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DARBOUX-LIKE FUNCTIONS WITHIN
THE CLASS OF HAMEL FUNCTIONS

Abstract

In this paper we present a discussion of the relations of the classes
of Darboux-like functions within the classes of Hamel functions and
Sierpiński-Zygmund Hamel functions. We prove that the inclusion rela-
tions among Darboux-like classes remain valid in both cases (under the
assumption of CH for Sierpiński-Zygmund Hamel functions). In par-
ticular, assuming CH we prove the existence of a Sierpiński-Zygmund
Hamel function which is connectivity but not almost continuous. In
addition, we investigate the cardinal number Add(F1, F2) in the case
when one of the families F1, F2 is Darboux-like or Sierpiński-Zygmund
and the other one is the class of Hamel functions, where Add(F1, F2) is
defined as the smallest cardinality of a family F ⊆ RR for which there
is no g ∈ F1 such that g + F ⊆ F2.

1 Definitions and Main Results.

The terminology is standard and follows [2]. The cardinality of a set X we
denote by |X|. In particular |R| is denoted by c. We consider only real-valued
functions. No distinction is made between a function and its graph. We write
f |A for the restriction of f to the set A ⊆ R. The interior of the set A is
denoted by int(A). For any function g and any family of functions F ⊆ RR we
define g + F = {g + f : f ∈ F}. Given P ⊆ R2 and x ∈ R, Px denotes the set
{y ∈ R : 〈x, y〉 ∈ P}.

In this paper we investigate the relations among Darboux-like classes of
functions within the class of Hamel functions and within the class of Sierpiński-
Zygmund Hamel functions. Before we state the results let us recall the defini-
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tions of the classes of functions considered in the article. A function f : R→ R
is:
• additive if f(x+ y) = f(x) + f(y) for all x, y ∈ R;
• almost continuous (in sense of Stallings) if each open subset of R2 con-

taining the graph of f contains also the graph of a continuous function
from R to R;

• a connectivity function if the graph of f |I is connected in I ×R for any
interval I or more generally, f : X → R (X ⊆ Rn) is a connectivity
function if the graph of f |Z is connected in Z × R for any connected
subset Z ⊆ X;

• Darboux if f [K] is a connected subset of R (i.e., an interval) for every
connected subset K of R;

• an extendability function provided there exists a connectivity function
F : R× [0, 1]→ R such that f(x) = F (x, 0) for every x ∈ R;

• Hamel function if the graph of f is a Hamel basis for R2;
• peripherally continuous if for every x ∈ R and for all pairs of open sets
U and V containing x and f(x) respectively, there exists an open subset
W of U such that x ∈ W and f [bd(W )] ⊂ V . Equivalently for every
x ∈ R, there exist two sequences sn ↗ x and tn ↘ x such that both
sequences f(sn) and f(tn) converge to f(x);

• Sierpiński-Zygmund if for every set Y ⊆ R of cardinality continuum c,
f |Y is discontinuous.

We use the following symbols to denote these classes: AD - additive, AC
- almost continuous, Conn - connectivity, D - Darboux, Ext - extendable, HF
- Hamel, PC - peripherally continuous, SZ - Sierpiński-Zygmund. The classes
AC, Conn, D, Ext, PC are called Darboux-like (for more information on these
classes see [5]). The following diagram presents relations among Darboux-like
classes (see [3] or [5]).

C Ext AC Conn D PC- - - - -

Diagram 1.

The arrows in the above diagram represent strict inclusions. Recall here that
a function f : R → R is almost continuous if and only if it intersects every
blocking set ; i.e. a closed set K ⊆ R2 which meets every continuous function
and is disjoint with at least one function from R to R. The domain of every
blocking set contains a non-degenerate connected set. (See [5].) For a function
to be connectivity it suffices that its graph intersects every compact connected
subset K of R2 such that dom(K) = c (see [3, page 208]).
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In [3] and [7] the authors investigate the relations between the Darboux-
like classes within the additive functions and within the additive Sierpiński-
Zygmund functions. In this paper we present a study of the relations between
the Darboux-like classes within the class of Hamel functions and within the
class of Sierpiński-Zygmund Hamel functions. The first result shows that
the strict inclusions from Diagram 1 remain valid within the class of Hamel
functions. The proofs of the following main results (Theorems 1, 2, and 3) are
presented in the next section.

