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A FEW RESULTS ON ARCHIMEDEAN
SETS

Abstract

In a 1990 paper by R. Mabry, it is shown that for any constant
a ∈ (0, 1) there exist sets A on the real line with the property that for

any bounded interval I,
µ(A

T
I)

µ(I)
= a, where µ is any Banach measure.

Many of the constructed sets are Archimedean sets, which are sets that
satisfy A + t = A for densely many t ∈ R. In that paper it is shown

that if A is an arbitrary Archimedean set, then for a fixed µ,
µ(A

T
I)

µ(I)
is constant. (This constant is called the µ-shade of A and is denoted
shµA.) A problem is then proposed: For any Archimedean set A, any
fixed Banach measure µ, and any number b between 0 and shµA, does

there exist a subset B of A such that
µ(B

T
I)

µ(I)
= b for any bounded

interval I? In this paper, we partially answer this question. We also
derive a lower bound formula for the µ-shade of the difference set of an
arbitrary Archimedean set. Finally, we generalize an intersection result
from Mabry’s original paper.

1 Introduction.

In this paper we assume the standard definitions for the sum of sets and the
scalar multiple of a set. That is, C + t = {c+ t|c ∈ C} and sC = {sc|c ∈ C}.
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We also define A−A = {a1−a2|a1, a2 ∈ A} to be the difference set of a given
set A ⊆ R.

Let µ be a finitely additive, isometry-invariant extension of the Lebesgue
measure on 2R. Then µ is a measure with the property that µ(E + t) = µ(E)
and µ(−E) = µ(E) for every t ∈ R and every set E ⊂ R. Also, µ(E) = λ(E) if
E is Lebesgue measurable and λ is the Lebesgue measure. (Such a measure is
called a Banach measure; such measures exist as a consequence of the axiom of
choice, which we freely assume.) Mabry [4] has shown that for each α ∈ [0, 1]
there exist sets K called shadings, with the following property: Given any
bounded Lebesgue measurable set E ⊂ R with positive measure and any
Banach measure µ, µ(K ∩ E)/µ(E) = α. It is clear that this “shade density”
or shade is an extension of the usual Lebesgue density.

We will now briefly review some of the fundamental ideas used in [4]. To
show a shading exists in the case where α is of the form 1/a, where a ∈
N,N = {1, 2, · · · }, define an equivalence relation ∼ on R as follows: x ∼ y ⇔
x−y ∈ hZ + Z, where h is a fixed irrational number. Let Γ be a set of numbers
consisting of exactly one element from each equivalence class so formed. (That
is, let Γ be a selector for ∼.) Finally, by letting Ka,b = Γ + h(aZ + b) + Z,
where b ∈ Z, it can be shown Ka,b has shade 1

a . To see this, first note that
R = Γ + hZ + Z. Also, Ka,b+c = Ka,b + rc, where rc is any element of the set
h (aZ + c) + Z. Since h is irrational, this set is dense and so we may choose
rc < ε, where ε is any arbitrary positive number. If J is an arbitrary interval
and J+ = J

⋃
(J + ε), then

aµ(Ka,b

⋂
J) =

a−1∑
c=0

µ(Ka,b+c

⋂
(J + rc)) ≤

a−1∑
c=0

µ(Ka,b+c

⋂
J+)

= µ((
a−1⋃
c=0

Ka,b+c) ∩ J+) = µ(R ∩ J+) = µ(J) + ε.

Similarly, aµ(Ka,b

⋂
J) ≥ µ(J) − ε. Since ε was arbitrary, the result follows.

It is also shown in Mabry’s paper that shadings of irrational shade can be con-
structed by taking countable unions of the Ka,b’s. The extension from intervals
J to arbitrary Lebesgue measurable sets E is demonstrated in Theorem 3.11
in Mabry’s paper.

