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REARRANGEABLE FUNCTIONS ON THE
REAL LINE

Abstract

A function f on the real line is rearrangeable if there exists a bijection
γ on its domain such that f◦γ is continuous. Combinatorial and analytic
aspects of the problem are investigated.

1 Introduction

The problem treated in this paper originates from the idea of giving some
meaning to maps between assigned subsets of the real line, when the nature of
the coding renders irrelevant the disposition of the points in the space. Trans-
lating the concept in a mathematical setting, this means considering, rather
than maps, equivalence classes of maps, where the equivalence relation is, for
instance, “To have all the corresponding fibers of the same cardinality”. In
view of this consideration, we decided to privilege, among the representatives,
the continuous ones, if there are any. Thus our goal is to “rearrange” a given
map, through a permutation of its fibers, in order to get a continuous function
(but one might think as well to get the least discontinuous function). The
problem is quite vast, and it is purely topological and combinatorial. Indeed,
it relies on the existence of continuous functions with a given assignment of the
fibers. Many authors have investigated various aspects of this problem (see,
e.g., [2,4,6,7,10] and references therein), giving answers to questions as “Does
there exist a continuous k-to-1 function defined on a given topological space?”.
Actually, as we will see, the possibility to rearrange a map to a continuous one,
depends only on the existence of a continuous function with a given assign-
ment of the cardinality of the fibers. A different point of view is to consider
permutations of the fibers that preserve Lebesgue measure. In this case the
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nature of the problem is analytic. Again, a complete classification of which
functions are rearrangeable to continuous ones, through measure preserving
permutations of the fibers, seems to be extremely complex. In particular, we
dealt with a simple situation, namely, 1-to-1 functions on connected sets. Even
in this basic case, though, the analysis is rather delicate.

Notation Throughout the paper, let µ denote Lebesgue measure on the real
line R. We shall use the symbol | · | to stand both for absolute value and for
cardinality. Given a set X, let χX denote the characteristic function of X.
Finally, let N denote the set of positive integers.

2 General Features of Rearrangeable Functions

We begin introducing the concept of rearrangeable functions. Although for
our purposes we consider functions defined on R, the definition could be given,
more generally, for functions defined on topological spaces.

Definition 2.1. A function f : X ⊂ R → R is said to be rearrangeable to a
continuous function (or, more simply, rearrangeable) if there exists a bijective
map γ : X → X such that the function f ◦ γ is continuous on X. Such a γ is
called a rearrangement of f .

Notice that no assumption is made about measurability neither of f nor
of γ.

Let us denote Y = f(X). As an immediate consequence of the definition,
if X is connected and/or compact, then Y must be connected and/or compact
as well.

In the sequel, we shall assume that X is a connected set, and Y contains
more than one point, and consider the set Y X ; i.e., the set of functions from
X onto Y . We adopt a classification of the elements of Y X in terms of car-
dinality of the fibers, which will turn out to be a useful tool to investigate
rearrangeability.

Definition 2.2. Introduce the set A = N∪{ℵ0}∪ {c}, and let φ : AY → 2Y X

be defined by

φ(f) =
{
g : g ∈ Y X such that |g−1({y})| = f(y), ∀ y ∈ Y

}
.

We call φ a classification of Y X in terms of fibers.

This is a purely combinatorial classification of Y X . On the other hand, it
discloses a variety of topological problems, which have been widely investigated
in recent literature (see, for instance, [2,4,6,7,10]).

The proof of the following result is trivial.
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Lemma 2.3. Let γ : X → X be a bijection, and let f ∈ Y X . Then

|(f ◦ γ)−1({y})| = |f−1({y})|, ∀ y ∈ Y.

Observe that, even if the Continuum Hypothesis fails to hold, the absence,
of cardinals between ℵ0 and c in the set A is perfectly legitimate by the Cantor-
Bendixson theorem. Indeed, if there exists f ∈ Y X and a rearrangement γ
of f , and |f−1({y})| = α, with ℵ0 < α < c, then, in force of Lemma 2.3,
|(f ◦ γ)−1({y})| = α, which is impossible since f ◦ γ is a continuous function
and {y} is a closed set.

The link between rearrangeability and the above classification is expressed
in the next proposition.

Proposition 2.4. Let g ∈ φ(f) be a continuous function. Then every h ∈
φ(f) is rearrangeable.

Proof. We first notice that it is possible to make a decomposition of X in
terms of the fibers of any given element of Y X . Let h ∈ φ(f), and for each
y ∈ Y let σy be any bijection between h−1({y}) and g−1({y}). Finally, let
γ : X → X be defined as γ(x) = σy(x) if x ∈ h−1({y}). It is now apparent
that h ◦ γ = g.

