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Abstract

Basu and Ganguly recently proved a theorem connected to the classi-
cal theorem of Steinhaus which states that A−B has nonempty interior
if A and B are Lebesgue measurable subsets of the real line, each having
positive measure. The Basu and Ganguly paper deals with a particular
2-place function, namely f(x, y) = x/y. There is nothing special about
ratios. We will extend their results to functions satisfying simple con-
ditions on their partial derivatives. An n dimensional analogue is also
presented.

1 Introduction

In a recent article [2] Basu and Ganguly proved that if A1, A2 ⊆ R (the real
line) are Lebesgue measurable and each has positive Lebesgue measure, then
R[A∗1 : A∗2] is an open set, where A∗i = {x ∈ R\{0} : Ai has density 1 at x}
and R[A∗1 : A∗2] denotes the collection of all numbers x

y and y
x where x ∈

A∗1, y ∈ A∗2. This result is a contribution to the collection of analogues and
extensions of a theorem of Steinhaus [5], that goes back to 1920. The purpose
of this note is to show that there is nothing special about ratios and that
analogous statements in R and Rn hold for 2-place functions satisfying simple
conditions on their partial derivatives. That the Steinhaus theorem can be
extended using general functions is not a new idea – for example see [1], [3]
and [4].
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2 Results

We first consider the n = 1 dimensional extension of the result of Basu and
Ganguly mentioned in the introduction.

Theorem 1. Suppose that f : R×R→ R, A and B are Lebesgue measurable
subsets of R and x0 ∈ Ã, y0 ∈ B̃ where Ã and B̃ are the density points
of A and B, respectively. Assume further that fx, fy (partial derivatives)
exist and are continuous in a neighborhood of (x0, y0) and that fx(x0,y0) 6= 0
and fy(x0, y0) 6= 0. Then t0 := f(x0, y0) is an interior point of f(Ã, B̃) :={
f(a, b) : a ∈ Ã, b ∈ B̃

}
.

Proof. Given δ > 0, there exist 0 < δ1, δ2, δ3 < δ such that for each c ∈
N3 := (t0 − δ3, t0 + δ3) and each x ∈ N1 := (x0 − δ1, x0 + δ1) there exists a
unique y ∈ N2 := (y0 − δ2, y0 + δ2) such that f(x, y) = c and fx, fy exist and
are continuous and non-zero on N1×N2. For each c ∈ N3, let gc : N1 → N2 be
defined as above, i.e., gc(x) = y and f(x, gc(x)) = f(x, y) = c. For each c ∈ N3,
g′c(x) = −fx(x,gc(x))

fy(x,gc(x)) for every x ∈ N1. Set M := −fx(x0,gt0 (x0))

fy(x0,gt0 (x0))
= −fx(x0,y0)

fy(x0,y0)
.

There exists a d1, 0 < d1 < δ1, such that |M |2 d1 < δ2 and g′c(x) = M +

ε(x, c), where |ε(x, c)| < |M |
10 for all c ∈ N3 satisfying gc(x0) ∈ U3 :=

(
y0 −

|M |
2 d1, y0 + |M |

2 d1

)
and for all x ∈ U1 := (x0 − d1, x0 + d1) (notice t0 is an

interior point of these c’s) and such that
m
( eA∩U1

)
2d1

> 0.95 and
m
( eB∩U2

)
4|M |d1

> 0.95
where U2 := (y0 − 2|M |d1, y0 + 2|M |d1).

For the c’s mentioned above gc

(
Ã ∩ U1

)
is a measurable set with measure

greater than
(

9|M |
10

)
(2d1)(0.95) and is contained in U2 since |M |2 d1+ 11|M |

10 d1 <

2|M |d1. This implies gc

(
Ã∩U1

)
∩
(
B̃ ∩U2

)
6= ∅ . Therefore, there exists an

xc ∈ Ã ∩ U1 such that gc(xc) ∈ B̃ ∩ U2, or f(xc, g(xc(xc)) = c with xc ∈ Ã,
gc(xc) ∈ B̃ for each c ∈ U ′3 := {c ∈ N3 : gc(x0) ∈ U3} and t0 is an interior
point of U ′3.

We now proceed to the n dimensional extension of the Basu, Ganguly
result.