2 Subsets of Archimedean Sets and other µ-Shadings.

In [6], Simoson defines an Archimedean set A to be a set with the property
that A + t = A for densely many t ∈ R. (We call such t’s the translators of
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A, and denote this set of such t by τ(A)). It is easy to see that the shadings
Ka,b are Archimedean sets. One of the results proved in [4] is that if A
is an Archimedean set, then for each fixed Banach measure µ, the quantity
µ(A∩I)
µ(I) is constant for any bounded interval I of positive Lebesgue measure

(Theorem 6.1 in [4]). This quantity is called the µ-shade of A, denoted shµA,
and the set itself is referred to as a µ-shading. Problem 4 is then posed:
Given an Archimedean set A and a number b ∈ (0, shµA), does there exist
an Archimedean subset B of A such that shµB = b? The next theorem is a
partial answer to this question.

Theorem 2.1. Let µ be a fixed Banach measure, let A be an Archimedean set
of positive µ-shade a, and let 0 < b < a. If τ(A) has two numbers t1, t2 such

that
t1
t2

is irrational, then there exists a subset B of A that has µ-shade b.

Proof. Let b =
a

n
for some integer n ≥ 2. Define an equivalence relation on

A as follows: for x, y ∈ A, x ∼ y ⇔ x− y ∈ t1Z + t2Z. Let ΓA be a selector for
∼ and consider the set ΓA + t1Z + t2Z. Since ΓA ⊆ A and τ(A) is an additive
group, this set is contained in A. Also, since any element t ∈ A is equivalent
to some γt ∈ ΓA, t− γt ∈ t1Z + t2Z which implies t ∈ ΓA + t1Z + t2Z and so
A ⊆ ΓA + t1Z + t2Z. We conclude that A = ΓA + t1Z + t2Z. We now claim
that B = ΓA + t1(nZ) + t2Z is a subset of A having µ-shade b. The rest of the
proof is similar to Theorem 3.6 in [4]. Let I be a bounded, nontrivial interval,
let ε > 0, and let ri ∈ (t1 (nZ + i) + t2Z)

⋂(
0,
ε

n

)
for i = 1, 2, · · · , n− 1, and

r0 = 0. (Note: we can do this because t1 (nZ + i)+t2Z = t2

(
t1
t2

(nZ + i) + Z
)

is a dense set.) Now let Bi = ΓA + t1 (nZ + i) + t2Z and I+ = I ∪ (I + ε).
Note that A is the disjoint union of the Bi, i = 0, 1, · · · , n− 1. Then

nµ (B ∩ I) =
n−1∑
i=0

µ ((B ∩ I) + ri) =
n−1∑
i=0

µ (Bi ∩ (I + ri))

≤
n−1∑
i=0

µ
(
Bi ∩ I+

)
≤
n−1∑
i=0

µ (Bi ∩ I) + ε

=µ (A ∩ I) + ε.

Since ε > 0 was arbitrary, nµ (B ∩ I) ≤ µ (A ∩ I). Similarly we can show
nµ (B ∩ I) ≥ µ (A ∩ I). The result follows.
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Now consider the general case. Let
∞∑
i=1

di
2i

be a binary expansion of
b

a
; here

di = 0 or di = 1 for all i. Define K(A)
v,w = ΓA + t1 (vZ + w) + t2Z, where ΓA

is the same as in the first case and v, w ∈ N, w < v. Then as in Case 1, K(A)
v,w

is an Archimedean subset of A with µ-shade
a

v
. Let B =

⋃
i∈M

K
(A)
2i,2i−1 , where

M = {i : di = 1}. (We are using the construction from Corollary 3.9 in [4].)
Clearly each K

(A)
2i,2i−1 has µ-shade

a

2i
. To show this set satisfies the theorem

we only need a variation of Theorem 3.8 of [4] and to show all of the K2i,2i−1 ’s
are pairwise disjoint. (Theorem 3.8 says that if a countable union of disjoint
µ-shadings exhausts A, and if the sum of their µ-shades is equal to a, then any
subcollection of that union is itself a µ-shading with µ-shade equal to the sum
of the µ-shades in the subcollection.) Suppose x ∈ K2i,2i−1

⋂
K2j ,2j−1 . Then

we can let x = γ1+t1
(
2ij + 2i−1

)
+t2k = γ2+t1

(
2lm+ 2l−1

)
+t2n for positive

integers i, j, k, l,m, n. But then γ1 = γ2, since otherwise γ1 − γ2 ∈ t1Z + t2Z.