Remark 2.5. It is interesting to notice that rearrangeable functions are rather
rare. Indeed, if X,Y ⊂ R, |Y | = c, then the cardinality of AY is 2c, whereas
the cardinality of the continuous elements of Y X is at most c. Thus we con-
clude that the set of classes of Y X which do not contain any continuous func-
tion has cardinality 2c.

As we have already mentioned, the problem of finding a continuous func-
tion, with a given assignment of the fibers, has been investigated for the classes
φ(k), with k ∈ N (also when X and Y are more general topological space). A
classical result in this field is the following [10].

Let X = Y = [0, 1] and let k ∈ N , with k ≥ 2. If g ∈ φ(k), then g must have
infinitely many discontinuities.

More generally, the same result holds if X is a continuum and Y is a
dendrite [7].

Concerning the case of fibers of infinite cardinality, we show that the class
φ(ℵ0) has a continuous element. The following is a slightly different variant
of an example due to Ciesielski. Let V : [0, 1] → [0, 1] be the Cantor-Vitali
function (see, e.g., [8] for the definition), and denote the Cantor ternary set
by T . Then [0, 1] \T =

⋃
n∈N(an, bn) (disjoint union). Setting p = log 2/ log 3,
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the function

f(x) = V(x)χT (x) +
∑
n∈N

(
V(an) + (bn − an)p sin

(
2π

x− an

bn − an

))
χ

(an,bn)(x)

is easily seen to fulfill our requirements (see also [2], Proposition 1.15).
Finally, the class φ(c) possesses also a continuous element. Indeed, it is

well-known that there exists a function P : [0, 1] → [0, 1] × [0, 1] onto (the
Peano function). Thus the function Π1 ◦ P, where Π1 is projection of the
unit square on the first component, serves our purposes. The space X can
be replaced by a locally connected continuum. (Recall that a continuum is
a compact connected metric space.) In this case there exists a continuous
surjection from X onto its square. In general, this continuous surjection does
not exist if X is a continuum which is not locally connected (see [9]), and
therefore it is not clear if there exists a continuous c-to-1 function on such X.

The situation is quite different if X ⊂ R is an open connected set. Since
X is homeomorphic to R, we can (and do) assume X = R. Extending the
function Π1 ◦ P on R, it is readily seen that there exists a continuous c-to-1
function on R. Moreover, the function f(x) = x sinx is continuous and ℵ0-
to-1. For the case of fibers of finite cardinality, it is quite easy to show that
no continuous function α-to-1 exists for α even, whereas it is possible to build
examples of continuous functions α-to-1 for any α odd (see [2], Proposition
1.2).

By means of of Proposition 2.4, we summarize the considerations about
functions with all the fibers of the same cardinality in the next theorem.

Theorem 2.6. Let f : X ⊂ R→ R be such that f ∈ φ(α), with α ∈ A.

(i) If X is a connected compact set, then f is rearrangeable if and only if
α ∈ {1,ℵ0, c}.

(ii) If X is a connected open set, then f is rearrangeable if and only if α 6= 2k,
k ∈ N.

The above discussion is limited to the case of functions with all the fibers
of the same cardinality. It would also be interesting to consider some classes of
functions whose fibers are not of the same cardinality. This problem has been
recently investigated in [2] (and completely solved for functions with finite
fibers).

We conclude this section mentioning that rearrangeability and measurabil-
ity are not related concepts. Using Proposition 2.4, it is possible to construct



Rearranegable Functions on the Real Line 681

an example of a rearrangeable function which is not measurable. For instance,
let P ⊂ R be a nonmeasurable set, with |R\P | = c, and consider the function

f(x) =

{
0 if x ∈ P,
σ(x) if x ∈ R \ P,

where σ is any bijection from P onto R \ {0}.
Conversely, in Example 3.9 below, we construct a measurable function

which is not rearrangeable.

3 Isomorphisms of Measurable Sets

The aim of this section is to introduce measure preserving bijective maps
between measurable sets, and discuss some related results. The idea was first
envisaged by Rohlin [12].

Definition 3.1. Let X, Y ⊂ R be measurable sets. A bijective map γ : X →
Y is said to be an isomorphism between X and Y if for every measurable set
M ⊂ Y the set γ−1(M) is measurable, and

µ(γ−1(M)) = µ(M).

Thus, in particular, µ(X) = µ(Y ). If X and Y coincide, such a γ is said to be
an endomorphism.

Remark 3.2. It is clear from the definition that if γ1 is an isomorphism
between X and Y , and γ2 is an isomorphism between Y and Z, then γ2 ◦ γ1

is an isomorphism between X and Z.

We will use the following result due to Rohlin (see [12], p.20).

Lemma 3.3. Let X ⊂ R be a measurable set, and let γ : X → R be an injective
map such that γ(X) is measurable. Assume that γ−1(M) is measurable, and
µ((γ−1(M)) = µ(M), for every measurable set M ⊂ γ(X). Then γ carries
measurable sets into measurable sets.