Theorem 2. Suppose that f : Rn×Rn → Rn, A and B are Lebesgue measur-
able subsets of Rn and x0 ∈ Ã, y0 ∈ B̃ where Ã and B̃ are the density points
of A and B respectively. Assume further that:

(α) The 2n2 partial derivatives (n functions and 2n variables) exist and are
continuous in some neighborhood of (x0, y0).
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(β) ∣∣∣∣∣∣∣∣∣∣
D1f1 · · · · Dnf1
· ·
· ·
· ·
D1fn · · · · Dnfn

∣∣∣∣∣∣∣∣∣∣
(x0,y0) 6= 0

and ∣∣∣∣∣∣∣∣∣∣
Dn+1f1 . . . . D2nf1
. .
. .
. .
Dn+1f1 . . . . D2nfn

∣∣∣∣∣∣∣∣∣∣
(x0, y0) 6= 0

where f = (f1, f2, . . . , fn).

Then t0 := f(x0,y0) is an interior point of f
(
Ã, B̃

)
:=
{
f(a, b) : a ∈ Ã, b ∈

B̃
}
.

Proof. f can be viewed as an n × 1 column matrix. The n × n matrices
∂f
∂x =

[
∂f
∂x1

∂f
∂x2
· · · ∂f

∂xn

]
and ∂f

∂y =
[

∂f
∂y1

∂f
∂y2
· · · ∂f

∂yn

]
are both invertible at (x0, y0)

by the hypotheses of this theorem. By the implicit function theorem, there is
a continuously differentiable function g(x, t) defined for x near x0 and t near
t0 = f(x0, y0) such that f(x, g(x, t)) = t. By implicit differentiation, we have
∂g
∂x = −

[
∂f
∂y

][
∂f
∂x

]
. Therefore ∂g

∂x is invertible at the point (x0, t0). Hence,
given δ > 0, there exist δ1,δ2,δ3, with 0 < δ1, δ2, δ3 < δ such that for each
c ∈ N3 := N(t0, δ3), the open ball in Rn with center t0 and radius δ3, and
each x ∈ N1 := N(x0, δ1), there exists a unique y ∈ N2 := N(y0, δ2) such
that f(x, y) = c. For each c ∈ N3, let gc : N1 → N2 be defined as above, i.e.,
gc(x) = y with f(x, gc(x)) = f(x, y) = c.

Set Jgt0
(x0) = det

(
∂gt0
∂x

)
(x0) = M1, which, by the above, is not zero.

By the assumption of the continuity of the 2n2 partial derivatives there
exists a d1, 0 < d1 < δ, such that |M1|

2 d1 < δ2 and Jgc
(x) = M1 + ε(x, c)

where |ε(x, c)| < |M1|
10 for all x ∈ U1 := N(x0, d1) and for all c ∈ C :=

{
c ∈

N3; gc(x0) ∈ U3 := N
(
y0,
|M1|

2 d1

)}
and ‖gc(x) − gc(x0)‖ < M2‖x − x0‖ for

every x ∈ U1 and every c ∈ C and
m
( eA∩U1

)
m(U1)

> 1
q and

m
( eB∩U2

)
m(U2)

> 1
q where

U2 := N
(
y0,M2d1 + |M1|

2 d1

)
and where q =

[
9
10 |M1|m(U1)

m(U2)
+ 1
]
.
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Notice that t0 = f(x0, y0) is an interior point of C. By the definitions of
U1, U2, U3 and C, gc

(
Ã ∩ U1

)
⊆ U2 for every c ∈ C and m

(
gc

(
Ã ∩ U1

))
=∫

eA∩U1

|Jgc(x)|dx > 9
10 |M1|m

(
Ã ∩ U1

)
> 9

10 |M1| 1qm(U1) for each c ∈ C.

Furthermore 9
10 |M1| 1qm(U1) + 1

qm(U2) = 1
q

[
9
10 |M1|m(U1)

m(U2)
+ 1

]
m(U2) =

m(U2) and therefore gc

(
Ã ∩U1

)
∩
(
B̃ ∩U2

)
6= ∅ for every c ∈ C . Hence, for

each c ∈ C, there exist ac ∈ Ã and bc ∈ B̃ with gc(ac) = bc or f(ac, bc) = c.
Therefore, t0 is an interior point of

{
f(x, y) : x ∈ Ã, y ∈ B̃

}
.
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