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ON CONTINUOUS ONE-TO-ONE
FUNCTIONS ON SETS OF REAL NUMBERS

1 Introduction

For the purpose of this paper, we say that two topological spaces X and Y
are a special pair if there are continuous one-to-one mappings of X onto Y
and Y onto X, but X and Y are not homeomorphic. In the standard example
of a special pair, X is the union of countably many open intervals in the real
line, R, together with countably many isolated points, and Y is the union
of countably many half open intervals together with countably many isolated
points. In [P] Priestley posed the question: is there a special pair such that
both members are countable subspaces of R? In a private correspondence he
proved the existence of such a special pair X, Y . But his proof was not
constructive. He did not define explicitly the points in the spaces X and Y .

In this paper we construct a countable set E1 of real numbers and a point
p ∈ E1 such that X1 = E1, Y1 = E1\{p} are a special pair under the Euclidean
topology.

Neither member of a special pair can be a closed bounded subspace of R,
because a continuous one-to-one mapping from a compact space is necessarily
a homeomorphism. But we will construct a special pair X2, Y2 such that both
X2 and Y2 are closed subspaces of R. (They are uncountable however.) We
will construct a closed subset E3 of R and a point p ∈ E3 such that X3 = E3,
Y3 = E3 \ {p} are a special pair.

There are special pairs each member of which is the union of mutually
disjoint compact intervals in R. We will construct a sequence J1, J2, J3, . . . of
mutually disjoint (nontrivial) compact intervals such that

X4 = ∪∞i=1Ji, Y4 = ∪∞i=2Ji

are a special pair.
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Finally, let X be the union of a set of mutually disjoint compact intervals
{I1, I2, I3, . . .}. Endow the countable family {Ii} with the metric topology
using Euclidean distance. Now by [S], there is a homeomorphism mapping
the metric space {Ii} into R. The range of this homeomorphism is of course
countable.

Thus, for example, if Y is another union of mutually disjoint compact
intervals, if Φ1 is the homeomorphism mentioned in the preceding paragraph,
and if Φ2 is the corresponding homeomorphism for Y , then X cannot be
homeomorphic to Y if the ranges of Φ1 and Φ2 are not homeomorphic.

2 Results

Let E(0, 1) denote the countable set{
0, 1, 1

3 ,
2
3 ,

1
4 ,

3
4 ,

1
5 ,

4
5 ,

1
6 ,

5
6 , . . .

}
,

and if a < b, let E(a, b) =
{
bx + a(1 − x) : x ∈ E(0, 1)

}
. Then E(a, b) is a

countable closed subset of R.

Let C denote Cantor’s ternary set, let P denote the (countable) set of all
left endpoints of complementary intervals of C of finite length, and let P+

denote the set of all right endpoints of these intervals. Let X0 denote the set
C \ {1} and X∗ denote

X0 ∪
(
∪a∈PE(a, a+)

)
∪ E(−1, 0) ,

where a+ is the point in P+ that is the immediate successor of a in C. Let
Y ∗ = X∗ \ {−1} and Z∗ = {x ∈ X∗ : x > −1/2}.

Now for a, b ∈ P , a < b and c, d ∈ P , c < d, there is an order preserving
mapping of P ∩ [a, b] onto P ∩ [c, d]. (Note that each ordered set of this kind
has a first and a last element and no immediate successors or predecessors.)
It is easy to see that this mapping is a homeomorphism of P ∩ [a, b] onto
P ∩ [c, d]. Extend this mapping to a homeomorphism of (P ∪P+)∩ [a, b] onto
(P ∪ P+) ∩ [c, d] by preserving order in the obvious way. Finally, extend this
mapping to a homeomorphism of X∗∩[a, b] onto X∗∩[c, d] by preserving order
in the obvious way.

Let a1 < a2 < a3 < . . . be an increasing sequence of points in P converging
to 1, let b1 < b1 < b3 < . . . be an increasing sequence of points in P converging
to 1/3, and let c1 < c2 < c3 < . . . be an increasing sequence of points in P
converging to 1, where c1 = 7/9 and a1 = b1 = 1/9. Let F0 be the identity
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mapping of

X∗ ∩
(
−1

2
,
a1 + a+1

2

)
onto Z∗ ∩

(
−1

2
,
b1 + b+1

2

)
.

There is an obvious order preserving homeomorphism F1 of X∗ ∩ [−1,−1/2)
onto Z∗∩ [1/3, 1/2). By the preceding paragraph, there is an order preserving
homeomorphism of X∗∩ [a1, a2] onto X∗∩ [1/3, c1]. From this we deduce that
there is an order preserving homeomorphism F2 of

X∗ ∩
(
a1 + a+1

2
,
a2 + a+2

2

)
onto Z∗ ∩

(
1

2
,
c1 + c+1

2

)
.

There is likewise an order preserving homeomorphism F3 of

X∗ ∩
(
a2 + a+2

2
,
a3 + a+3

2

)
onto Z∗ ∩

(
b1 + b+1

2
,
b2 + b+2

2

)
.

There is an order preserving homeomorphism F4

X∗ ∩
(
a3 + a+3

2
,
a4 + a+4

2

)
onto Z∗ ∩

(
c1 + c+1

2
,
c2 + c+2

2

)
.