The next proposition is an easy consequence of the above lemma. For the
reader’s convenience we give an outline of the proof.

Proposition 3.4. Let X, Y ⊂ R be measurable sets, and let γ : X → Y be a
one-to-one and onto mapping. The following are equivalent.

(i) For every O ⊂ Y , O open in Y , the set γ−1(O) is measurable, and
µ(γ−1(O)) = µ(O).
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(ii) γ is an isomorphism between X and Y .

(iii) γ is an isomorphism between X and Y , and γ−1 is an isomorphism
between Y and X.

Proof. Clearly, (iii) implies (ii), which in turn implies (i). We show that (i)
implies (iii). We first suppose that µ(X) = µ(Y ) = L < ∞. From (i), γ is
measurable. Moreover for every set C ⊂ Y , C closed in Y ,

µ(γ−1(C)) = L− µ(γ−1(Y \ C)) = L− µ(Y \ C) = µ(C).

Let now M ⊂ Y be a measurable set. Then, given any ε > 0, there exist an
open set O and a closed set C (open and closed in Y ) such that C ⊂ M ⊂
O ⊂ Y , and µ(O \ C) < ε. Thus

µ(C) = µ(γ−1(C)) ≤ µ∗((γ−1(M)) ≤ µ∗((γ−1(M)) ≤ µ(γ−1(O)) = µ(O),

where µ∗ and µ∗ denote Lebesgue inner measure and outer measure, respec-
tively. Recall that, for any subset F ⊂ R

µ∗(F ) = sup{µ(K) : K ⊂ F, K compact},
µ∗(F ) = inf{µ(O) : O ⊃ F, O open}.

Therefore, due to the arbitrariness of ε, we conclude that γ−1(M) is mea-
surable, and µ((γ−1(M)) = µ(M). According to the Lemma 3.3, γ carries
measurable sets into measurable sets. Finally, let N ⊂ X be measurable.
Then M = γ(N) is measurable as well, and

µ(γ(N)) = µ(M) = µ(γ−1(M)) = µ(N).

If µ(X) = µ(Y ) = ∞, for every n ∈ Z define Yn = Y ∩ [n, n + 1), and let
Xn = γ−1(Yn). The restriction of γ mapping Xn to Yn satisfies condition (i)
of the proposition, and thus, by the above proof, also fulfills (iii). It is then
readily seen that (iii) holds.

The next theorem, needed in the course of the investigation, is known.
However we were not able to locate a proof, so that here we provide a quite
simple one1.

Theorem 3.5. Let X, Y ⊂ R be two measurable sets having the same positive
measure. Then there exists an isomorphism γ between X and Y .

1After we finished the paper we learned of a proof contained in the treatise [3].
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Proof. Firstly, notice that if β is an isomorphism between two sets A and
B of finite positive measure, it is possible to build an isomorphism γ between
A ∪ N and B ∪ R, where N and R are two any sets of measure zero. Upon
substituting N with N \ A, and R with R \ B, we may assume that the
above unions are disjoint. Remove an uncountable null set from A and let
R0 = β(N0). Since β is an isomorphism, R0 is an uncountable null set. Put
N1 = N0 ∪ N and R1 = R0 ∪ R, and let σ be any bijective map from N1 to
R1. Finally, define the bijective map γ : A ∪N → B ∪R by

γ(x) =

{
β(x) if x ∈ A \N0,

σ(x) if x ∈ N1.

It is then apparent that such a γ is an isomorphism.
Assume first that X is a bounded set, say, X ⊂ [−K,K] for some K > 0,

with µ(X) = L. In view of Remark 3.2 and Proposition 3.4, it is enough
to prove the existence of an isomorphism between X and the interval [0, L].
Introduce the function ϕ : [−K,K]→ [0, L] by

ϕ(x) =
∫ x

−K

χX(y) dy.

Since ϕ is absolutely continuous, it maps measurable sets into measurable sets,
and null sets into null sets. Let {xn}n∈N be a dense countable set contained
in X. For every n ∈ N, set

An = {x ∈ X, x 6= xn such that ϕ(x) = ϕ(xn)}.

Then µ(An) = µ(ϕ(An)) = 0. Furthermore, let

B = {x ∈ X such that (x, x+ ε) ∩X = ∅ for some ε > 0}.

The set B is at most countable. Putting N =
⋃

n∈N An ∪ B, it is clear that
µ(N) = 0. It is now easy to see that ϕ|X\N is one-to-one. Indeed, given x < y
in X with ϕ(x) = ϕ(y), either x ∈ B, or there exists some xn0 ∈ [x, y]. In
that case, since ϕ is increasing, ϕ(xn0) = ϕ(y), which implies that y ∈ An0 .
We now claim that

µ(O ∩ (X \N)) = µ(ϕ(O ∩ (X \N)))

for every open set O ⊂ [−K,K], which is equivalent to proving that

µ(O ∩X) = µ(ϕ(O ∩X)).



