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Abstract

Erdős posed the following problem. “Let E be an infinite set of real
numbers. Prove that there is a set of real numbers S of positive measure
which does not contain a set E′ similar (in the sense of elementary
geometry) to E.” The proof is known for only a few special cases; and
not included among these is the geometric sequence {2−n}∞n=1. In this
paper we examine the known literature, present some new results, and
ask a few related questions.

1 Introduction

Erdős posed the following problem [6]. “Let E be an infinite set of real num-
bers. Prove that there is a set of real numbers S of positive measure which
does not contain a set E′ similar (in the sense of elementary geometry) to E.”

We say that a set E is Erdős if there exists a set of positive Lebesgue
measure not containing a copy of E; by a copy of E we mean a set of the form
x+ tE := {x+ te|e ∈ E} with x/t ∈ R. For example, each subset of R that is
either unbounded or dense in some interval is Erdős (witnessed by a Cantor
set of positive measure). On the other hand, Steinhaus [23] has shown that
each set of positive measure contains a copy of each finite set, hence no finite
set is Erdős.

Given any set E, if some subset of E is Erdős, then so is E. Hence, much
attention has been focused on the case where E is a zero-sequence; namely, a
strictly monotone sequence of positive numbers converging to zero. If every
zero-sequence is Erdős, then the problem is solved. However, this appears to
be a difficult problem and hence special cases and reformulations have received
considerable attention.

While Erdős mentioned this problem on several occasions [6], [7], [8], [9], his
interest apparently went no further than generalizing the Steinhaus result [14].
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Mathematical Reviews subject classification: Primary: 28A05; Secondary: 28A99
Received by the editors September 24, 2000

525



526 R. E. Svetic

On the other hand, in [8] he offers a prize of $100 for the solution and later
in [9] writes “I hope that there are no such sets” when discussing countable
sets which might not be Erdős.

Bourgain [2] has suggested that the problem may be motivated by some re-
sults of Szemerédi [24], Furstenberg [12] and Furstenberg and Katznelson [13].
Kolountzakis [18] also mentions some work of Lebedev and Olevskǐı [19] that
is related to the problem of finding a copy of a finite set in a set of positive
measure.

In what follows, uncited results are the author’s work. Some of these are
probably known, but the author has found no direct reference.

2 Almost Chronological Survey

Erdős first posed the similarity problem in 1974 at The Fifth Balkan Mathe-
matical Congress [6]. He later repeated the problem in [7], and, speculating
that it would be proved, posed the following further problem. “Given a count-
able set E of [0, 1] determine (or estimate) the largest possible measure of a
subset S of [0, 1] which does not contain a set similar to E.” The answer is
that any µ(S) < 1 is possible and that µ(S) = 1 is impossible (µ denotes
Lebesgue measure). The latter is true since it is easy to show that any set of
full measure contains a copy of each countable set (see Theorem 2.3).

Regarding µ(S) < 1, observe that any set S of positive measure (not
containing a copy of E) contains a portion (a, b)∩S having an arbitrarily large
measure less than one. Replace S by a suitably scaled and shifted version of
(a, b) ∩ S. Moreover, we may require S to be closed since any set of positive
measure contains a closed set of positive measure. Thus, the sets S of interest
are closed, nowhere dense, and have positive measure.

On the other hand, the possible Erdős sets E, are closed, nowhere dense,
null sets according to the following lemma and the remark following Theo-
rem 2.10.

Lemma 2.1. A set E ⊂ R is Erdős if and only if its closure is Erdős.

Proof. Suppose that E is Erdős. Then E, the closure of E, is Erdős follows
from the observation that if a set contains no copy of E, then it contains no
copy of any larger set.

Suppose that E is Erdős and, proceeding toward a contradiction, suppose
that E is not. There is a closed set S of positive measure that contains no
copy of E. Since E is not Erdős, x + tE ⊂ S for some (x, t) with x/t ∈ R.
Since S is closed, x+ tE = x+ tE ⊂ S, a contradiction.
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Erdős posed the following related problem to Borwein and Ditor [1]. “Given
a measurable set S of real numbers with µ(S) > 0, and a sequence {en}∞n=1 of
real numbers converging to zero, is there always an x such that x+ en ∈ S for
all n sufficiently large?” They showed that the answer is no with the following
theorem.