This implies that k = n and 2ij+2i−1 = 2lm+2l−1, since it follows that
t1
t2

is

rational. But this is impossible unless i = l. We conclude all of the K(A)
2i,2i−1 ’s

are pairwise disjoint. Hence B has µ-shade
∞∑
i∈M

di

( a
2i
)

= a

(
b

a

)
= b.

Corollary 2.2. For sets B and A as set forth in Theorem 2.1 we have that

shµ (cB)
shµ (cA)

=
shµB
shµA

for any nonzero real number c and any Banach measure µ.

Proof. As before, we have B =
⋃
i∈M

K
(A)
2i,2i−1 ⇒ cB =

⋃
i∈M

(
cK

(A)
2i,2i−1

)
. It

can be shown using the ideas from the previous proof that shµ
(
cK

(A)
2i,2i−1

)
=

shµ (cA)
2i

. (We note that shµ (cA) exists because cA is Archimedean.) Hence,



A Few Results on Archimedean Sets 161

by Theorem 3.8 of [4],

shµ (cB)
shµ (cA)

=

shµ

(⋃
i∈M

(
cK

(A)
2i,2i−1

))
shµ (cA)

=

∞∑
i=1

dishµ
(
cK

(A)
2i,2i−1

)
shµ (cA)

=

∞∑
i=1

(
di
2i

shµ (cA)
)

shµ (cA)
=
∞∑
i=1

di
2i

=
shµB
shµA

.

In [1] it is shown that the outer and inner Lebesgue measures of sets that
exhibit certain invariant properties take on only certain values. More specif-
ically, if C + t = C for densely many t ∈ R or if sC = C for densely many
s ∈ R, then the outer measure of a set of the form C ∩B, where B is a Borel
set, is always either 0 or λ (B). The same is true for the inner measure of such
a set. Mabry has already shown that Archimedean sets are µ-shadings. We
will now show that sets S that satisfy cS = S for densely many c ∈ R are also
µ-shadings for certain µ’s. We will also show that a subset result similar to
Theorem 2.1 can be proved for such a set. The two proofs that follow require
Corollary 11.5 of [7], which guarantees the existence of a Banach measure µ
satisfying µ (cA) = |c|µ (A) for any nonzero constant c ∈ R and any set A ⊂ R.
We define M (S) to be the set of numbers c satisfying cS = S.

Theorem 2.3. Let S be a set satisfying cS = S for densely many c ∈ R,
and let µ be a Banach measure satisfying µ (cA) = |c|µ (A) for any nonzero
constant c ∈ R and any set A ⊂ R. Then S is a µ-shading.

Proof. First we show that if c1, c2 ∈ M (S), where c2 > c1 ≥ 0, then

µ (S
⋂

[c1, c2]) = (c2 − c1)µ (S
⋂

[0, 1]). (This shows
µ (S

⋂
I)

µ (I)
= µ

(
S
⋂

[0, 1]
)

for I = [c1, c2].) We have

(c2 − c1)µ
(
S
⋂

[0, 1]
)

= c2µ
(
S
⋂

[0, 1]
)
− c1µ

(
S
⋂

[0, 1]
)

= µ
(
c2S

⋂
c2[0, 1]

)
− µ

(
c1S

⋂
c1[0, 1]

)
= µ

(
S
⋂

[0, c2]
)
− µ

(
S
⋂

[0, c1]
)

= µ
(
S
⋂

[c1, c2]
)
.
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The cases where c1 < c2 ≤ 0 and c1 < 0, c2 > 0 can be proven similarly, so in
all cases, µ (S

⋂
[c1, c2]) = µ ([c1, c2])µ (S

⋂
[0, 1]). If the endpoints c1, c2 are

not in M (S), then we can choose endpoints that are in M (S) that are close
to c1 and c2 and make a limiting argument to show that for any finite interval
I, µ (S

⋂
I) = µ (I)µ (S

⋂
[0, 1]).