684 Vittorino Pata and Pietro Ursino

Since an open set is a disjoint union of open intervals, it is enough to verify the
claim true for O = (a, b) ⊂ [−K,K]. Exploiting the fact that ϕ is continuous
and increasing, set

x+ = max{x ≥ b such that ϕ(x) = ϕ(b)}

and
x− = min{x ≤ a such that ϕ(x) = ϕ(a)}.

It is then straightforward to see that

µ(X ∩ [b, x+]) = 0 and µ(X ∩ [x−, a]) = 0.

We claim that
x ∈ X and ϕ(x) ∈ ϕ([a, b] ∩X)

if and only if
x ∈ X ∩

(
(a, b) ∪ [x−, a] ∪ [b, x+]

)
.

Indeed, since ϕ is increasing, if x ∈ X and ϕ(x) ∈ ϕ([a, b] ∩ X) it must
necessarily be that x ∈ O ∪ [x−, a] ∪ [b, x+]. Since X ∩ ([x−, a] ∪ [b, x+]) has
null measure, we conclude that

χX(x)χϕ([a,b]∩X)(ϕ(x)) = χ
(a,b)∩X(x) a.e.(µ).

Thus, using a change of variable (see, for instance, [8]), we get

µ((a, b) ∩X) =
∫ K

−K

χ
(a,b)∩X(y) dy =

∫ K

−K

χX(y)χϕ((a,b)∩X)(ϕ(y)) dy

=
∫ K

−K

ϕ′(y)χϕ((a,b)∩X)(ϕ(y)) dy =
∫ L

0

χ
ϕ((a,b)∩X)(y) dy

= µ(ϕ((a, b) ∩X)),

as claimed. Hence, calling Y = ϕ(X \ N), from Proposition 3.4 applied to
ϕ−1
|X\N we conclude that ϕ|X\N is an isomorphism between X \N and Y , so,

in particular, µ(Y ) = µ(X \ N) = L; i.e., [0, L] = Y ∪ R, with µ(R) = 0.
Recalling the first part of the proof, we get the desired isomorphism between
X and [0, L].

Suppose now that X is not a bounded set, with µ(X) = L. Again, by
Remark 3.2 and Proposition 3.4, it is enough to show that there exists an
isomorphism between X and the interval [0, L) (R+ if L = ∞). Write X =⋃

n∈I Xn, I = {1, 2, . . . , N}, with N possibly infinite, where the Xn’s are
bounded and pairwise disjoint subsets of R of positive measure Jn. Thus
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for every n ∈ I it is possible to find an isomorphism γn between Xn and
[0, Jn). Defining then L1 = 0, and Ln =

∑n−1
k=1 Jk for n ≥ 1 (notice that

Ln → L), the map βn = γn + Ln defined on Xn is an isomorphism between
Xn and [Ln, Ln + Jn), and therefore the map γ(x) = βn(x), if x ∈ Xn, is an
isomorphism between X and [0, L).

4 Completely Rearrangeable Functions

So far, we treated rearrangeability of functions only from a set theoretical
point of view. In this section we let measure theory enter the picture, and we
focus our attention on measure preserving rearrangements. We begin with a
definition.

Definition 4.1. A real-valued function f defined on a measurable setX ⊂ R is
said to be completely rearrangeable to a continuous function (or, more simply,
completely rearrangeable) if there exists an endomorphism γ of X such that the
function f ◦γ is continuous on X. Such a γ is called a complete rearrangement
of f .

Remark 4.2. It is quite immediate that a completely rearrangeable function
f : X ⊂ R → R is measurable on X. Indeed, let O ⊂ R be an open set.
Then γ−1(f−1(O)) is open, and since γ−1 carries nonmeasurable sets into
nonmeasurable sets, we get that f−1(O) is measurable.

A direct application of the Lebesgue monotone and dominated convergence
theorems yields the following proposition.

Proposition 4.3. Let f : X ⊂ R → R be completely rearrangeable, with
rearrangement γ. Then f ∈ L1(X) if and only if f ◦ γ ∈ L1(X). In that case∫

X

f(x) dx =
∫

X

f ◦ γ(x) dx.

Indeed, the above result clearly holds when f is a simple function. In the
general case, there exists a sequence sn of simple functions such that sn → f
and 0 ≤ |s1| ≤ |s2| ≤ · · · ≤ |f | almost everywhere.