Theorem 2.2 (Borwein and Ditor [1]).
(i.) There is a measurable set S with µ(S) > 0 and a zero-sequence {en}∞n=1

such that, for each x, x+ en 6∈ S for infinitely many n.
(ii.) If S is a measurable set with µ(S) > 0 and {en}∞n=1 is a sequence con-
verging to zero, then, for almost all x ∈ S, x + en ∈ S for infinitely many
n.

Related to the Erdős question, Miller and Xenikakis obtained the following
results for convergent sequences of real numbers.

Theorem 2.3 (H. I. Miller and P. J. Xenikakis [21]). If S ⊂ R is an open set
mod N , where N is the ideal of subsets of measure zero, and E = {en}∞n=1 is
a convergent sequence of reals, then S contains a copy of E.

Theorem 2.4 (H. I. Miller and P. J. Xenikakis [21]). If S ⊂ R is of the
second category in R and possesses the Baire property and E = {en}∞n=1 is a
convergent sequence of reals, then S contains a copy of E.

Kolountzakis [18] showed, using a more direct proof, that these two theo-
rems are true for arbitrary bounded countable sets E.

Using transfinite induction and the continuum hypothesis (CH), Miller
obtained the following results for uncountable sets.

Theorem 2.5 (H. I. Miller [20]). If E is an uncountable set of real numbers,
then there exists a subset S of [0, 1] such that S has outer Lebesgue measure
one and S contains no copy of E.

Theorem 2.6 (H. I. Miller [20]). If E is an uncountable set of real numbers,
then there exists a subset S of [0, 1] such that S is of the second Baire category
in R and S contains no copy of E.

Without using CH, J. A. de Reyna obtained the following. (Recall that a
set E ⊂ R is first category at a point x if there is a neighborhood U of x such
that U ∩ E is first category; otherwise E is second category at x.)
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Theorem 2.7 (J. A. de Reyna [22]). Let E be a subset of R with more than
two points. There exists a subset of S of the unit interval such that
(i.) S has outer Lebesgue measure one;
(ii.) S is of the second Baire category at each of its points; and
(iii.) S does not contain a copy of E.

Later, P. Komjáth improved upon the Borwein and Ditor results with the
following.

Theorem 2.8 (P. Komjáth [17]). For any given ε > 0 there exists a set
S ⊂ [0, 1] of measure 1− ε and a sequence {en}n=1 converging to 0 such that,
for any given x ∈ [0, 1] and t 6= 0, x+ ten 6∈ S for infinitely many n.

Theorem 2.9 (P. Komjáth [17]). For any given zero-sequence en and ε > 0
there is a set S ⊂ [0, 1], with µ(S) > 1−ε, possessing the property: if x ∈ [0, 1],
then {n|x+ en 6∈ S} is infinite.

The first Erdős zero-sequence result was proved independently at about the
same time by Eigen and Falconer. The result is summarized in the following
theorem.

Theorem 2.10 (Eigen [5] and K. J. Falconer [10]). Let E = {en}∞n=1 be a
zero-sequence such that

lim
n→∞

en+1

en
= 1.

Then E is Erdős. Moreover (Falconer), there exists a closed set S with µ(S) >
0 such that for any (x, t) with x/t ∈ R, x+ ten 6∈ S for infinitely many n.

This result shows immediately that any set having positive Lebesgue outer
measure is Erdős. A simplified Eigen-Falconer construction follows.

Example 2.11. Given a set E satisfying the hypotheses of Theorem 2.10,
there is a closed nowhere dense perfect set S of positive measure containing
no copy of E.

Construction. The set S is constructed in a manner similar to that of
the middle thirds Cantor set. At the n-th step, kn uniformly spaced open
intervals are removed from each basic interval formed at the previous step to
produce kn + 1 basic intervals of equal size. The fractional amount removed
at the n-th step is εn ∈ (0, 1) and the εn sequence is chosen such that µ(S) =
Π∞n=1(1 − εn) > 0. We choose an auxiliary integer sequence N(n) such that
m ≥ N(n) implies that em+1/em > 1−εn. Now, choose the integer sequence kn
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recursively such that nµ(In) < eN(n), where In is a basic interval formed at
the n-th step.

