Hanxiang Chen, Department of Mathematics, University of Alabama, 1310 37th St. E. Apt. 92 Tuscaloosa, AL 35405. e-mail: hanxiangc@hotmail.com

ADJOINT CLASSES OF LEBESGUE-STIELTJES INTEGRABLE FUNCTIONS

Abstract

This paper gives three pair of adjoint classes of the Lebesgue-Stieltjes integrable functions.

1 Introduction

Let a and b be real numbers with a < b. Let $\mathcal{B}[a,b]$ be the class of all Borel measurable functions defined on [a,b], and $\mathcal{F}[a,b]$ be the class of all real-valued functions defined on [a,b]. Let $g \in \mathcal{F}[a,b]$ and $g_1(x)$, $g_2(x)$ be the positive, negative variations of g over [a,x] with $a \le x \le b$, respectively. If $g_1(x) + g_2(x) < \infty$ for any $x \in [a,b)$ and either $g_1(b)$ or $g_2(b)$ is finite, then we say $g \in EBV[a,b]$, the class of functions of extended bounded variation on [a,b] (cf. [8]). If $g \in EBV[a,b]$, we have

$$g(x) - g(a) = g_1(x) - g_2(x)$$
 for any $x \in [a, b)$.

Since, for $i = 1, 2, g_i(x)$ is monotonically increasing on [a, b), then there is a unique Baire measure μ_{g_i} such that

$$\mu_{g_i}(a_1, b_1] = g_i(b_1 +) - g_i(a_1 +)$$
 for all $[a_1, b_1] \subset [a, b]$

(define $g_i(b+)=g_i(b)$). Thus, in fact, a function $g\in EBV[a,b]$ gives rise to a σ -finite signed Baire measure $\mu_g=\mu_{g_1}-\mu_{g_2}$ on the class of all Borel sets in [a,b] such that

$$\mu_g(a_1, b_2] = g(b_1+) - g(a_1+)$$
 for all $[a_1, b_1] \subset [a, b]$.

Key Words: Adjoint classes of functions, Lebesgue-Stieltjes integral, Baire measure, Borel sets and Borel measurable functions, and linear bounded functional Mathematical Reviews subject classification: 26A42, 26A45, 28A25 Received by the editors October 21, 1999

422 Hanxiang Chen

Now, for $f \in \mathcal{B}[a,b]$ and $g \in EBV[a,b]$, we define the Lebesgue-Stieltjes integral of f with respect to g by

$$(L-S) \int_a^b f \, dg = \int_a^b f \, d\mu_g \,,$$

where μ_g is the σ -finite signed Baire measure called the Lebesgue-Stieltjes measure corresponding to g.

In the next section we shall use the definition in [1, 5] (only change the (L-S) integral for the (R-S) integral) to discuss the adjoint classes of the Lebesgue-Stieltjes integrable functions.

2 Main Results

In the present paper, besides the following classes of functions defined on [a, b]:

- the class of functions of bounded variation BV[a,b],
- the class of continuous functions of bounded variation CBV[a, b], and
- the class of absolutely continuous functions AC[a, b],

we shall also deal with the classes of functions as follows.

Definition 1. Let $g \in BV[a,b]$. Define $g^*(x) = g(x+)$ for $x \in [a,b)$ and $g^*(b) = g(b)$. If $g^* \in CBV[a,b]$ (AC[a,b]), then we say $g \in C_oBV[a,b]$ $(AC_o[a,b])$.

Definition 2. A function $f \in \mathcal{B}[a,b]$ is said to belong to the class B[a,b] if it is bounded on [a,b].

Definition 3. A function $f \in \mathcal{B}[a,b]$ is said to belong to the class $B_o[a,b]$ if there is a number $N_o > 0$ such that any closed subset of the set $E(x : |f(x)| > N_o)$ is at most countable.

In the following definitions we use $L^p[a,b]$ $(1 \le p < \infty)$ to denote the space of all Lebesgue measurable functions f on [a,b] such that $(L) \int_a^b |f|^p < \infty$, and use $L^{\infty}[a,b]$ to denote the space of all Lebesgue measurable functions on [a,b] which are bounded except possibly a subset of Lebesgue measure zero.

Definition 4. Let $1 \le q \le \infty$. A function $f \in \mathcal{B}[a,b]$ is said to belong to the class $B^q[a,b]$ of $f \in L^q[a,b]$.

Definition 5. Let $1 \le p \le \infty$. A function $g \in \mathcal{F}[a, b]$ is said to belong to the class $AC_o^p[a, b]$ if $g \in AC_o[a, b]$ and $g' \in L^p[a, b]$.

