Harvey Rosen, Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487 e-mail: hrosen@mathdept.as.ua.edu

AN ALMOST CONTINUOUS NONEXTENDABLE FUNCTION

Abstract

An example is constructed under the Continuum Hypothesis showing that almost continuity and the Strong Cantor Intermediate Value Property do not imply extendability. This answers a question in [8]. Results about stationary sets are given for the class of extendable functions from I into I, where I = [0, 1].

In 1955, John Nash introduced the idea of a "connectivity" function $f: X \to Y$ by requiring the graph of its restriction $f_{|C|}$ to be a connected subset of $X \times Y$ for each connected subset C of X [5]. A discontinuous connectivity function can arise from a differential equation. For example, for $x \neq 0$, the curve

$$y = \begin{cases} \sin\frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is a solution of $x^4y'' + 2x^3y' + y = 0$ (to which $t = \frac{1}{x}$ transforms $\ddot{y} + y = 0$).

A connectivity function $f:I\to I$ is extendable if there exists a connectivity function $F:I^2\to I$ such that F(x,0)=f(x) for all $x\in I$. A function $f:I\to I$ is called almost continuous if each open neighborhood of the graph of f in I^2 contains the graph of a continuous function on I. In [8], it was shown that an extendable function $f:I\to I$ has the Strong Cantor Intermediate Value Property (SCIVP), which means that whenever $f(x)\neq f(y)$ and E is a Cantor set between f(x) and f(y), there exists a Cantor set E lying between E and E and E is continuous. It was also shown that there exists an almost continuous function E is continuous. It was also shown that every point and does not have the SCIVP. The following result answers the question asked there.

Mathematical Reviews subject classification: 26A15, 54C08 Received by the editors August 20, 1997

Key Words: almost continuous function, extendable connectivity function, the Strong Cantor Intermediate Value Property, stationary set

568 HARVEY ROSEN

Theorem 1. Under CH, there exists an almost continuous function $f: I \to I$ which has the SCIVP but is not extendable.

PROOF. Let $\mathcal{D} = \{A_{\alpha} : \alpha \in A\}$ denote the collection of all dense G_{δ} -subsets of I and $\mathcal{X} = \{K_{\alpha} : \alpha \in A\}$ denote the collection of all minimal blocking sets of I^2 . A "minimal blocking set" of I^2 is a smallest closed subset of I^2 that misses some function from I into I but meets every continuous function from I into I [4]. We may suppose A is well ordered so that each α in A is preceded by less than c-many elements of A. Under CH, then each α in A is preceded by countably many elements of A. Let $\alpha \in A$. According to the Baire Category Theorem, $\cap \{A_{\beta} : \beta \leq \alpha\} \in \mathcal{D}$. The x-projection $\Pi_1(K_{\alpha})$ of K_{α} being a nondegenerate interval [a,b] [4], there is by transfinite induction a Cantor set C_{α} disjoint from $\cup \{C_{\beta} : \beta < \alpha\}$ such that

$$C_{\alpha} \subset [a,b] \cap (\cap \{A_{\beta} : \beta \leq \alpha\}).$$

For each $x \in C_{\alpha}$, define

$$g(x) = \max \Pi_2(K_\alpha \cap (\{x\} \times I)),$$

where Π_2 denotes the y-projection. Then $g_{|C_{\alpha}}$ is upper semicontinuous, therefore in Baire class 1, and consequently Marczewski measurable, which means that a perfect set like C_{α} has a perfect subset P_{α} such that $g_{|P_{\alpha}}$ is continuous. For argument's sake, we may suppose $g(P_{\alpha})$ is nowhere dense. For, if $g(P_{\alpha})$ contains an interval [c,d] and if D is a Cantor set in [c,d], then the closed set $g^{-1}(D) \cap P_{\alpha}$ has c-many points and therefore contains a Cantor set P. So g(P) is nowhere dense as desired. Define f = g on P_{α} for each $\alpha \in A$, and define

$$f(I \setminus \cup \{P_{\alpha} : \alpha \in A\}) = 0.$$

By construction, $f:I\to I$ is dense in I^2 and almost continuous because f meets every blocking set of I^2 .

We show f has the SCIVP. Suppose E is a Cantor set between different values f(x) and f(y) with x < y, and let I_1, I_2, I_3, \ldots be the interval components of $I \setminus E$. A nondecreasing continuous function $h: I \to [x, y]$ can be constructed like the Cantor ternary function so that h is a different constant r_n on each I_n . Then the inverse relation

$$h^{-1} = \{(r, s) : (s, r) \in h\} \in \mathcal{X}$$

implies $h^{-1} = K_{\alpha_o}$ for some $\alpha_o \in A$, and so $f_{|P_{\alpha_o}} \subset K_{\alpha_o}$ and is continuous. $P_{\alpha_o} \setminus \{r_1, r_2, r_3, \ldots\}$ contains a Cantor set B between x and y; moreover $f(B) \subset E$ and $f_{|B|}$ is continuous.