Considering x+ tE, where x ∈ S and t > 0 (t < 0 is similar), x+ tE 6⊂ S is
immediate if x is the right end point of some basic interval in the construction.
Otherwise, choose n ∈ N such that 1/n < t and let In be the basic interval
formed at step n in the construction such that x ∈ In. Let On be the open
interval removed at step n adjacent to In on the right. Let m ∈ N be minimal
such that x + tem ∈ In. We will show that t(em−1 − em) < µ(On), which
implies em−1 ∈ On and so em−1 6∈ S.

Observe that em/n < tem ≤ µ(In) implies m > N(n), hence
(tem)/(tem−1) > 1−εn. We have that µ(On)/(µ(On)+tem) ≥ µ(On)/(µ(On)+
µ(In)) > εn which implies that µ(On) > temεn/(1 − εn). After some algebra
we obtain t(em−1 − em) < µ(On) as desired.

The similarity problem has been reformulated in two different ways. The
first is due to Bourgain who used mainly probabilistic methods to prove the
following. (In Bourgain’s terminology, a set has property E if it is not Erdős.)

Theorem 2.12 (J. Bourgain [2]). The following conditions are equivalent for
a
bounded set E of Rd, d ∈ N:
(i.) There is a constant C such that∫

inf
1<t<2

sup
e∈E∗

|f(x+ te)| dx ≤ C
∫
|f(x)| dx

whenever E∗ is a finite subset of E and f is a continuous function on Rd with
compact support.
(ii.) E is not Erdős.

Using this result, Bourgain was able to show the following.

Corollary 2.13 (J. Bourgain [2]). If E1, E2, and E3 are infinite sets of real
numbers, then E1 + E2 + E3 := {e1 + e2 + e3|ei ∈ Ei, i = 1, 2, 3} is Erdős.

We can use this corollary to show that the middle-thirds Cantor set is Erdős
as follows. A symmetric perfect set is the set of all finite or infinite subsums
of the series

∑∞
n=1 λn, where {λn}∞n=1 is a sequence of positive numbers such

that
∑∞
n=1 λn = 1 and

λn >

∞∑
m=n+1

λm for n ∈ N := {1, 2, . . . }.
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(Set λn = 2 · 3−n to obtain the middle-thirds Cantor set.)
The next result follows by letting E1, E2, and E3 be infinite, mutually

disjoint subsequences of {λn}∞n=1.

Corollary 2.14. Any symmetric perfect set is Erdős.

Jasinski views the Erdős Problem as a “tiling puzzle”.

Theorem 2.15 (J. Jasinski [16]). Let E ⊂ (0, 1) be a set. The following
conditions are equivalent.
(i.) ∃S ⊂ R, µ(S) > 0, such that (x+ tE) ∩ (R \ S) 6= ∅ ∀(x, t) with x/t ∈ R.
(ii.) ∃S ⊂ (0, 1), µ(S) > 0, such that ∀0 < t < 1, (R \ S) + tE = R.
(iii.) ∃ open O ⊂ R, µ((0, 1) \O) > 0, such that ∀0 < t < 1, O + tE = R. (∗)

The tiling idea is to place countably many tiles (open intervals) Oi in
(0, 1). These tiles do not cover (0, 1); rather the addition of tE “expands”
them so that the union covers R; namely, R ⊂ O + tE, where O = (−∞, 0) ∪
(
⋃∞
i=1Oi)∪(1,+∞). To use this idea for a given zero-sequence {en}∞n=1, define

k(δ) = min{k|∀n ≥ k, (en − en+1) ≤ δ} for k ∈ N and δ > 0.

Theorem 2.16 (J. Jasinski [16]). Let E = {en}∞n=1 ⊂ (0, 1) be a zero-
sequence. If there exist a sequence {δn}∞n=1 such that

∞∑
n=1

δn < 1 and
∞∑
n=1

ek(δn) = +∞,

then there exists a double sequence of open intervals {On,m}∞n,m=1 such that
O = (−∞, 0)∪ (

⋃∞
n,m=1On,m)∪ (1,+∞) has property (*). Hence E is Erdős.