Let A and B be two classes of functions defined on [a, b]. If A and B are adjoint with respect to the Lebesgue-Stieltjes integral, then it will be denoted by A * B(L-S). We will prove the following theorems in the next section.

Theorem 1. B[a, b] * BV[a, b](L-S).

Theorem 2. Let 1/p + 1/q = 1, $1 \le p \le \infty$. $B^q[a, b] * AC_o^p[a, b](L-S)$.

Theorem 3. $B_o[a, b] * C_oBV[a, b](L-S)$.

3 Proof of the Theorems

PROOF OF THEOREM 1.

- (1) Suppose $f \in B[a,b]$ and $g \in BV[a,b]$. Let μ_g be the Lebesgue-Stieltjes measure corresponding to g. The condition $g \in BV[a,b]$ implies that $|\mu_g|$ is a finite measure on [a,b], and so f is μ_g -integrable on [a,b]. Thus, $(L-S)\int_a^b f \, dg = \int_a^b f \, d\mu_g$ exists.
- (2) Suppose $g \in EBV[a,b]$ and $(L-S)\int_a^b f \, dg$ exists for all $f \in B[a,b]$. By the Hahn Decomposition Theorem ([7, p. 273]), there is a function $f \in B[a,b]$ with $|f| \leq 1$ such that

$$\int_a^b f \, d\mu_g = |\mu_g|[a,b] \,.$$

Hence $|\mu_g|$ is a finite measure on [a,b]. That is, $g \in BV[a,b]$.

(3) Suppose $f \in \mathcal{B}[a,b]$ and $(L-S)\int_a^b f \, dg$ exists for all $g \in BV[a,b]$. Claim that $f \in B[a,b]$. Suppose $f \notin B[a,b]$. Then, there exists a sequence $\{a_n\} \subset [a,b]$ such that a_n monotonically converges to a point $c \in [a,b]$, and $|f(a_n)| \uparrow \infty$ as $n \to \infty$. Without loss of generality, we may assume $a_n \uparrow c$ with $a_0 = a$, f(a) > 0, and $f(a_n) + \uparrow \infty$ as $n \to \infty$. Set

$$b_n = f(a_n) +;$$
 $d_n = 1/b_n - 1/b_{n+1}$ and $D_{-1} = 0,$ $D_n = \sum_{i=0}^{n} d_i$.

Then, define $g(x) = D_{n-1}$ for each $n \ge 0$ if $x \in [a_n, a_{n+1})$ and $g(x) = \lim D_n$ if $x \in [c, b]$. Since $\sum_{0}^{\infty} d_i < \infty$, so $g \in BV[a, b]$. But, since

(L-S)
$$\int_{a}^{b} (f+) dg = \sum_{0}^{\infty} (f(a_i)+) \mu_g(\{a_i\}) = \sum_{0}^{\infty} b_{i+1} d_i = \infty$$
,

the integral (L–S) $\int_a^b f \, dg$ does not exist, a contradiction. Consequently, $f \in B[a,b]$.

424 Hanxiang Chen

PROOF OF THEOREM 2.

(1) Suppose $f \in B^q[a,b], g \in AC_o^p[a,b]$ with 1/p + 1/q = 1. Since

$$(L-S) \int_{a}^{b} f \, dg = (L-S) \int_{a}^{b} f \, dg^{*} = (L) \int_{a}^{b} f g' \, dx$$

and so the fact that $f \in B^q[a,b]$ and $g' \in L^p[a,b]$ implies $(L-S) \int_a^b f \, dg$ exists. (2) Let $1 \le p < \infty$. Suppose $f \in \mathcal{B}[a,b]$ and $(L-S) \int_a^b f \, dg$ exists for all $g \in \mathcal{B}[a,b]$

(2) Let $1 \leq p < \infty$. Suppose $f \in \mathcal{B}[a, b]$ and $(L-S) \int_a^b f \, dg$ exists for all $g \in AC_o^p[a, b]$. Whence, $(L) \int_a^b f h \, dx$ exists for all $h \in L^p[a, b]$. Set $f_n(x) = f(x)$ if $|f(x)| \leq n$ and $f_n(x) = 0$ otherwise. Now, for each f_n , $n = 1, 2, \ldots$, define a linear functional:

$$F_n(h) = (L) \int_a^b f_n h \, dx, \quad h \in L^p[a, b].$$

From the Hölder Inequality, it follows that F_n is a bounded functional. Since $|f_n h| \leq |f h|$ and $f h \in L[a, b]$, we have that

$$\lim F_n(h) = (L) \int_a^b f h \, dx \,, \quad h \in L^p[a, b]$$

by the Lebesgue Convergence Theorem. By the Banach-Steinhaus Theorem ([3, p. 100]), $F(h) = \lim_{n \to \infty} F_n(h)$ is a linear functional on $L^p[a, b]$. On the other hand, since

$$L^{p}[a, b]^{*} = L^{q}[a, b]$$
 with $1/p + 1/q = 1$ and $1 \le p < \infty$,

where we denote the dual space of A by A^* , there exists a unique function $f_1 \in L^q[a,b]$ such that

$$F(h) = (L) \int_a^b f_1 h \, dx, \quad h \in L^p[a, b].$$

So, we have

(L)
$$\int_{a}^{b} (f - f_1)h \, dx = 0$$
 for all $h \in L^p[a, b]$.