Theorem 2.4. Let µ be a Banach measure satisfying µ (cA) = |c|µ (A) for
every nonzero constant c and every set A ⊂ R. Also let S be a set satisfying
cS = S for densely many c ∈ R, and assume there exist m1,m2 ∈ M (S)
satisfying m1 > 0,m2 < 0, and mq

1 6= |m2| for each q ∈ Q. If a = shµS, then
for every b in the interval (0, a), there exists a subset B of A that has µ-shade
b.

Proof. It is easy to verify that x ∼ y ⇔ x

y
∈ mZ

1m
Z
2 for x, y ∈ S is an

equivalence relation. (Here mZ
i = {mz

i |z ∈ Z}.) As in the proof of Theorem 2.1
we choose one element γ from each equivalence class to form the set Γ. It
follows that S = mZ

1m
Z
2Γ.

We now show that the set mZ
1m

Z
2 is dense. Since mZ

1 (m2)2Z is a set of
positive numbers, we can say ln

(
mZ

1 (m2)2Z
)

= Zln (m1) + 2Zln|m2|. This is

dense if
ln (m1)
ln|m2|

/∈ Q, which is true by assumption. So mZ
1 (m2)2Z is dense in

R+, which implies mZ
1 (m2)2Z+1 is dense in R−. This implies mZ

1m
Z
2 is dense

in R.

Now let S2n = (m1)2
nZ (m2)Z Γ. Clearly S =

2n−1⋃
i=0

ciS2n , where ci is any

number in the dense set (m1)2
nZ+i

mZ
2 . Thus for any finite interval I,

µ
(
S
⋂
I
)

= µ

(
2n−1⋃
i=0

ciS2n

⋂
I

)
=

2n−1∑
i=0

µ
(
ciS2n

⋂
I
)

=
2n−1∑
i=0

ciµ

(
S2n

⋂ I

ci

)
Since each ci can be made as close to 1 as we like, for any ε > 0, we can

choose the ci so that µ (S2n

⋂
I)− ε

2n
< ciµ

(
S2n

⋂ I

ci

)
< µ

(
S2n

⋂
I
)

+
ε

2n
for all i, which implies 2nµ (S2n

⋂
I) − ε < µ (S

⋂
I) < 2nµ (S2n

⋂
I) + ε.



A Few Results on Archimedean Sets 163

Since ε can be made arbitrarily small, we have
µ (S2n

⋂
I)

µ (S
⋂
I)

=
1
2n

. Now let
∞∑
i=1

di
2i

be a binary expansion of
b

a
, where di = 0 or 1 for all i, and define

S2n,2n−1 = (m1)2
nZ+2n−1

(m2)Z Γ. Finally, choose B =
⋃
i∈M

S2i,2i−1 , where

M = {i|di = 1}. The rest of the proof is similar to the last part of the proof
of Theorem 2.1.

3 The µ-Shade of the Difference Set of an Archimedean
Set.

The next theorem involves estimating the µ-shade of A − A, where A is
Archimedean. We note that A − A will have a µ-shade because A − A is
also Archimedean. The proof is similar to the proof of Proposition 1 in [2,
p. 126], where it is proved that if A is a (nonmeasurable) set satisfying

µ (A
⋂
I) >

1
2
µ (I) on some interval I, then A − A contains an interval

about 0. Hence if A is Archimedean with this property, shµA > 1/2, and
so shµ (A−A) = 1. We will weaken this assumption to prove a more general
theorem, although our result will be an inequality instead of an equality. But
first, we need a lemma. (The original proof of this lemma was a bit longer;
the proof that follows is due to Mabry.)

Lemma 3.1. Let µ be a Banach measure and let H be an Archimedean set
with shµ (H) > k−1

k , where k ≥ 2 is an integer. Then there exist distinct

h1, h2, · · · , hk ⊂ R such that shµ
(⋂k

i=1 (H − hi)
)
> 0.