In general for n > 1, there is an order preserving homeomorphism F2n of

X∗ ∩
(
a2n−1 + a+2n−1

2
,
a2n + a+2n

2

)
onto Z∗ ∩

(
cn−1 + c+n−1

2
,
cn + c+n

2

)
,

and an order preserving homeomorphism F2n+1 of

X∗ ∩
(
a2n + a+2n

2
,
a2n+1 + a+2n+1

2

)
onto Z∗ ∩

(
bn + b+n

2
,
bn+1 + b+n+1

2

)
.

The domains of the functions Fj are mutually disjoint open and closed subsets
of X∗ whose union is X∗, and the ranges of the Fj are mutually disjoint
subsets of Z∗ whose union is Z∗. It follows that the common extension F of
the functions Fj is a one-to-one continuous function of X∗ to Z∗.

Let dj be an isolated point in E(cj , c
+
j ) for j = 1, 2, 3, . . . . Let D denote

the countable set {dj}. There is an obvious order preserving homeomorphism
of E(cj , c

+
j ) \ {dj} onto E(cj , c

+
j ). So there is an obvious homeomorphism of

Z∗ \D onto Z∗. Thus we can extend this to a homeomorphism of Z∗ onto Y ∗

by mapping the discrete set D onto the discrete set Y ∗ \ Z∗.
Likewise we construct a one-to-one continuous function of Y ∗ onto X∗

where Y ∗ \ {d1} maps onto Y ∗ and d1 maps to the point −1.
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Thus there is a one-to-one continuous function mapping any one of the
spaces X∗, Y ∗, Z∗ onto any other. But X∗ is not homeomorphic to Y ∗ or Z∗.
To see this, observe that −1 is an accumulation point of X∗ and there is a
neighborhood of −1 that contains no other accumulation point of X∗. On the
other hand, Y ∗ and Z∗ contain no point enjoying these properties. So X∗, Y ∗

are a special pair, and X∗, Z∗ are a special pair. Note that X∗ contains all
the accumulation points of X∗ in R except the point 1. Likewise Z∗ contains
all the accumulation points of Z∗ in R except the point 1. For w < 1, put
Φ(w) = w/(1−w). Then Φ(X∗), Φ(Z∗) are a special pair and both are closed
subsets of R. Put X2 = Φ(X∗) and Y2 = Φ(Z∗). Put X3 = E3 = Φ(X∗) and
p = −1/2. Then Y3 = E3 \ {p} = Φ(Y ∗).

Let us start again and redefine X∗ to be(
∪a∈PE(a, a+)

)
∪ E(−1, 0) .

All the arguments proving that X∗, Y ∗ are a special pair go through as before.
However, now X∗ and Y ∗ are countable sets. Put X1 = E1 = X∗ and p = −1.
Then Y1 = E1 \ {p} = Y ∗.

It remains to define X4 and Y4. For each positive integer j, put uj =
4−1 + 4−j and vj = 1− uj . Let G(0, 1) denote the union of mutually disjoint
compact intervals,[

0, 1
4

]
∪
(
∪∞j=1[u2j+1, u2j ]

)
∪
(
∪∞j=1[v2j , v2j+1]

)
∪
[
3
4 , 1
]
.

For a < b, let G(a, b) = {bx + a(1− x) : x ∈ G(0, 1)}, and put

X4 =
(
∪a∈PG(a, a+)

)
∪G(−1, 0) , Y4 = X4 \

[
−1,− 3

4

]
,

Z4 =
{
x ∈ X4 : x > − 1

2

}
.

The proof that there is a one-to-one continuous function mapping any one of
the spaces X4, Y4, Z4 onto any other is just like the corresponding proof for
X1, Y1, Z1, so we leave it. The difference is that now the components are
compact intervals instead of singleton sets. Use increasing homeomorphisms
from component to component just as we mapped points to points for X1, Y1,
Z1. To prove that X4 is not homeomorphic to Y4 or Z4 requires a slightly
different argument. Say that a component of X4 is a type 1 component if it
is not an open set in X4. For example, [−1,−3/4] is a type 1 component, but
it lies in a neighborhood {x ∈ X4 : x < −1/2} that contains no other type
1 component. On the other hand, Y4 and Z4 have no component with this
property. So X4, Y4 are a special pair and X4, Z4 are a special pair.
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Now put U = X4 ∪ (C \ {1}) and V = Z4 ∪ (C \ {1}). Then U , V are
a special pair by the same argument used for X4 and Z4. Note also that U
contains all the accumulation points of U (in R) except the point 1. Likewise
V contains all the accumulation points of V except the point 1. Neither U nor
V contains an isolated point. It follows that Φ(U), Φ(V ) are a special pair,
and both are perfect subsets of R. Put X5 = Φ(U) and Y5 = Φ(V ). Then X5,
Y5 are a special pair both of which are perfect subsets of R, and moreover each
is the closure of an open set (observe the union of all the interiors of all the
interval components of X5, etc.). On the other hand, X2 and Y2 are closed
subsets of R with void interiors.

We conclude with some questions that could be the subject of further
research. We can make E1 either a countable or a closed uncountable subset
of R. Can we make E1 a closed countable subset of R? Likewise can we make
X2 and Y2 closed countable subsets of R? I conjecture no on both counts.
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