It would be interesting now to exhibit necessary and sufficient conditions
for a function in order to be completely rearrangeable. Obviously, necessary
conditions for rearrangeability are also necessary for complete rearrangeability.
Also, it is reasonable to restrict our attention to the case of functions defined
on a connected subset X of the real line. However, a general criterion to
establish which functions defined on X are completely rearrangeable does not
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seem to be easily detectable. Here we consider the simplest possible case; i.e.,
one-to-one measurable functions. We begin by investigating the particular
case when X is a closed interval.

Lemma 4.4. Let X ⊂ R be a closed bounded interval, and let f : X → R be
a one-to-one measurable function. Then f is completely rearrangeable if and
only if f(X) is a closed interval, and

µ(f−1([a, b])) > 0, ∀ a, b ∈ f(X) s.t. a < b. (†)

Proof. If f is completely rearrangeable, then there exists an endomorphism γ
of X such that Ψ = f ◦ γ is continuous. Clearly, f(X) = Ψ(X), and therefore
f(X) is compact and connected. Moreover, since Ψ is continuous on X, it
must be either strictly increasing or strictly decreasing. Let a, b ∈ f(X) such
that a < b. Then

µ(f−1([a, b])) = µ(γ(Ψ−1([a, b]))) = µ(Ψ−1([a, b])) = |Ψ−1(b)−Ψ−1(a)| > 0.

Conversely, suppose that f(X) is a closed interval and that (†) holds. There
is no loss of generality in assuming X = f(X) = [0, 1]. Select n ∈ N, and let

0 = an
0 < an

1 < · · · < an
2n = 1

be such that the sets

An
j = f−1([an

j−1, a
n
j )), j = 1, . . . , 2n − 1

and
An

2n = f−1([an
2n−1, a

n
2n ])

LL have measure 1/2n. Since µ(f−1({x})) = 0 for every x ∈ [0, 1], it is well-
known that µ(f−1([0, x])) is a continuous and increasing function onto [0, 1]
(see, e.g., [1]). Therefore the an

j ’s are well defined and unique. Finally, define
the intervals

In
j = [(j − 1)/2n, j/2n), j = 1, . . . , 2n − 1

and
In
2n = [(2n − 1)/2n, 1].

By virtue of Theorem 3.5, for every j there exists an isomorphism γn
j be-

tween An
j and In

j . Thus the map γn : [0, 1] → [0, 1] equal to γn
j on An

j is
an endomorphism of [0, 1]. We introduce two sequences of functions; namely
fn(x) =

∑2n

j=1 a
n
j−1

χAn
j
(x), and Ψn(x) = fn ◦ γ−1

n (x). The proof will be com-
pleted through several steps.
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Step 1. For every m, n, p ∈ N, with n = m+ p, we have

am
j = an

j2p , ∀ j = 0, 1, . . . , 2m.

Moreover if Am
j ∩An

i 6= 0, then An
i ⊂ Am

j .
The quite easy proof of this step, which relies upon combinatorial arguments,
is left to the reader.
Step 2. For every n ∈ N, set

Kn = max
{
an

j+1 − an
j : j = 0, 1, . . . , 2n − 1

}
.

Then limn→∞Kn = 0.
It is clear that Kn is decreasing. Assume that Kn → K > 0, and let 0 < C <
K. Since Kn ≥ K > C, for every n ∈ N ,there exists a closed interval Jn of
length C such that Jn does not contain any an

j . Take a partition of [0, 1] of
s pairwise disjoint (except for the endpoints) closed intervals of equal length
L = C/2, denoted by B1, . . . , Bs. For every k = 1, . . . , s, let Nk be the number
of intervals Jn containing Bk. Notice that every Jn must contain a Bk. Since
the Jn’s are infinite, at least one of the Nk’s must be infinite. Therefore there
exists an interval of length L corresponding to some k, which we call B for
simplicity, and a subsequence Jnl

of intervals such that B ⊂
⋂
Jnl

. Hence B
does not contain any anl

j . But nl → ∞, and by Step 1 we conclude that B
does not contain any an

j either. Writing B = [α, β] (We can assume α > 0 and
β < 1.), for every n ∈ N let jn be such that an

jn−1 < α < β < an
jn
. Then

µ(f−1([α, β]) ≤ lim sup
n→∞

µ(An
jn

) = lim sup
n→∞

1
2n

= 0,

contrary to (†).
Step 3. γn → γ uniformly on [0, 1], where γ is an isomorphism between [0, 1]
and [0, 1] \N , being N a null set (possibly empty).
We first show that γn is a Cauchy sequence in the topology of uniform con-
vergence. Fix n0 ∈ N, and let n, m ≥ n0. Set x ∈ [0, 1]. Then x ∈ An