In the same work, Jasinski showed that Theorem 2.16 does not apply to
zero-sequences E = {en}∞n=1 such that lim sup(n→∞) en+1/en < u < 1. On
the other hand, we have the following.

Corollary 2.17 (J. Jasinski [16]). If E = {en}∞n=1 and {en − en+1}∞n=1 are
zero-sequences and

∑∞
n=1 en = +∞, then E is Erdős.

That the Eigen-Falconer result and Corollary 2.17 are independent can be
seen, on the one hand, by considering the sequence {1/n2}∞n=1, and on the
other hand by considering the following example.

Example 2.18. There is a zero-sequence {en}∞n=1 such that Corollary 2.17
applies and lim inf(n→∞) en+1/en = 0.
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Construction. Let b1 > 0 be arbitrary and b1 > b2 > · · · > bN = 0 be a
uniform partition of [0, b1] such that b1 + · · · + bN ≥ 1. Now, for a modified
partition by replacing bN by a small positive number such that bN/bN−1 < b1.

Construct the desired zero-sequence E step-wise, where the elements added
at each step are the partition elements b1, · · · , bN : let the b1 for step n be
the bN from the previous step. The resulting sequence {en}∞n=1 is such that
en − en+1 is non-increasing,

∑∞
n=1 en =∞ and lim inf(n→∞) en+1/en = 0; an

obvious modification gives en − en+1 strictly decreasing.

We can improve a little on Jasinski’s idea by defining ∆en = max{ei −
ei+1|i ≥ n} for a given zero-sequence {en}∞n=1. The improvement is evident
by observing that the Eigen-Falconer result is now a corollary of the following
theorem.

Theorem 2.19. Let E = {en}∞n=1 be a zero-sequence. If

lim inf
n→∞

∆en
en

= 0,

then E is Erdős.

Proof. Since lim inf(n→∞)
∆en
en

= 0, there exists a subsequence nk such that

∞∑
k=1

1
1 + k+1

k+3

enk
∆enk

<
1
2
.

For each k ∈ N, let Ok consist of (0,∆enk/(k+1)), together with countably
many disjoint open intervals of the same length, with consecutive intervals
separated by a distance of enk/(k + 3), and extending to infinity in both
directions.

Let k ∈ N and c > 0 be such that 1/(k+ 1) > c ≥ 1/(k+ 2). Observe that

(0,
∆enk
k + 1

+
enk
k + 3

] ⊂ Ok + cE,

since 1/(k + 1) > c; ∆enk ≥ ei − ei+1, for i ≥ nk, and c ≥ 1/(k + 2), imply
that

∆enk
k + 1

+ cei+1 > cei and
∆enk
k + 1

+ cenk >
∆enk
k + 1

+
enk
k + 3

.

Let O = (−∞, 0) ∪ (
⋃∞
k=1Ok) ∪ (1,+∞). Since

µ(Ok ∩ [0, 1]) < 2

( ∆enk
k+1

∆enk
k+1 + enk

k+3

)
,
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µ(O ∩ [0, 1]) < 1 (the factor 2 accounts crudely for the fact that 1 is not
necessarily a left end point of some interval in Ok). Then property (*) holds
for 0 < c < 1/2.

The proof of Theorem 2.15 shows that the set [0, 1] \ O just constructed
may be used to form a subset of [0, 1] having positive measure and containing
no copy of E. This implies that E is Erdős and completes the proof.

Let E ⊂ R and S ⊂ [0, 1]. Denote, by B(E,S), the set of points (x, t)
with x/t ∈ R such that x + tE ⊂ S. In order that a set E be Erdős, there
must exist a set S of positive measure such that B(E,S) = ∅. Using mainly
probabilistic methods, Kolountzakis [18] showed that for any infinite E there
is a set S for which µ2(B(E,S)) = 0 (µ2 denotes Lebesgue plane measure).
This result follows from the following main theorem.

Theorem 2.20 (Kolountzakis [18]). Let E ⊂ R be an infinite set. Then there
exists S ⊂ [0, 1], with µ(S) arbitrarily close to 1, such that

µ({t|∃x such that (x, t) ∈ B(E,S)}) = 0.

