be given
by this fact. Let G be an open set such that £ C G and m(G) < 4. Let
n: E — (0,+00), with (z —n(z),z + n(x)) C G. Then Vy(f;E) < ¢ so
So-pf(E) = 0. Now, if f € AC*G on E, since S,-uy is an outer measure, it
follows that S,-ps(E) = 0. O

Theorem 10. (An extension of Theorem 45.3, (i), (ii) of [12], p. 106) Let
f:]a,b] = R and let E be a closed subset of [a,b]. The following assertions
are equivalent

(i) f € AC*G on E and f is continuous at every point of E.
(ii) f € VB*GN(N) on E and f is continuous at every point of E.

(iii) f € VB*GN(N) on any null subset of E and f is continuous at every
point of E.

() So-ps(Z) =0, whenever Z is a null subset of E.
(v) f €Ypo on E (i.e., f € SLC on E).

ProOF. By Theorem 6 ((i),(ii),(x)), (i) < (ii) < (iii). By Theorem 9 ((ii),(iii)),
(iii) < (iv). By Corollary 4 ((ii),(iii)), (iv) < (v). O

Remark 2. Theorem 10, (i), (v) was obtained before in [3] (see Corollary 1,
(1), (vii)) and [4] (see Corollary 2.27.1, (i), (vii)). The same result is also shown
by Bongiorno, Di Piazza and Skvortsov in [1], using a different technique.
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