Theorem 1. The following holds for the Hamel functions from R to R.

C ( Ext ( AC ( Conn ( D ( PC.

The following theorem shows the relations among Darboux-like functions
in the class of Sierpiński-Zygmund Hamel functions SZ∩HF. A similar result
was proved for the class SZ ∩Add in [7]. Let us recall here that the existence
of a Sierpiński-Zygmund function which is Darboux (connectivity or almost
continuous) is independent of ZFC (see [1]). Therefore, to show that the
relations among the classes AC, Conn, and D are preserved in the class SZ ∩
HF, we will need an additional set-theoretic assumption. Specifically we will
assume the Continuum Hypothesis (CH). However, one can show in ZFC that
(SZ ∩ HF ∩ D) ( (SZ ∩ HF ∩ PC) (see Example 9 at the end of this section).
Let us also recall here that the equality SZ∩C = SZ∩Ext = ∅ holds in ZFC.
Hence we have that (SZ ∩HF ∩ C) = (SZ ∩HF ∩ Ext) = ∅ in ZFC.

Theorem 2. Assume the Continuum Hypothesis. The following is true for
the Sierpiński-Zygmund Hamel functions from R to R.

Ext ( AC ( Conn ( D.

The next result gives the values of the cardinal function Add(F1, F2) in the
case when one of the families F1, F2 is HF and the other one is a Darboux-like
class or SZ. As introduced in [9], the cardinal number Add(F1, F2) (F1, F2

are proper non-empty subsets of RR) is the smallest cardinality of a family
F ⊆ RR for which there is no g ∈ F1 such that g + F ⊆ F2. Notice here
that the function Add has the property of coordinate monotonicity, that is
Add(G1, G) ≤ Add(G2, G) and Add(G,G1) ≤ Add(G,G2) for G1 ⊆ G2. Re-
call also here that Add(F1, F2) = 1 is equivalent to F1 ∩ F2 = ∅ (to see
this choose F consisting of a constant zero function). Values of Add have
been investigated for various pairs of families such as Darboux-like, Sierpiński-
Zygmund, and additive functions (see [9]). The function Add has also been
studied in a special case when F1 = RR. In this situation it is denoted by A
so that A(F ) = Add(RR, F ) for any F ⊆ RR.
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Theorem 3. (i) Let F ∈ {Ext,AC,Conn,D,PC}. Then Add(HF,F) =
A(F) and Add(F ,HF) = A(HF). Also Add(C,HF) = Add(HF,C) = 1.

(ii) Add(SZ,HF) = A(HF) and Add(HF,SZ) > c.

Part (ii) gives only a lower bound for the cardinal Add(HF,SZ). It is
unknown whether Add(HF,SZ) = A(SZ).

Problem 4. Is Add(HF,SZ) equal to A(SZ) (in ZFC)?

Let us recall here that A(F) > c for F ∈ {Ext,AC,Conn,D,SZ} (see [5]).
The precise value of A(F) may be different in different models of ZFC. It is
also known that A(PC) = 2c and A(HF) = ω (see [11]).

Remark 5. Add(AD,SZ) ≤ Add(HF,SZ) and Add(AD,HF) = 1.

Proof. To see the above, fix F ⊆ RR such that |F| < Add(AD,SZ). Then
there exists a g ∈ AD such that g+F ⊆ SZ. Let h ∈ HF be a finitely continuous
function. Recall from [12] that a function is finitely continuous if it is contained
in the union of finitely many continuous real functions defined on a subset of R.
Then h+ g ∈ HF (by [10, Fact 3.1 (i)]) and (h+ g) +F = h+ (g +F) ⊆ SZ.
To see Add(AD,HF) = Add(HF,AD) = 1 note that AD ∩ HF = ∅. The
latter follows from the fact that the graph of an additive function is linearly
dependent by the definition.

Let us comment now on how the class HF of Hamel functions relates to all
the other families in terms of inclusion and intersection. It is easy to observe
that if Add(F1, F2) ≥ 2, then F1 ∩ F2 6= ∅. Thus based on the values of Add
given by Theorem 3, we conclude that there exists a Hamel function belonging
to each of the classes: Ext,AC,Conn,D,PC, and SZ. From [10, Fact 3.1 (iii)]
we conclude that HF ∩ C = ∅. This shows that none of Ext,AC,Conn,D, or
PC is contained in HF. It is obvious that SZ * HF. Neither is HF contained
in SZ. The latter holds because one can construct a Hamel function which is
constant on a set of size c. This follows easily from the following fact.