The following theorem of Kolountzakis implies the Eigen-Falconer result as
well as providing a proof that {2−nα}∞n=1 +{2−nα}∞n=1 is Erdős for 0 < α < 2.
(In Kolountzakis’ terminology, a set is universal if it is not Erdős.)

Theorem 2.21 (Kolountzakis [18]). Let E ⊂ R be an infinite set which con-
tains, for arbitrarily large N , a subset {e1, . . . , eN} with e1 > · · · > eN > 0
and

− ln δN = o(N),

where δN = min(1≤m<N)(em − em+1)/e1. Then E is Erdős.

Since this theorem is only of interest for bounded sets (unbounded sets are
already Erdős), it may be restated in the following more convenient way.

Theorem 2.22. Any bounded, infinite E ⊂ R such that

lim inf
|E∗|→∞

− ln δ(E∗)
|E∗|

= 0

is Erdős, where E∗ is a finite subset of E of cardinality |E∗| and δ(E∗) denotes
the length of the shortest component of (minE∗,maxE∗) \ E∗.

These theorems are limited by the following.
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Lemma 2.23. Let E = {en}∞n=1 be a zero-sequence such that
lim sup(n→∞) en+1/en < u < 1. Then

lim inf
|E∗|→∞

− ln δ(E∗)
|E∗|

> 0.

Proof. Without loss of generality suppose that en+1/en ≤ u for all n. Choose
an integer N ≥ 2 and E∗ = {ê1, . . . , êN} ⊂ E such that ê1 > · · · > êN > 0.
Let 1 ≤ m < N be such that δ(E∗) = êm − êm+1.

Observe that êm ≤ ê1u
m−1 ≤ e1u

m−1, and that N − m ≤ êm/(êm −
êm+1). Then δ(E∗) = êm − êm+1 ≤ êm/(N − m) ≤ e1u

m−1/(N − m) ≤
e1u

N−1u−(N−m).
Also, êm(1 − u) ≤ êm − êm+1, hence (1 − u) ≤ 1/(N −m), from which it

follows that u−(N−m) ≤ u−1/(1−u). Thus δ(E∗) ≤ e1u
N−1u−1/(1−u), and

− ln δ(E∗)
N

≥ − ln e1

N
− N − 1

N
lnu+

lnu
N(1− u)

.

The result follows from − lnu > 0.

The similarity problem was reformulated again by Humke and Laczkovich
into a combinatorial problem.

Theorem 2.24 (Humke and Laczkovich [15]). Let E ⊂ [0, 1] be such that
inf(E) = 0 and sup(E) = 1. Then the following are equivalent.
(i.) E is Erdős;
(ii.) lim(n→∞)

Λn
n = 0;

(iii.) lim inf(n→∞)
Λn
n = 0;

where Λn is the cardinality of the smallest set B ⊂ Nn := {1, 2, ..., n} that
intersects each set of the form

Ex,y = {x+ [ey]|e ∈ E},

where x, y, x+ y ∈ Nn; y ≥ [n/2]; and [ey] denotes the integer part of ey.

From this theorem they obtain the following special case. (It also follows
from a slight modification of the proof of Theorem 2.19.)

Theorem 2.25 (Humke and Laczkovich [15]). Any bounded E ⊂ R such that

inf
u<v

E(u, v)
v − u

= 0

is Erdős, where E(u, v) denotes the length of the longest component of (u, v)\E.
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Corollary 2.26 (Humke and Laczkovich [15]). If E = {en}∞n=1 and
{en − en+1}∞n=1 are zero-sequences and lim sup(n→∞) en+1/en = 1 then E is
Erdős.

The following two examples demonstrate that Theorem 2.25 and Theo-
rem 2.21 are independent.

Example 2.27. There is a zero-sequence E such that inf(u<v)
E(u,v)
v−u = 0 and

lim inf(|E∗|→∞)
− ln δ(E∗)
|E∗| > 0.