Proof. For any h1, h2, · · · , hk, one has

shµ

(
k⋂
i=1

(H − hi)

)
= 1− shµ

(
k⋃
i=1

(H − hi)c
)
≥ 1−

k∑
i=1

shµ (H − hi)c

= 1− k (1− shµ (H)) = k shµ (H)− (k − 1) .

Thus shµ
(⋂k

i=1 (H − hi)
)
> 0 if shµH > k−1

k . For 1 ≤ n ≤ k it is also

clear that shµ (
⋂n
i=1 (H − hi)) > k−n

k > 0. The hi can therefore be chosen
recursively so that they are distinct. Specifically, let h1 be arbitrary and take
hn ∈

⋂n−1
i=1 (H − hi) for 1 < n ≤ k, such that hn /∈ {h1, h2, · · · , hn−1}. This
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is possible because hn is chosen from a set of positive µ-shade, which must be
(uncountably) infinite.

Theorem 3.2. Let A be an Archimedean set satisfying shµA > 1
k+1 for an

integer k ≥ 1. Then shµ (A−A) ≥ 1
k .

Proof. Assume to the contrary that shµ (A−A) < 1
k and let H = (A−A)c.

Clearly H is Archimedean and shµ (H) > k−1
k . Choose distinct h1, h2, · · · , hk

as per Lemma 3.1 and then take hk+1 ∈
⋂k
i=1 (H − hi) \ {h1, h2, · · · , hk}, this

being possible since the latter intersection has positive µ-shade. It follows
that the sets A + h1, A + h2, · · · , A + hk are pairwise disjoint. (To see this,
note that if x ∈ (A+ hj) ∩ (A+ hi) for j 6= i, then hj − hi ∈ A − A, which
is impossible.) But the sum of µ-shades of disjoint µ-shadings cannot exceed
unity, so 1 ≥

∑k+1
i=1 shµ (A+ hi) = (k + 1) shµ (A), which implies that shµA ≤

1
k+1 , a contradiction.

4 An Intersection Result.

In his paper, Mabry proved that if f : R → [0, 1] is a continuous function,

then there exists a point set F such that limµ(Ix)→0
µ (F

⋂
Ix)

µ (Ix)
= f (x) for

all Banach µ and for all x ∈ R, where Ix is a closed interval about x. (A.
B. Kharazishvili constructs something similar in [3].) Mabry also proved ([4,
Example 5.4]) that for any finite collection v1, v2, ..., vn of real numbers in
(0, 1), there exist shadings C1, C2, ..., Cn with the property that for any set M

of distinct integers in {1, 2, · · · , n}, sh

 ⋂
j∈M

Cj

 =
∏
j∈M

vj . We will combine

these results to prove that this intersection property holds for countably many
continuous functions.

Theorem 4.1. Let {fi}∞i=1 be a set of continuous functions, fi : R → [0, 1].
Then there exist subsets {Fi}∞i=1 of R such that for each finite subset M of N,

limµ(Ix)→0

µ

((⋂
i∈M

Fi

)⋂
Ix

)
µ (Ix)

=
∏
i∈M

fi (x) , (1)

where x ∈ R is arbitrary and Ix is a closed interval centered at x.
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Before proving the theorem, we need a few lemmas.

Lemma 4.2. For i = 1, 2, · · · , t, let {pi} be distinct primes and let {mi, ai}
be pairs of nonnegative integers. Then (x1, x2, · · · , xt) is an integer solution
of the equation pm1

1 x1 + a1 = pm2
2 x2 + a2 = · · · = pmt

t xt + at if and only if

xi =

∏
j 6=i

p
mj

j

 k + ci for all i, where k ∈ Z and (c1, c2, · · · , ct) is any single

integer solution of the equation.

Proof. Fix a solution (c1, c2, · · · , ct). Let x0 denote the common value of
pmi
i ci + ai. By the Chinese Remainder Theorem (see, e.g., [5]), x is a solution

of the set of congruences

x ≡ a1 (modpm1
1 ) , x ≡ a2 (modpm2

2 ) , . . . , x ≡ at (modpmt
t )

if and only if x = x0 + km, where k is an integer and m = pm1
1 pm2

2 · · · p
mt
t .