i ∩ Am
k

for some i, k, but also x ∈ An0
j for some j. By Step 1, An

i ∩ Am
k ⊂ An0

j , and
the same inclusion is fulfilled by the corresponding sets In

i , I
m
k , I

n0
j . Thus

γn(x), γm(x) ∈ In0
j , and we conclude that |γn(x) − γm(x)| ≤ 1

2n0 . The above
relation holds for every x, which yields the desired conclusion. Hence there
exists γ such that γn → γ uniformly on [0, 1]. In particular, γ is measurable.
We now show that γ is one-to-one. Indeed, let x 6= y. Since f(x) 6= f(y), from
Step 2 we get that for n0 big enough, between x and y there are at least two
an0

j ’s. Thus, assuming f(x) < f(y), x ∈ An0
j and y ∈ An0

i , with i ≥ j+2. It fol-
lows that γn0(x) ∈ In0

j and γn0(y) ∈ In0
i , which yields |γn0(x)−γn0(y)| > 1

2n0 .
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Notice that if n ≥ n0, then x ∈ An
l ⊂ An0

j and y ∈ An
s ⊂ An0

i , for some l, s.
Thus γn(x) ∈ In

l ⊂ I
n0
j and γn0(y) ∈ In

s ⊂ I
n0
i , and the above inequality holds

for n as well, and therefore it holds for the limit. In order to complete the
step, choose 0 ≤ a < b ≤ 1. Let 0 < ε < b− a, and let n be such that

‖γn − γ‖∞ = sup
x∈[0,1]

|γn(x)− γ(x)| < ε.

Then the inclusion

γ−1
n ((a+ ε, b− ε)) ⊂ γ−1((a, b)) ⊂ γ−1

n ((a− ε, b+ ε))

holds. Hence b− a− 2ε ≤ µ(γ−1((a, b))) ≤ b− a+ 2ε. From the arbitrariness
of ε, µ(γ−1((a, b))) = b − a. Let now O be an open set in [0, 1]. Then O is a
countable union of pairwise disjoint open intervals Oi. Due to the injectivity
of γ,

µ
(
γ−1(O)

)
= µ

(
γ−1(

⋃
iOi)

)
=
∑

i

µ
(
γ−1(Oi)

)
= µ (

⋃
iOi) = µ(O).

From Proposition 3.4 we deduce that γ is an isomorphism between [0, 1] and
γ([0, 1]). Clearly, γ([0, 1]) ⊂ [0, 1]. In particular, µ(γ([0, 1])) = 1; i.e., N =
[0, 1] \ γ([0, 1]) is a nullset.
Step 4. fn(x)→ f(x) for every x ∈ [0, 1].
Let x ∈ [0, 1], and select ε > 0. From Step 2, for n0 big enough, we have that
Kn < ε for n ≥ n0. Fix then n ≥ n0, and let an

j0
the biggest an

j less than or
equal to f(x). By construction of fn, we get that fn(x) = an

j0
. Thus

|f(x)− fn(x)| = f(x)− an
j0 < an

j0+1 − an
j0 ≤ Kn < ε.

Step 5. Ψn → Ψ uniformly on [0, 1], where Ψ is a continuous, strictly in-
creasing function onto [0, 1].
We first show that Ψn is a Cauchy sequence in the topology of the uniform
convergence. Fix n0 ∈ N, and let n, m ≥ n0. Set x ∈ [0, 1], and assume that
n = m+ p. Then x ∈ In

i ⊂ Im
k for some i, k, and therefore γ−1

n (x) ∈ An
i and

γ−1
m (x) ∈ Am

k . From Step 1, i ∈ {(k− 1)2p + 1, . . . , k2p}; so Ψn(x) = an
i−1 and

Ψm(x) = am
k−1, with an

i−1 ∈ [am
k−1, a

m
k ]. Hence

|Ψn(x)−Ψm(x)| = an
i−1 − am

k−1 ≤ am
k − am

k−1 ≤ Km ≤ Kn0 ,

and the conclusion follows from Step 2, since n0 is independent of x. Thus Ψn

converges to some Ψ uniformly on [0, 1]. Since [0, 1] is closed, Ψ([0, 1]) ⊂ [0, 1].
Moreover Ψ is increasing, being the limit of increasing functions. We show
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that Ψ is strictly increasing. Indeed, let x 6= y, and let n0 be so large that
x ∈ In0

j and y ∈ In0
i , with i ≥ j + 2. Thus Ψn0(x) = an0

j−1 and Ψn0(y) = an0
i−1,

which implies

|Ψn0(x)−Ψn0(y)| > an0
i−1 − a

n0
j ≥ a

n0
j+1 − a

n0
j > 0.

If n ≥ n0, then Ψn(x) = an
l−1 and Ψn(y) = an

k−1, and since γ−1
n (x) ∈ An

l ⊂ A
n0
j

and γ−1
n (y) ∈ An

k ⊂ A
n0
i , from Step 1 we get that an

l−1 < an0
j and an

k−1 > an0
i−1.