Construction. Let C0 = [0, 1]. Let Cn, n ≥ 1, consist of n + 1 equal
length disjoint closed intervals, uniformly spaced in [0, 1], such that 0, 1 ∈ Cn
and µ(Cn) = 1 − n2−n

2
. Let ∂Cn denote boundary of Cn. Observe that

∂Cn consists of 2(n + 1) points and that the largest (respectively, smallest)
component of [0, 1]\∂Cn has length 1

n+1−
n
n+12−n

2
(respectively, 2−n

2
). Thus,

with u = 0 and v = 1, (∂Cn)(u, v)/(v − u) ≤ 1
n+1 .

Let En = 2−n(∂Cn + 1), ∂Cn scaled and shifted right by 2−n, and E =⋃∞
n=0En. Observe that |

⋃n
m=0Em| ≤

∑n
m=0 2(m+ 1) = (n+ 1)(n+ 2).

To see that lim inf(|E∗|→∞)
− ln δ(E∗)
|E∗| > 0, let E∗ be a finite subset of E

and N be maximal such that E∗ ∩ EN+1 6= ∅. Then δ(E∗) ≤ 2−N
2

and

− ln δ(E∗)
|E∗|

≥ N2 ln 2
(N + 2)(N + 3)

,

showing that the liminf is non-zero.
On the other hand, to see that inf(u<v)

E(u,v)
v−u = 0, consider the sets (u, v) =

(2−n, 2−n+1), n ≥ 1. Then

E(2−n, 2−n+1)
(2−n+1 − 2−n)

≤
2−n 1

n+1

(2−n+1 − 2−n)
=

1
n+ 1

,

showing that the inf is zero.

Example 2.28. There is a zero-sequence E such that inf(u<v)
E(u,v)
v−u > 0 and

inf(|E∗|→∞)
− ln δ(E∗)
|E∗| = 0.

Construction. Recall the construction of the ordinary middle-thirds Cantor
set. At step 0 we have C0 = [0, 1], which is composed of a single basic interval.
At step n, n ≥ 1, we remove the open middle third from each of the 2n−1

basic intervals of length 3−n+1 formed at step n− 1. Denote by Cn the union



The Erdős Similarity Problem 535

of these 2n disjoint closed intervals of length 3−n. The middle thirds Cantor
set is given by

⋂∞
n=0 Cn. Let ∂Cn denote boundary of Cn. Observe that ∂Cn

consists of 2n+1 points and that the largest (respectively, smallest) component
of [0, 1]\∂Cn has length 3−1 (respectively, 3−n). For any two points u, v ∈ ∂Cn,
u < v, there is a last step m ≥ n in the construction of Cn such that u and
v are elements of the same basic interval. Then v − u ≤ 3−m and the largest
gap in ∂Cn between u and v has length at lease 3−m−1; hence,

Cn(u, v)
v − u

≥ 3−m−1

3−m
=

1
3
.

Let En = 2−n(∂Cn + 1), ∂Cn scaled and shifted right by 2−n, and E =⋃∞
n=0En.

To see that lim inf(|E∗|→∞)
− ln δ(E∗)
|E∗| = 0, consider the sequence of sets

E∗ = En, n ≥ 0. Then δ(En) = 2−n3−n, and − ln δ(En)
|En| = n ln 2+n ln 3

2n+1 , showing
that the liminf is zero.

On the other hand, to see that inf(u<v)
E(u,v)
v−u > 0, let M,N ∈ N be

minimal such that u ∈ EM and v ∈ EN . If u, v ∈ EM or u, v ∈ EN , then
E(u,v)
v−u ≥ 1

3 . Otherwise if M = N + 1, then u < 2N < v and suppose that
v − 2N ≥ 2N − u (the other case is similar). Then

E(u, v)
v − u

≥ E(2N , v)
2(v − 2N )

≥ 1
2 · 3

.

Finally, if M > N + 1, then

E(u, v)
v − u

≥ E(2N+1, 2N )
2N−1

=
E(2N+1, 2N )
4(2N − 2N+1)

≥ 1
4 · 3

.

Hence inf(u<v)
E(u,v)
v−u > 0.

The most recent results on the Erdős problem appear in unpublished work
of M. Chleb́ık [3]. We say that a set E is c-Erdős if there exists a set S ⊂ R
satisfying µ(R \ S) < ∞ and not containing a copy of E. (Chleb́ık uses the
condition that for all ε > 0, µ(R \ S) < ε. The two conditions are equivalent
since we may replace S satisfying µ(R \ S) < ∞ by a version of S scaled by
α < ε/µ(R \ S).)