Fact 6. Let X ⊆ R be a set linearly independent over Q. Then every function
f : X → R can be extended onto R to a Hamel function.

Proof. Let g ∈ RR be a Hamel function. Define g′ : R→ R to be an additive
extension of f − (g|X). Notice that g + g′ ∈ HF by [10, Fact 3.1 (i)]. Since
(g + g′)|X = f we conclude that g + g′ is a Hamel function extending f .

Thus what remains to be determined is whether HF is a subset of one of
Ext,AC,Conn,D, or PC. As one might expect this is not the case. Since the
class of all peripherally continuous functions contains all the other classes, it
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is sufficient to justify that HF 6⊆ PC. An example of a Hamel function which
is not peripherally continuous can be easily constructed with the use of the
following lemma.

Lemma 7. Let V ⊆ Rn be a Hamel basis and let v′ ∈ V . For each v ∈ V fix
qv ∈ Q such that qv′ 6= −1. Then the set V ′ = {v + qvv

′ : v ∈ V } is also a
Hamel basis.

Proof. It is easy to observe that LinQ(V ′) = Rn. Indeed V ⊆ LinQ(V ′)
since for each v ∈ V we have v = (v + qvv

′) − qv
1+qv′

(v′ + qv′v′). To see
that V ′ is linearly independent, choose v1, . . . , vk ∈ V and q1, . . . , qk ∈ Q and
assume that q1(v1 + qv1v

′) + · · · + qk(vk + qvkv
′) = 0 ∈ Rn. This implies

that q1v1 + · · · + qkvk + q′v′ = 0 for some q′ ∈ Q. If v1, . . . , vk 6= v′, then
obviously q1, . . . , qk = 0. If one of v1, . . . , vk is equal v′ (assume vk = v′), then
we conclude that q1, . . . , qk−1 = 0. This implies that qk(v′+ qv′v′) = 0. Hence
qk = 0 since qv′ 6= −1.

Example 8. There exists a Hamel function h : R→ R which is not peripher-
ally continuous.

Proof. Let f : R → R be any Hamel function. For each x ∈ R \ {0} choose
qx ∈ Q such that f(x) + qxf(0) /∈ (f(0) − 1, f(0) + 1) (note that f(0) 6= 0).
Now define h : R → R by h(0) = f(0) and h(x) = f(x) + qxf(0) for x 6= 0.
By Lemma 7 h is a Hamel function. Observe also that 〈0, h(0)〉 is an isolated
point of the graph of h. Hence h /∈ PC.

Example 9. There exists a Sierpiński-Zygmund Hamel function which is pe-
ripherally continuous but not Darboux.

Proof. Let h ∈ SZ∩HF (SZ∩HF 6= ∅ - see the comments following Remark 5).
Choose a dense set A ⊆ R such that |A| < c and h−1(0) ⊆ A. Such a set exists
since |h−1(0)| < c. Next we use Lemma 7 (v′ = 〈0, h(0)〉 and qv′ = 0) to
redefine h on the set A so that h ⊆ R2 is dense and h−1(0) = ∅. The first
condition implies that h ∈ PC and the second condition implies that h /∈ D.
Based on Lemma 7 we have that h is still a Hamel function. Finally, since
|A| < c we conclude that h ∈ SZ.

2 Proofs of Main Results.

We will start with the proof of Theorem 3. Before proceeding let us restate
an analogous theorem for additive functions which was proven in [9].

Theorem 10. [9, Theorem 10] Let F ∈ {Ext,AC,Conn,D,PC,SZ}.



120 Krzysztof P lotka

(i) Let F ∈ {Ext,AC,Conn,D,PC}. Then both Add(AD,F) = A(F) and
Add(F ,AD) = A(AD). We also have Add(C,AD) = Add(AD,C) = 1.

(ii) Add(SZ,AD) = A(AD) and Add(AD,SZ) > c.