Thus the above inequality holds for n as well, and therefore it holds to the
limit. From the construction of the Ψn’s, and by Step 2,

Ψ(0) = lim
n→∞

Ψn(0) = 0, and Ψ(1) = lim
n→∞

Ψn(1) = lim
n→∞

an
2n−1 = 1.

We are left to prove the continuity of Ψ, which, together with the strict
monotonicity and the fact that Ψ(0) = 0 and Ψ(1) = 1, implies that Ψ is onto.
Notice first that Ψn is right-continuous, and thus Ψ is right continuous too.
Assume that there exists a point of (left) discontinuity x ∈ (0, 1]. Then, for
some R > 0, Ψ(x)−Ψ(y) ≥ R, ∀ y < x. Choose n so large that ‖Ψn−Ψ‖∞ <
R/3 and Kn < R/3 (again, we use Step 2). For some j, we have x ∈ In

j . Select
y < x so close to x that y ∈ In

j−1 ∪ In
j . We get

Ψ(x)−Ψ(y) ≤ |Ψ(x)−Ψn(x)|+ Ψn(x)−Ψn(y) + |Ψ(y)−Ψn(y)|
≤ 2‖Ψn −Ψ‖∞ + an

j−1 − an
j−2

≤ 2R/3 +Kn < R,

which is inconsistent with the inequality Ψ(x)−Ψ(y) ≥ R, ∀ y < x.

We now have the tools to complete the proof. Since Ψ is continuous on
[0, 1], Ψ is uniformly continuous. Choose ε > 0, and let δ = δ(ε) such that
|x − y| < δ implies |Ψ(x) − Ψ(y)| < ε. Let n0 be such that ‖Ψn − Ψ‖∞ < ε
and ‖γn − γ‖∞ < δ for every n ≥ n0. Fix x ∈ [0, 1]. Then for n ≥ n0

|Ψn ◦ γn(x)−Ψ ◦ γ(x)| ≤ |Ψn ◦ γn(x)−Ψ ◦ γn(x)|+ |Ψ ◦ γn(x)−Ψ ◦ γ(x)|
≤ ‖Ψn −Ψ‖∞ + |Ψ(γn(x))−Ψ(γ(x))| < 2ε.

Since n0 is independent of x, we conclude that Ψn ◦ γn → Ψ ◦ γ uniformly on
[0, 1]. On the other hand, Ψn ◦ γn = fn, and, since fn → f , we have that f =
Ψ◦γ. Notice that f and Ψ are bijections from [0, 1] to [0, 1]. Hence γ = Ψ−1◦f
is a bijection too, which means that N = ∅. Thus from Proposition 3.4, γ−1

is an endomorphism of [0, 1], and f ◦ γ−1 = Ψ, as desired.
It is apparent that there are only two possible rearranged continuous func-

tions coming from f , precisely the function Ψ of the lemma and the function
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Φ = 1 − Ψ, which is strictly decreasing, corresponding to the rearrangement
γ ◦ γ̃, with γ̃(x) = 1 − x. Indeed, if Ψ1 and Ψ2 are two increasing rearrange-
ments of f , for every x ∈ [0, 1] we have

Ψ−1
1 (x) = µ(Ψ−1

1 ([0, x])) = µ(Ψ−1
2 ([0, x])) = Ψ−1

2 (x).

Corollary 4.5. Let X ⊂ R be an open (resp. half-open) bounded interval,
and let f : X → R be a one-to-one measurable function. Then f is completely
rearrangeable if and only if f(X) is an open (resp. half-open) bounded interval,
and (†) holds.

Proof. Consider the case X = (a, b), the other being analogous. Necessity
is proved as in Lemma 4.4. (Here we use the fact that f is 1-to-1.) To prove
sufficiency, setting f(I) = (c, d), define

f̃(x) =


c if x = a,

f(x) if x ∈ (a, b),
d if x = b.

From Lemma 4.4 we conclude that there exists an endomorphism γ̃ of [a, b]
such that Ψ̃ = f̃ ◦ γ̃ is a continuous strictly increasing function. But then
Ψ̃(a) = c and Ψ̃(b) = d, and this implies that γ = γ̃|(a,b) is an endomorphism
of (a, b). Since f̃ ◦ γ = f ◦ γ on (a, b) we get the conclusion.

Notice that in the above corollary we have again two possible complete
rearrangements for the case of an open interval, but just one for the case of a
half-open interval.

Now we investigate the case of unbounded connected sets.