Considering bounded sets E, we have the following lemma.

Lemma 2.29. Each bounded E ⊂ R is Erdős if and only if it is c-Erdős.
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Proof. We need only consider the case when E is Erdős. Let ε > 0 and
S ⊂ R have positive measure and contain no copy of E. Since S has positive
measure we may choose a sequence {S′n}∞n=1 of suitably scaled and shifted
portions of S such that µ([−n, n] \ S′n) < ε2−n for each n. Define Sn =
(−∞,−n) ∪ S′n ∪ (n,+∞). Replace S with the set

⋂∞
n=1 Sn and observe that

µ(R \ S) < ε.

The situation is different for unbounded E; each such set is Erdős though
not necessarily c-Erdős. For example, N, the set of positive integers, is not
c-Erdős while {nα}∞n=1 is c-Erdős whenever α ∈ (0, 1) [3].

The following result extends Theorem 2.25 to the case of unbounded E.

Theorem 2.30 (Chleb́ık [3]). Let E ⊂ R have the following density property

inf
u<v

E(u, v)
v − u

(|u|+ |v|+ 1) = 0. (P1)

Then E is c-Erdős.

Corollary 2.31 (Chleb́ık [3]). Let E = {en}∞n=1 be an increasing sequence of
positive numbers tending to +∞ such that for every ε > 0 there exist integers
1 ≤ m < n such that ei − ei−1 < ε

(
1− em

en

)
for any i = m+ 1,m+ 2, · · · , n.

(This property is implied by en → +∞ and en+1 − en → 0 as n→∞.)
Then E is c-Erdős.

Results which limit the size of the set B(E,S) for certain E ⊂ R are given
in the next three theorems.

Theorem 2.32 (Chleb́ık [3]). Let ν be a σ-finite Borel measure on
C := {(x, t)|x/t ∈ R} and E ⊂ R have the following density property

sup
{

card(E ∩ [−n, n])
n

∣∣∣∣n ∈ N
}

= +∞. (P2)

Then for every ε > 0 there exists an open set G ⊂ R with µ(G) < ε such that
(x+ tE) ∩G is infinite for ν-a.e. (x, t) ∈ C.

Theorem 2.33 (Chleb́ık [3]). Let E ⊂ R possess property (P2) and B ⊂ C be
a set of σ-finite 1-dimensional Hausdorff measure. Then for every ε > 0 there
exists an open set G ⊂ R with µ(G) < ε such that (x+ tE) ∩G is infinite for
each (x, t) ∈ B.
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Theorem 2.34 (Chleb́ık [3]). Let E ⊂ R have the following density property

sup{card(E ∩ [α, α+ 1]|α ∈ R} = +∞. (P3)

Let B = R × C ⊂ C, where C is countable. Then for every ε > 0 there exists
an open set G ⊂ R with µ(G) < ε such that (x + tE) ∩ G is infinite for each
(x, t) ∈ B.

3 In Conclusion

It is interesting to note that none of these results can be applied to the geo-
metric sequence {2−n}∞n=1 or, indeed, to any zero-sequence {en}∞n=1 such that
lim sup(n→∞) en+1/en < 1.

The difficult nature of this problem suggests that one might look to other
related problems for hints as to how to proceed. Toward that end, consider
the following question related to the Steinhaus result that each set of positive
measure contains a copy of each finite set is the following.

Question 3.1. Is it true that if a measurable set contains a copy of each finite
set, then the set has positive measure?

The result of Miller that any set of full measure contains a copy of each
countable set suggests another question.

Question 3.2. Is it true that for every uncountably infinite set, E, of real
numbers there exists S ⊂ [0, 1] of full measure that does not contain a subset
similar to E?

An affirmative answer to the following question would show that any un-
countable Borel set is Erdős.

Question 3.3. Does Corollary 2.14 extend to arbitrary nowhere dense perfect
sets?
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Mauldin, Ed.), Birkhäuser, Boston, (1981), 35–43, MR 84m:00015.
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The Erdős Similarity Problem 539
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