2.1 Proof of Theorem 3.

Proof. We prove only part (i). The proof of (ii) is very similar. Let F ∈
{Ext,AC,Conn,D,PC}. We will show that Add(HF,F) = A(F). Choose an
F ⊆ RR such that |F | < A(F) and choose a function f ∈ HF. Based on the
equality Add(AD,F) = A(F), there exists a function g ∈ AD such that g +
(f+F ) ⊆ F . Let f ′ = g+f . Observe that f ′ ∈ HF (see [10, Fact 3.1 (i)]) and
f ′ + F ⊆ F . This shows that Add(HF,F) ≥ A(F). The opposite inequality
follows from the monotonicity of Add, that is Add(HF,F) ≤ Add(RR,F) =
A(F).

Now we prove Add(F ,HF) = A(HF). It suffices to show Add(F ,HF) ≥
A(HF). Choose an F ⊆ RR such that |F | < A(HF). From the definition of A
there exists a function f ∈ RR shifting F into HF, e.g. f + F ⊆ HF. Using
again the equality Add(AD,F) = A(F) (recall that A(F) > c) we can find a
g ∈ AD with the property g+{f} ⊆ F . Note that (g+f)+F = g+(f+F ) ⊆
g + HF = HF and g + f ∈ F . This proves Add(F ,HF) ≥ A(HF).

The equalities Add(C,HF) = Add(HF,C) = 1 follow from HF∩C = ∅ (see
[10, Fact 2.3 (iii)]).

2.2 Additional Lemmas.

Before we prove Theorems 1 and 2 we will restate some known results and prove
an additional lemma. In [13] the author defines a subset of [0, 1]2 which is used
to construct an example of a function from [0, 1] to [0, 1] which is connectivity
but not almost continuous. In [4] the authors modify this construction to
give an example of a function from R to R which is connectivity (with some
additional properties) but not almost continuous. Specifically they prove the
following lemma. Note that the set C̄ from the lemma is defined as Z + C,
where C ⊆ [0, 1] is a Cantor set of Lebesgue measure 1

2 (for details see [4, page
4]).

Lemma 11. [4, Lemma 2.1] Let X be a countable dense subset of (−1, 1).
Then there exists an embedding F = 〈F0, F1〉 : R → (−1, 1) × R such that F0

is non-decreasing and
(a) an open arc M = F [R] is closed in R2,
(b) if Z = F [C̄] ⊂M then g ∩ Z 6= ∅ for every continuous g : [−1, 1]→ R,
(c) Zx = Mx is a singleton for all x ∈ (−1, 1) \X, and
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(d) for each x ∈ X the section Mx is a non-trivial closed interval and Zx
consists of the two endpoints of that interval.

Let us mention here that the function F from the proof of the above lemma
has the following property: the coordinate function F1 is decreasing on the
intervals on which the coordinate function F0 is constant. Next we will prove
an important property of the set Z.

Fact 12. Let K be a compact connected subset of R2 with dom(K) = c. Then
(a) {x} ×Mx ⊆ K for some x ∈ X or
(b) [(I1× I2)∩K]∩Z = ∅ for some non-degenerate intervals I1 and I2 such

that dom[(I1 × I2) ∩K] = I1.

Proof. Let IK = dom(K). First observe that either IK\dom(K∩Z) contains
a non-degenerate interval or IK = dom(K ∩ Z). If the first condition holds
then obviously (b) is true. So assume that IK = dom(K ∩ Z). In this case
we can conclude that Z ∩ (int(IK) × R) ⊆ K. To see this first notice that
Z ∩ ([int(IK) \ X] × R) ⊆ K. Next observe that Z ∩ ([(−1, 1) \ X] × R) is
dense in Z. This follows from the fact that F is continuous (Z = F [C̄]) and
F−1[Z ∩ ([(−1, 1) \X]×R)] is dense in C̄. Finally since Z and K are closed,
we conclude that Z ∩ (int(IK)× R) ⊆ K.

Now assume that for all x ∈ X ∩ int(IK) we have {x} ×Mx 6⊆ K, since
otherwise the condition (a) holds. Choose 〈x0, y0〉 ∈M \K (x0 ∈ X∩int(IK)).
Since K is closed, there exists δ > 0 such that ((x0−δ, x0 +δ)×{y0})∩K = ∅.
Next because K is connected we conclude that dom[((x0−δ, x0)× (−∞, y0))∩
K] = (x0 − δ, x0) or dom[((x0, x0 + δ)× (y0,∞)) ∩K] = (x0, x0 + δ). Indeed
if for some x ∈ (x0 − δ, x0) we have ({x} × (−∞, y0)) ∩ K = ∅, then we
must have ({x′} × (y0,∞)) ∩K 6= ∅ for every x′ ∈ (x0, x0 + δ). Assume that
dom[((x0 − δ, x0) × (−∞, y0)) ∩ K] = (x0 − δ, x0). (In the other case the
following argument is very similar.)