Set $h = \chi[a, t] \in L^p[a, b]$. Then

(L)
$$\int_{a}^{t} (f - f_1) dx = 0$$
 for $t \in [a, b]$.

Thus, $f = f_1$ almost everywhere, and so $f \in L^q[a, b]$. Hence, $f \in B^q[a, b]$. Let $p = \infty$. If set $g \equiv x \in AC_o^{\infty}[a,b]$, then the fact that $(L-S)\int_a^b f \, dg =$ (L) $\int_a^b f \, dx$ exists implies $f \in L^1[a,b]$. Hence, $f \in B^1[a,b]$.

(3) Let $g \in EBV[a,b]$. Suppose $(L-S)\int_a^b f \, dg$ exists for all $f \in B^q[a,b]$, $1 \le q \le \infty$. We shall prove $g \in AC_o^p[a,b]$ with 1/p + 1/q = 1. First of all, we are going to show it in the case $q = \infty$ (p = 1). In order to prove $g \in AC_o[a, b]$, it suffices to prove that $|\mu_q|(E) = 0$ for any Borel set $E \subset [a, b]$ with m(E) = 0. By the Hahn Decomposition Theorem, we can define a function $f \in B^{\infty}[a,b]$

$$(L-S) \int_a^b f \, dg = (L-S) \int_E f \, dg = +\infty \cdot |\mu_g|(E) < \infty.$$

This means $|\mu_q|(E) = 0$, and so $g \in AC_o[a, b]$. Secondly, we are going to show $g \in AC_0^p[a,b]$ for $1 \le q < \infty$ with 1/p + 1/q = 1. From the preceding proof for the case $q = \infty$ and $B^{\infty}[a, b] \subset B^{q}[a, b]$, it follows that $g \in AC_{o}[a, b]$. So,

(L)
$$\int_{a}^{b} fg' dx = (L-S) \int_{a}^{b} f dg^{*} = (L-S) \int_{a}^{b} f dg$$

exists for all $f \in B^q[a,b], 1 \leq q < \infty$. Hence, we can define a linear functional

$$F(f) = (L) \int_a^b f g' dx, \quad f \in B^q[a, b].$$

Since $B^q[a,b]$ is dense in $L^q[a,b]$, and so it follows from the proof in (2) that $g' \in L^p[a,b]$ with 1/p + 1/q = 1, thus $g \in AC_o^p[a,b]$.

PROOF OF THEOREM 3.

(1) Let $f \in B_o[a,b]$ and $g \in C_oBV[a,b]$. Suppose any closed subset of the set $E(x:|f|>N_o)$ is countable. Since the Lebesgue-Stieltjes measure μ_q is regular, there exists a sequence $\{P_n\}$ of closed sets such that $P_n \subseteq E(x)$: $|f| > N_o$) for all $n \ge 1$ and

$$|\mu_a|(P_n) \to |\mu_a|E(x:|f| > N_o)$$
 as $n \to \infty$.

Since $g \in C_oBV[a, b]$ and P_n is countable, and so $|\mu_g|(P_n) = 0$ for all $n \ge 1$. Hence, it follows that $|\mu_g|E(x:|f|>N_o)=0$. Consequently, the integral $(L-S)\int_a^b f \, dg$ exists.

(2) Suppose $g \in EBV[a,b]$ and $(L-S)\int_a^b f \, dg$ exists for all $f \in B_o[a,b]$. Since $B[a,b] \subset B_o[a,b]$, and so $g \in BV[a,b]$ by Theorem A. Let $c \in [a,b]$.

426 Hanxiang Chen

Define a function f as follows: $f(x) = \infty$ if x = c, and 0 if $x \in [a, b] \sim \{c\}$. It is obvious that $f \in B_o[a, b]$. By hypothesis, the integral

$$(L-S) \int_{a}^{b} f \, dg = (L-S) \int_{\{c\}} f \, dg = f(c) \mu_{g}\{c\}$$

is finite. But, since $f(c) = \infty$, this implies $g^*(c) - g^*(c-) = \mu_g\{c\} = 0$. Hence, $g^*(x)$ is continuous at x = c. Therefore, $g \in C_oBV[a, b]$.