Lemma 4.6. Let X ⊂ R be an open unbounded interval (resp. half-open
unbounded interval). Then f is completely rearrangeable if and only if f(X)
is a not necessarily unbounded open interval (resp. half-open interval), and

0 < µ(f−1([a, b])) <∞, ∀ a, b ∈ f(I) s.t. a < b. (‡)

Proof. We just prove the case X = f(X) = R. (Along the same line, with
simple modifications, the other cases follow.) The proof of necessity proceeds
almost as before, and is left to the reader. So we assume that (‡) holds. Write
R =

⋃
n∈Z[n, n+ 1), and let An = f−1([n, n+ 1)). Putting Jn = µ(An), from
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(‡) we get that 0 < Jn <∞. Let

Ln =



n∑
k=0

Jk if n ≥ 0,

0 if n = −1,

−
1∑

k=n+1

Jk if n ≤ −2,

Applying Theorem 3.5, construct for every n ∈ Z an isomorphism βn between
An and the set In = [Ln−1, Ln). Clearly, β(x) = βn(x) if x ∈ An is an
endomorphism of R. Consider now h = f ◦ β−1. Observe that h(In) =
[n, n+ 1). Thus, from Corollary 4.5, there exist isomorphisms αn between In
and [n, n+1), and continuous strictly increasing functions Ψn : In → [n, n+1)
such that h ◦ αn = Ψn on In. Now setting Ψ(x) = Ψn(x) if x ∈ In, and
α(x) = αn(x) if x ∈ In, we get at once that Ψ is a continuous strictly increasing
function from R onto R, and α is an endomorphism of R. By construction
h ◦ α = Ψ. Finally, from Remark 3.2, we conclude that γ = β−1 ◦ α is a
complete rearrangement of f .

We summarize our results in the following theorem.

Theorem 4.7. Let X ⊂ R be a connected set, and let f : X → R be a one-
to-one measurable function. Then f is completely rearrangeable if and only
if

(i) X is a closed bounded interval and f(X) is a closed bounded interval, or

(ii) X is an open interval and f(X) is an open interval, or

(iii) X is an half-open interval and f(X) is a half-open interval

(where we allow open and half-open intervals to be possibly unbounded), and
the condition

0 < µ(f−1([a, b])) <∞, ∀ a, b ∈ f(X) s.t. a < b

holds.

We conclude the paper showing that rearrangeability and continuity almost
everywhere, quite surprisingly, are not related concepts. Consider a function
f : X ⊂ R→ R, with X connected. With reference to [11], f has C-limit l at
x if for every ε > 0 there exists δ > 0 such that

µ
(
(x− δ, x+ δ) ∩ f−1((R \ (l − ε, l + ε))

)
= 0.
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Note that it means that l is the limit at x in the ∗-topology of Hashimoto with
respect to σ ideal of null sets (see [5]). We denote by Cf the subset of R of the
points where f admits C-limit. The following theorem holds (see [11]).

Theorem 4.8. Given f : X ⊂ R → R, there exists g = f a.e.(µ) whose set
of points of continuity is exactly Cf .

It is a natural question to ask whether there is a relation between rear-
rangeability and continuity almost everywhere. Of course, we restrict our
attention to Darboux functions (the Heaviside step function, for instance, is
not rearrangeable, since its image is disconnected, but it is continuous every-
where except in the origin). In fact, even in this case, things go as wrong
as possible. We will show that there exists a Darboux function f on [0, 1],
continuous almost everywhere and such that Cf = [0, 1], which is not even re-
arrangeable. Conversely, we provide an example of a completely rearrangeable
function f such that Cf = ∅.

Example 4.9. Let X = [0, 1], and consider the sequence an = 1 − 1/n, for
n ∈ N, and a0 = 1. Define f to be

f(x) =


1 if x = 0,
x if x > 0 and x 6= an, n ∈ N,
an−1 if x = an, n ∈ N.

Since f(x) = x a.e.(µ), we have that Cf = [0, 1]. Moreover, f is onto [0, 1].
On the other hand, |f−1({x})| = 1 for every x ∈ [0, 1), and |f−1({1})| = 2. It
is straightforward to see that no continuous function from [0, 1] onto [0, 1] can
have all the fibers of cardinality 1 except one fiber of cardinality 2. Thus f is
not rearrangeable.

Example 4.10. Let X = [−1, 1]. It is well-known that it is possible to
construct a set T ⊂ (0, 1) such that 0 < µ([a, b] ∩ T ) < b − a for every
0 ≤ a < b ≤ 1.

Define f by

f(x) =


x if x ∈ T,
x− 1 if x ∈ [0, 1] \ T,
−x− 1 if x ∈ −T,
−x if x ∈ [−1, 0) \ −T.

It is easily verified that Cf = ∅. On the other hand, f is a bijection from
[−1, 1] onto [−1, 1]. Moreover for every −1 ≤ a < b ≤ 1,

µ(f−1([a, b])) ≥ µ([a, b] ∩ (−T ∪ T )) > 0.
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Hence, from Theorem 4.7, f is completely rearrangeable.
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