Next we claim that there exists 0 < δ′ < δ such that for every x ∈
(x0 − δ′, x0) we have that Mx ⊆ (y0,∞). Observe that the claim implies
(b), which finishes the proof of the fact. To see the claim assume that there
is a sequence xn ∈ int(IK) such that xn ↗ x0 and Mxn 6⊆ (y0,∞). Let
y′ = maxMx0 and t′ ∈ (−1, 1) be such that F (t′) = 〈x0, y

′〉. Note here that
since F1 is decreasing on the intervals on which F0 is constant (see the remark
after Lemma 11), F0(t) < F0(t′) = x0 for all t ∈ (−1, t′). Next let tn ∈ (−1, 1)
be such that F0(tn) = xn and F1(tn) = minMxn . Observe that tn is an increas-
ing sequence since F0 is non-decreasing. Hence tn converges and lim tn = t′

because otherwise we would have x0 = limxn = limF0(tn) < F (t′) = x0.
Consequently limF1(tn) ≤ y0. On the other hand (from continuity of F1) we
have that limF1(tn) = F1(t′) = y′ > y0, a contradiction.
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Recall also the following property of extendable functions.

Theorem 13. [4, Theorem 3.1] If f : R→ R is an extendable function with a
dense graph, then for every a, b ∈ R, a < b and for each Cantor set K between
f(a) and f(b) there is a Cantor set C between a and b such that f [C] ⊂ K
and the restriction f � C is continuous strictly increasing.

2.3 Proof of Theorem 1.

Proof. (HF∩C) ( (HF∩Ext): This statement easily follows from Theorem 3
(i) and properties of the function Add (HF ∩ C = ∅ and HF ∩ Ext 6= ∅).

(HF ∩ Ext) ( (HF ∩ AC): Denote by {Bα ⊆ R2 : α < c} and {Cα ⊆ R :
α < c} the collections of all blocking and perfect sets respectively. Also let
R = {yα : α < c}. Choose an infinite countable dense set A ⊆ R and sequences
aα ∈ Cα, bα ∈ Cα, cα ∈ dom(Bα) such that the elements of the set A and terms
of these sequences are all linearly independent over Q. The choice is possible
since |Cα| = |dom(Bα)| = c. Now define a function h as follows: h|A is a dense
subset of R2, h(aα) = h(bα), and 〈cα, h(cα)〉 ∈ Bα. Next extend h onto R to
a Hamel function by using Fact 6. The function is almost continuous because
it intersects every blocking set and is not extendable by Theorem 13.

(HF ∩ AC) ( (HF ∩ Conn): Let {Kα : α < c} be the collection of all
compact connected subsets of R2 such that dom(Kα) = c and {x}×Mx 6⊆ Kα

for all x ∈ X, where X ⊆ (−1, 1) is a countable linearly independent (over
Q) set which is dense in (−1, 1) and M is the set from Lemma 11 for this
X. Construct a linearly independent set H = {hα : α < c} ⊆ R satisfying the
following conditions: LinQ(X)∩LinQ(H) = {0} and ({hα}×R)∩ (Kα \Z) 6= ∅
for every α < c. The existence of such a set follows from Fact 12. Now define
h : R → R by defining it on H ∪ X as 〈x, h(x)〉 ∈ Mx \ Zx for x ∈ X and
〈hα, h(hα)〉 ∈ (Kα \ Z)hα and then extending it to a Hamel function on R
by using Fact 6. Notice that [h|(H ∪ X)] ∩ Z = ∅. Now define h′ : R → R
by modifying h on the set dom(h ∩ Z) as follows: h′(x) = h(x) + h(0). We
conclude that h′ ∩ Z = ∅ and h′ ∩ K 6= ∅ for each compact connected set
K ⊆ R2 such that dom(K) = c. The latter implies that h′ ∈ Conn. Based
on the condition h′ ∩ Z = ∅, we conclude that h′ /∈ AC. Indeed consider the
open set R2 \ Z. It contains h′ but does not contain any continuous function
since by Lemma 11 (b), Z intersects every continuous function. By Lemma 7
we have that h′ ∈ HF.