Clearly x is a solution of the above congruences if and only if x = a1 +
k1p

m1
1 = a2 + k2p

m2
2 = · · · = at + ktp

mt
t for integers ki. Thus we can say that

(k1, k2, · · · , kt) is a solution of the equation mentioned in the theorem if and
only if there exists a k ∈ Z such that x0 + km = ai + kip

mi
i for all i. After a

little algebra, this is seen to be equivalent to the conditions ki = k
m

pmi
i

+ci.

Lemma 4.3. Let x be a real number written in base p, where p > 1 is an
integer. Assume that the base-p representation of x never ends in an infinite
string of p − 1’s. (For example, if x = 0.234 in base-5, we write x = 0.24.)
Then for any N ∈ N, there exists an ε > 0 such that the base-p representation
of every number in (x− ε, x) begins with the same N digits after the radix
point and the base-p representation of every number in [x, x+ ε) begins with
the same N digits after the radix point.

The radix point in base 10 is the decimal point. From now on, we will refer
to the nth digit after the radix point as the digit in the nth radix place. We omit
the obvious proof of Lemma 4.3, but note that the N digits corresponding to
(x− ε, x) are, in general, different than the N digits corresponding to [x, x+ ε)
whenever x terminates in base p. We use the notation x− to represent the
rational number in base p whose only nonzero digits after the radix point
are the N digits corresponding to (x− ε, x). The notation x+ has a similar
meaning.

Proof of Theorem 4.1. Consider the set Kpk,lpk−1 = Γ+h
(
pkZ + lpk−1

)
+

Z, where Γ is the same selector set mentioned in the introduction, h is the
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same irrational constant, and 1 ≤ l ≤ p− 1. It is easy to show that if k1 6= k2

or if l1 6= l2, then Kpk1 ,l1pk1−1 ∩Kpk2 ,l2pk2−1 = ∅. Let {pi} denote the usual
sequence 2, 3, 5, · · · of primes, and let C(l)

k (i) = Kpk
i ,lp

k−1
i

, where k ∈ N and

1 ≤ l ≤ pi − 1. Then for each fixed i the sets C(l)
k (i) are pairwise disjoint

shadings (for distinct pairs (k, l)) with shade 1/pki . We will associate these
shadings with the nonzero digits l = 1, 2, · · · , pi − 1 in the kth radix place of
a number expressed in base pi.

We will now construct the point set Fi using the ith prime pi. We assume
fi (x0) is written in base pi and also we make the same assumption about
numbers written in base pi that we made in Lemma 4.3: The base-pi rep-
resentation of a number never ends with an infinite string of pi − 1’s. Let
S

(j)
k (i) be the set of x-values such that fi(x) has a j in its kth radix place,

where 0 ≤ j < pi, k ∈ N. (Notice that S(j)
k (i) is Lebesgue measurable, being

the inverse image of a finite union of intervals under the continuous function

fi.) Let Fi =
⋃
j,k

S(j)
k (i)

⋂ ⋃
1≤l≤j

C
(l)
k (i)

 for i ∈ N, and let M ⊂ N be fi-

nite. (For j = 0, the expression S(j)
k (i)

⋂ ⋃
1≤l≤j

C
(l)
k (i)

 is understood to be

empty.) Now fix x0 ∈ R and let ε > 0. We will show that the limit in (1) holds
for this arbitrary x0. For now, assume fi (x0) > 0 for all i ∈ M , and choose