Assume f is extendable. There exists a dense G_{δ} -subset G of I that is f-negligible [7]; i.e., no matter how f is arbitrarily redefined on G with values in I, the resulting function is still extendable. Since $G \in \mathcal{D}$, $G = A_{\alpha_1}$, for some $\alpha_1 \in A$. Let

$${P_{\alpha}: \alpha < \alpha_1} = {P_1, P_2, P_3, \dots}.$$

We may redefine f = 0 on A_{α_1} and the resulting function f is still extendable. Since $P_{\alpha} \subset A_{\alpha_1}$ for all $\alpha \geq \alpha_1$, then

$$f(I) = f(I \setminus \bigcup_{i=1}^{\infty} P_i) \cup \left(\bigcup_{i=1}^{\infty} f(P_i)\right) = \{0\} \cup \left(\bigcup_{i=1}^{\infty} f(P_i)\right),$$

which is a union of countably many nowhere dense subsets of the nondegenerate interval f(I). Contradiction.

Question 1. Without CH in Theorem 1, does there exist such a function in ZFC?

Question 2. With \mathbb{R} replacing I in the above definitions, does there exist an almost continuous nonextendable function $f : \mathbb{R} \to \mathbb{R}$ having the SCIVP and obeying f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$?

Let $\mathcal C$ denote a class of functions $f:I\to I$, and let E be a subset of I. E is stationary for $\mathcal C$ if whenever $f\in\mathcal C$ and f is constant on E, then f is constant on all of I.

Theorem 2. If E is stationary for the class C of extendable functions $f: I \to I$, then E intersects each dense G_{δ} -subset of I.

PROOF. Assume there is a stationary set E for C that misses a dense G_{δ} -subset A_{α} of I. There exists an extendable function $f:I\to I$ whose graph is dense in I^2 [1]. Let A be a dense G_{δ} -subset of (0,1) that is f-negligible. $A_0=A\cap A_{\alpha}$ is a dense G_{δ} -set that is f-negligible. By [6], there is a homeomorphism $h:I\to I$ such that $I\setminus A_0\subset h^{-1}(A_0)$ and $h^{-1}(A_0)$ is $(f\circ h)$ -negligible. Since $E\subset I\setminus A_0$, E is $(f\circ h)$ -negligible. Therefore $f\circ h$ can be redefined just on E to be 0, but the resulting extendable function is not 0 on all of I, contrary to E being stationary for E.

According to [2], the next result holds for some other classes of functions, too.

Theorem 3. If a subset E of I intersects each nonempty perfect subset of I, then E is stationary for the class C of extendable functions $f: I \to I$.

570 HARVEY ROSEN

PROOF. Suppose $f \in \mathcal{C}$ and f is a constant c on E. Assume there exists an $x \in I \setminus E$ such that $f(x) \neq c$. Since f is extendable, f has a perfect road at x [3]. This means that there exists a perfect subset P of I containing x and having x as a bilateral limit point if x is not an endpoint of I such that $f_{|P|}$ is continuous at x. Therefore there is a perfect subset P_0 of P containing x such that $c \notin f(P_0)$. But $E \cap P_0 \neq \emptyset$ implies $c \in f(P_0)$, a contradiction. So f equals c on I, and E is stationary for C.

References

- [1] J. B. Brown, *Totally discontinuous connectivity functions*, Colloq. Math. **23** (1971), 53–60.
- [2] A. M. Bruckner and J. L. Leonard, Stationary sets and determining sets for certain classes of Darboux functions, Proc. Amer. Math. Soc., 16 (1965), 935–940.
- [3] R. G. Gibson and F. Roush, Connectivity functions with a perfect road, Real Analysis Exchange, 11 (1985–86), 260–264.
- [4] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc., 33 (1972), 181–184.
- [5] J. Nash, Generalized Brouwer Theorem, Research Problem, Bull. Amer. Math. Soc., 62 (1956), 76.
- [6] T. Natkaniec, Extendability and almost continuity, Real Analysis Exchange, 21 (1995–96), 349–355.
- [7] H. Rosen, Limits and sums of extendable connectivity functions, Real Analysis Exchange, **20** (1994–95), 183–191.
- [8] H. Rosen, R. G. Gibson, and F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Analysis Exchange, 17 (1991–92), 248–257.