(HF ∩ Conn) ( (HF ∩ D) ( (HF ∩ PC): Let H ⊆ R be a Hamel basis
which is c-dense. Define h : H → R such that h−1(y) is dense in R for every
y ∈ R. Next extend h onto R to a Hamel function. Now we will define h1

as follows. Set h1|(R \ h−1(1)) ≡ h|(R \ h−1(1)) and h1(x) = h(x) + h(0)
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for all x ∈ h−1(1). Observe that h1 is a Hamel function (by Lemma 7),
h1 ⊆ R2 is dense, and h−1

1 (1) = ∅. Hence h1 ∈ PC \ D. To define h2 we
redefine h on the set E = dom(h ∩ {〈x, x〉 : x ∈ R}) in a similar fashion, that
is h2|(R \E) ≡ h|(R \E) and h2(x) = h(x) + h(0) for all x ∈ E. Similarly, we
note that h2 ∈ HF by Lemma 7. In addition, h−1

2 (y) is dense in R for every
y ∈ R. Hence h2 ∈ D. Finally since h2 ∩ {〈x, x〉 : x ∈ R} = ∅, we conclude
that h2 ∈ D \ Conn.

2.4 Proof of Theorem 2.

Proof. Let G = {gα : α < c} be the set of all continuous functions defined
on Gδ subsets of R = {xα : α < c}. Choose a countable dense set X ⊆ (−1, 1)
which is linearly independent over Q. Let Z and M be as in Lemma 11 for
the set X. In addition let us denote the collection of all continua in R2 with
uncountably many uncountable vertical sections by K = {Kα : α < c} (i.e.
|{x ∈ R : |(Kα)x| = c}| = c). We will define by induction a sequence of partial
functions hα (α < c) such that:

(0) X ⊆ dom(hα) and hα|X ⊆M \ Z;
(i) hβ ⊆ hξ for β < ξ;

(ii) xα ∈ dom(hα);
(iii) 〈0, xα〉 ∈ LinQ(hα);
(iv) hα ⊆ R2 is linearly independent over Q;
(v) (gα ∩ hξ) ⊆ hα, for α < ξ;
(vi) if dom(gα \

⋃
ξ<α gξ) is of second category, then hα is dense in (gα \⋃

ξ<α gξ)|Uα, where Uα ⊆ R is the maximal open set such that dom(gα \⋃
ξ<α gξ) is residual in Uα;

(vii) hα ∩ (Kα \ Z) 6= ∅.
First we present the construction of the sequence hα (α < c). Define

h0 on X such that h(x) ∈ Mx \ Zx. Next if x0 /∈ dom(h0), then choose
h0(x0) ∈ R \ LinQ(h0(X)). If 〈0, x0〉 /∈ LinQ(h0), choose z /∈ LinQ(dom(h0))
and define h0(z) = h0(−z) = 1

2x0. Let U0 be the maximal open set such
that dom(g0) is residual in U0. Choose a countable linearly independent dense
subset D0 ⊆ (dom(g0)∩U0) \ LinQ(dom(h0)) and set h0|D0 ≡ g0|D0. Finally,
choose w ∈ {x ∈ R : |(K0)x| = c} \LinQ(dom(h0)) and define h0(w) ∈ (K0)w \
Zw. It is easy to see that h0 satisfies all the conditions (0)-(vii).

Now assume that the sequence hξ has been defined for ξ < α. Set hα =⋃
ξ<α hξ. If xα /∈ dom(hα), then choose hα(xα) ∈ R \ LinQ(hα(dom(hα)) ∪⋃
ξ<α{gξ(xα)}). If 〈0, xα〉 /∈ LinQ(hα), choose z /∈ LinQ(dom(hα)) and define

hα(z) and hα(−z) so that hα(z)+hα(−z) = xα and hα(±z) /∈
⋃
ξ<α{gξ(±z)}.