N ∈ N large enough so that
∏
i∈M

fi (x0) −
∏
i∈M

(
fi (x0)− 1

pNi

)
< ε,

|M |
2N

< ε,

and fi (x0) − 1
pNi

> 0 for all i ∈ M . From Lemma 4.3 we know ∃ ε′ > 0

such that the base-pi representation of every number in (fi (x0)− ε′, fi (x0))
begins with the same N digits after the radix point and the base-pi repre-
sentation of every number in [fi (x0) , fi (x0) + ε′) begins with the same N
digits after the radix point. (In the above statement ε′ depends, in general,
on i, but we can always set ε′ = min{ε′i} and use the same ε′ for every i.)
Let fi (x0)− and fi (x0)+ have meanings similar to x− and x+ mentioned af-
ter Lemma 4.3. Now define I+

x0
(fi) = {x ∈ Ix0 |fi (x) ∈ [fi(x0), fi(x0) + ε′)}

and I−x0
(fi) = {x ∈ Ix0 |fi(x) ∈ (fi(x0)− ε′, fi(x0))}, where Ix0 is an interval

centered at x0 satisfying fi (Ix0) ⊂ (fi(x0)− ε′, fi(x0) + ε′) for all i ∈M .

Let the kth digit after the radix point of fi(x0)+ be denoted m+
k (i). If j =

m+
k (i) , k ≤ N , then S

(j)
k (i)

⋂
I+
x0

(fi) = I+
x0

(fi); otherwise S(j)
k (i)

⋂
I+
x0

(fi) =
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∅. Hence for k ≤ N ,
⋂
i∈M

(
S

(j)
k (i)

⋂
I+
x0

(fi)
)

=
⋂
i∈M

I+
x0

(fi) if j = m+
k (i) and

⋂
i∈M

(
S

(j)
k (i)

⋂
I+
x0

(fi)
)

= ∅

otherwise. (For each i in the intersection above we fix the j, k pair, but each
j, k pair is, in general, different for each i.) Now let I1 =

⋂
i∈M

I+
x0

(fi) and let

G =
⋂
i∈M

 ⋃
k≤N,j

S(j)
k (i)

⋂ ⋃
1≤l≤j

C
(l)
k (i)

⋂ I1

. Also let

x ∈

((⋂
i∈M

Fi

)⋂
I1

)
\G.

Then x is contained in
⋂
i∈M

⋃
j,k

S(j)
k (i)

⋂ ⋃
1≤l≤j

C
(l)
k (i)

⋂ I1

 . But

x is not in G, so x must be in some set of the formS(j)
k (i)

⋂ ⋃
1≤l≤j

C
(l)
k (i)

⋂ I1

for k > N . This means the set

((⋂
i∈M

Fi

)⋂
I1

)
\G is contained in

 ⋃
i∈M,k>N

 ⋃
1≤l≤pi−1

C
(l)
k (i)

⋂ I1.

But the measure of this set is less than |M |

(
1

(min{pi|i ∈M})N

)
µ (I1). We

conclude that µ

((⋂
i∈M

Fi

)⋂
I1

)
≤ µ (G) +

|M |
2N

µ (I1) . Using the inter-

sections mentioned at the beginning of the paragraph and the fact that for
k ≤ N,S(j)

k (i)
⋂
I1 = ∅ unless j = m+

k (i), we can write

G =
⋂
i∈M

 ⋃
k≤N

I1⋂
 ⋃

1≤l≤m+
k (i)

C
(l)
k (i)

 . (2)
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We now want to show µ (G) =

(∏
i∈M

fi (x0)+
)
µ (I1). To do this, we think

of each fi (x0)+ as a sum of terms of the form
1
pki

, where k is a positive in-

teger. For each k, there are m+
k (i) of these terms and each

1
pki

corresponds

to exactly one C
(l)
k (i) in (2). So we need to show that the shade of any

set of the form
⋂
i

C
(l)
k (i) is equal to the product of all of the individual

shades of the C(l)
k (i)’s. This is where Lemma 4.2 is used. Since C(l)