(3) Suppose $f \in \mathcal{B}[a,b]$ and $(L-S)\int_a^b f \, dg$ exists for all $g \in C_oBV[a,b]$. We claim $f \in B_o[a,b]$. If $f \notin B_o[a,b]$, then for any N > 0 the set E(x:|f| > N)contains a closed subset, which is uncountable and so must contain a perfect subset ([6, p. 130]). Hence, we construct a function $g \in C_oBV[a,b]$ such that the integral (L–S) $\int_a^b f \, dg$ does not exist. First of all, since $AC_o[a,b] \subset C_oBV[a,b]$, so $f \in B^{\infty}[a,b]$ by Theorem B. Thus, there exists a number $N_o > 0$ such that for each $n > N_o$ the set E(x: |f| > n) contains a Cantor set S_n with $m(S_n) = 0$. Set $x_n = \max(S_n)$ for each $n > N_o$. If necessary, we can modify those Cantor sets so that $x_n \neq x_m$ if $n \neq m$. Let η be a cluster point of the sequence $\{x_n\}$. Without loss of generality we may assume there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \uparrow \eta \ (k \to \infty)$. Now, we construct a function g as follows. For k = 1, let $y_{n_1} = \min(S_{n_1})$. In the same way as in the proof of Theorem 2.2 in [2] we define g(x) as a Cantor function on $[y_{n_1}, x_{n_1}]$, which is locally constant on $[y_{n_1}, x_{n_1}] \sim S_{n_1}$ with the range $[0,1-1/n_1]$, and g(x)=0, if $x\in [a,y_{n_1})$. In general, for each k>1 we define g(x) as follows. Noting that $S_{n_k} \cap [x_{n_{k-1}}, x_{n_k}]$ is also a Cantor set with measure zero, let $y_{n_k} = \min(S_{n_k} \cap [x_{n_{k-1}}, x_{n_k}])$ and define g(x) as a Cantor function on $[y_{n_k}, x_{n_k}]$, which is locally constant on $[y_{n_k}, x_{n_k}] \sim S_{n_k}$ with the range $[1-1/n_{k-1}, 1-1/n_k]$, and $g(x) = 1-1/n_{k-1}$, if $x \in [x_{n_{k-1}}, y_{n_k}]$. Obviously, through this way we can define g(x) for any $x \in [a, \eta)$. If we define g(x) = 1on $[\eta, b]$, we have $g \in C_oBV[a, b]$. Since $|f(x)| > n_k$ for $x \in S_{n_k} \cap [x_{n_{k-1}}, x_{n_k}]$ and

$$\mu_q(S_{n_k} \cap [x_{n_{k-1}}, x_{n_k}]) = 1/n_{k-1} - 1/n_k$$

we have

$$\begin{aligned} (\mathbf{L}-\mathbf{S}) & \int_{a}^{b} |f(x)| \, dg \geq (\mathbf{L}-\mathbf{S}) \int_{x_{n_{1}}}^{\eta} |f(x)| \, dg \geq \sum_{k=2}^{\infty} (\mathbf{L}-\mathbf{S}) \int_{x_{n_{k-1}}}^{x_{n_{k}}} |f(x)| \, dg \\ & \geq \sum_{k=2}^{\infty} (\mathbf{L}-\mathbf{S}) \int_{S_{n_{k}} \cap [x_{n_{k-1}}, x_{n_{k}}]} |f(x)| \, dg \geq \sum_{k=2}^{\infty} n_{k} \left(1/n_{k-1} - 1/n_{k} \right) \\ & = \sum_{k=2}^{\infty} \left(n_{k} - n_{k-1} \right) / n_{k-1} = \infty \, . \end{aligned}$$

Consequently, the integral (L–S) $\int_a^b |f|\,dg$ does not exist, and neither does the integral (L–S) $\int_a^b f dg$. But, this contradicts the hypothesis, hence we must have $f \in B_o[a,b]$.

References

- [1] H. Chen, A pair of adjoint classes of Riemann-Stieltjes integrable functions, Real Analysis Exchange 23(1997/8), No. 1, 235–240.
- [2] H. Chen, Adjoint classes of generalized-Stieltjes integrable functions, Real Analysis Exchange **24**(1998/9), No. 1, 139–148.
- [3] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.
- [4] B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco, 1964.
- [5] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York and London, 1963.
- [6] E. Kamke, Theory of sets, Dover publications, New York, 1950.
- [7] H. L. Royden, Real Analysis, 3 ed., Macmillan, New York, London, 1988.
- [8] S. Saks, Theory of the integral, Dover, New York, 1964.