Now consider the set Uα, the maximal open set in which dom(gα\
⋃
ξ<α gξ)

is residual. As in the case of h0, we will select a countable linearly independent
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dense subset Dα ⊆ (dom(gα\
⋃
ξ<α gξ)∩U0)\LinQ(dom(hα)) and set hα|Dα ≡

gα|Dα. Finally choose w ∈ {x ∈ R : |(Kα)x| = c} \ LinQ(dom(hα)) and define
hα(w) ∈ (Kα)w \ Zw. It is easy to see that hα satisfies all the conditions
(0)-(vii).

Define h =
⋃
α<c hα. The function h will serve as a starting point for

functions justifying each of the parts of the theorem. Obviously dom(h) = R.
Also notice that h ∈ HF based on conditions (i), (iii), and (iv). Condition (v)
implies that h ∈ SZ.

(SZ∩HF∩Ext) ( (SZ∩HF∩AC): We will argue that h is almost continuous
(no extendability function can be in SZ). Let B ⊆ R2 be any blocking set.
There exists a non-degenerate interval I ⊆ dom(B) and a continuous function
g such that dom(g) is a Gδ dense subset of I and g ⊆ B. Let α0 be the
smallest ordinal number with this property; i.e. there exists a non-degenerate
interval I ⊆ dom(B) and a continuous function contained in B and defined
on a residual set in I. Then dom(gα0 \

⋃
ξ<α0

gξ) is of second category (since
we assume CH). Therefore the open set Uα0 is not empty and consequently
Dα0 6= ∅. Hence (h|Dα0)∩B = (gα0 |Dα0)∩B 6= ∅. This implies that h ∈ AC.

(SZ∩HF∩AC) ( (SZ∩HF∩Conn): Consider the set EZ = {x : 〈x, h(x)〉 ∈
Z}. The properties of the set Z and the fact that h ∈ SZ imply that |EZ | < c.
We will define hb by redefining h on the set EZ (that will keep hb in the class
SZ). Set hb|(R \ EZ) ≡ h|(R \ EZ) and hb(x) = h(x) + h(0) for x ∈ EZ . By
Lemma 7, hb ∈ HF. Since hb∩Z = ∅ we have that hb /∈ AC. What remains to
show is that hb ∈ Conn. To see that, fix a continuaK ⊆ R2 with |dom(K)| = c.
Then by Fact 12, (a) {x}×Mx ⊆ K for some x ∈ X or (b) [(I1×I2)∩K]∩Z = ∅
for some non-degenerate intervals I1 and I2 such that dom[(I1× I2)∩K] = I1
(we may assume that I1, I2 are closed). If (a) holds, then by condition (0)
hb ∩ K 6= ∅. Now assume that (b) holds. Let A = {x ∈ R : |Kx| = c}.
If |A| = c, then by condition (vii) hb ∩ K 6= ∅. Suppose that |A| = ω.
Note that the set [(I1 \ A) × I2] ∩K is a Borel set with each vertical section
countable. Hence by Lusin Theorem (see [14, Theorem 5.7.2, page 205]), there
is a Borel function g : (I1 \ A) → R contained in (I1 × I2) ∩K. This implies
the existence of a continuous function g′ ⊆ (I1 × I2) ∩K defined on a dense
Gδ subset of I1. Let α0 be the smallest ordinal number with the property that
gα0 |I1 ⊆ (I1×I2)∩K and dom(gα0) is residual in some non-degenerate interval
I ⊆ I1. Then dom(gα0 \

⋃
ξ<α0

gξ) is of second category (since we assume CH).
Therefore the open set Uα0 is not empty and consequently Dα0 6= ∅. Hence
(hb|Dα0) ∩ [(I1 × I2) ∩K] = (hb|Dα0) ∩ [(I1 × I2) ∩K] = (gα0 |Dα0) ∩ [(I1 ×
I2) ∩K] 6= ∅.

(SZ ∩ HF ∩ Conn) ( (SZ ∩ HF ∩ D): To construct a function witnessing
the above property we redefine h on the set E = dom(h ∩ {〈x, x〉 : x ∈ R}).
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Set hc|(R \ E) ≡ h|(R \ E) and hc(x) = h(x) + h(0) for all x ∈ E. We
note that hc ∈ HF ∩ SZ. In addition h−1

c (y) is dense in R for every y ∈ R.
Hence hc ∈ D. Finally since hc ∩ {〈x, x〉 : x ∈ R} = ∅, we conclude that
hc ∈ (SZ ∩HF ∩D) \ Conn.
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