k (i) =
Kpk

i ,lp
k−1
i

= Γ+h
(
pki Z + lpk−1

i

)
+Z, by the construction of Γ, our intersection

requires that pk11 x1+l1pk1−1
1 = pk22 x2+l2pk2−1

2 = · · · = p
k|M|
|M | x|M |+l|M |p

k|M|−1

|M |
for {xi} ⊂ Z. From Lemma 4.2, we know that any number of the form∏
s6=i

pks
s

 z + ci can be used for xi, where z ∈ Z is arbitrary and ci ∈ Z

is fixed. This implies the intersection set can be written in the form Γ +

h

((∏
i∈M

pki
i

)
Z + d

)
+ Z for some integer d. But this set has shade

1∏
i∈M

pki
i

,

the product of all the shades of the C(l)
k (i)’s in the intersection. We conclude

that µ (G) =

(∏
i∈M

fi (x0)+
)
µ (I1). We note that I1 is Lebesgue measur-

able, so the last equation also follows from Mabry’s Theorem 3.11, which
says that shadings are evenly distributed on Lebesgue measurable sets and

not just intervals. Thus we have
∏
i∈M

fi(x0)+µ (I1) ≤ µ

((⋂
i∈M

Fi

)⋂
I1

)
≤

∏
i∈M

fi(x0)+µ (I1) +
|M |
2N

µ(I1). Using fi(x0) − 1
pNi
≤ fi(x0)+ ≤ fi(x0) and

the assumptions on the size of ε, we can write

(∏
i∈M

fi(x0)− ε

)
µ (I1) ≤

µ

((⋂
i∈M

Fi

)⋂
I1

)
≤

(∏
i∈M

fi(x0) + ε

)
µ (I1). (The inequality fi(x0) −

1
pNi
≤ fi(x0)+ ≤ fi(x0) holds if we again assume that any number written
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in base pi that might end with an infinite string of pi− 1’s is written in termi-

nating form.) We proved

(∏
i∈M

fi(x0)− ε

)
µ (I1) ≤ µ

((⋂
i∈M

Fi

)⋂
I1

)
≤(∏

i∈M
fi(x0) + ε

)
µ (I1) for I1 =

⋂
i∈M

I+
x0

(fi), but a similar process can be

used to prove it for any intersection of the sets {I+
x0

(fi), I−x0
(fi)}, where for

each i either I+
x0

(fi) or I−x0
(fi) is chosen. (We need to use both fi(x0) −

1
pNi
≤ fi(x0)+ ≤ fi(x0) and fi(x0) − 1

pNi
≤ fi(x0)− ≤ fi(x0) in the gen-

eral case.) There are 2|M | such sets, and each one is Lebesgue measur-
able. If we add up all 2|M | of these inequalities and use the finite additiv-

ity of µ, we can write

(∏
i∈M

fi(x0)− ε

)
µ (Ix0) ≤ µ

((⋂
i∈M

Fi

)⋂
Ix0

)
≤(∏

i∈M
fi(x0) + ε

)
µ (Ix0). Dividing both sides by µ (Ix0) and using the arbi-

trary smallness of ε gives us the desired result.
We now consider the case where ft(x0) = 0 for some t ∈ M . Besides

|M |
2N < ε and the one involving Lemma 4.3, the other assumptions on N are
not used. Everything in the proof is the same until we get to the inequality∏
i∈M

fi(x0)+µ (I1) ≤ µ

((⋂
i∈M

Fi

)⋂
I1

)
≤
∏
i∈M

fi(x0)+µ (I1) +
|M |
2N

µ(I1), or

0 ≤ µ

((⋂
i∈M

Fi

)⋂
I1

)
≤ εµ(I1). Since ft (x0) = 0 and ft (x) ≥ 0 for all

x ∈ R, I−x0
(ft) = ∅. (Hence ft (x0)− does not exist.) This last case then

gives us fewer than 2|M | inequalities to add together, since there are fewer
than 2|M | nonempty intervals to consider. Their sum, nevertheless, is still

0 ≤ µ

((⋂
i∈M

Fi

)⋂
Ix0

)
≤ εµ(Ix0).

We should mention that the Fi sets above can be made to be subsets of
arbitrary Archimedean sets satisfying the conditions of Theorem 2.1, if we use
ΓA + t1Z + t2Z in place of Γ + hZ + Z in the proof.
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