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ON H,-INTEGRABLE FUNCTIONS

Abstract

In this note we deal with some problems related to the H;-integral
introduced recently by Garces, Lee, and Zhao. We give a new definition
of that integral and characterize Hi-integrable functions almost every-
where equal to zero. We also discuss some results stated in the original
paper on the Hi-integral.

1 Basic Notation

Let (a,b) denote compact subinterval of R. By a partial tagged partition
of {(a,b) we understand any collection P of pairs (I, z) where I is a compact
subinterval of {(a,b) and x € I satisfying the following condition

e for every (I,z),(J,y) € P we have int INJ =0 or (I,z) = (J,y).

If moreover

° U(I,az)GPI: (a, b),

then P is called a tagged partition of {a,b). Partial tagged partitions will be
denoted by the letter P, tagged partitions by .

If f: (a,b) — R and (¢,d) = I C {a,b), by Af(I) we mean f(d)— f(c) and
by |I| the length of I. If P is a partial tagged partition of (a, b) then we denote

o« o(P.f) = X ryer J@II,
o« A(P) = Y1 mep AF(D).
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Any positive function § defined on (a, b) we call a gauge. We say that a partial
tagged partition P is d-fine if for every (I,z) € P we have I C (x — é(x),x +

6(x)).
Finally let Xg denote the characteristic function of a set E and let p(FE)
denote the Lebesgue measure of a measurable set E.

2 Introduction

In [2], Garces, Lee, and Zhao remarked that the Riemann integral may be
defined using Moore-Smith limits. In the set © of all tagged partitions of (a, b)
they introduced two relations:

e 71 dmy if and only if for every (I, z) € ma, I is the union of some intervals
from 7y,

e 11 >7o if and only if w1 Jms and the set of all tags from 75 is a subset of
the set of tags from 7.

Both (©,3) and (©, >) are nets. It was remarked that the R-integral may be
obtained as a limit of Riemann sums in the sense of (0, J).

Definition 2.1. We call a function f: {a,b) — R, R-integrable to I € R if for
any € > 0 there is a tagged partition 71 of (a,b) such that for every mJm

lo(m, f) = 1] <e.
The H;-integral was defined using the relation >:

Definition 2.2. We call a function f: {a,b) — R, Hy-integrable to I € R if
there exists a gauge 6 defined on {a,b) such that for any € > 0 one can find
a tagged partition w1 of (a,b) such that for every 0-fine w>m,

lo(m, f) =1 <e.

(This last definition is a little bit different from the one given in [2], but,
of course equivalent — here we do not demand m; to be d-fine.)

However, using the relation > in Definition 2.2 is redundant too. It is
enough to use J — the same one which is used in the Moore-Smith Definition 2.1
of the Riemann integral. We define a new integral and prove its equivalence
to the Hp-integral.

Definition 2.3. We call a function f: (a,b) — R, Hy-integrable to I € R if
there exists a gauge § defined on {a,b) such that for any ¢ > 0 one can find
a tagged partition 7y of {a,b) such that for every d-fine 7 Imgy

lo(m, f) =1 < e.
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Of course every Hy-integrable function is Hj-integrable and the integrals
coincide. The opposite is also true.

Theorem 2.4. Fvery Hi-integrable function is Hy-integrable.

PROOF. Suppose f: (a,b) — R is Hy-integrable using the gauge §. Fix an ¢ >
0, and let 71 be a tagged partition of (a,b) such that for any j-fine 7>,

otr ) [ 1] <%

Let mp>m1 be a tagged partition having the same tags as m; and let all intervals
from 7 have tags at their ends.

Now take any d-fine tagged partition 7’ Jmg. Denote Z = {2z : (I,z2) € mo}.
For every z € Z choose (I,,z,) € 7’ such that z € I,. We may assume that
for z; # 22, the intervals I,, and I,, are different. By P denote family of all
(I,,z,) for which z, # z. For every (I,,z,) € P let J, be a closed interval
such that

(i) z. & J.CL,,
(i) z € J,.

It is seen that intervals I, and J, have one common end in z. It is always
possible to take J, sufficiently short so that

(iii) [f(z2)[|J2| < & and |[f(2)|[J.] < 57, (where | = card Z) and

(iv) J.C(zy —6(xy),z, + 0(xy)).

Note that

7 = (x"\P)U U {(J2,2), (1 (I.\J.),z.) }

(Iz,z2)EP

is tagged partition of the interval (a,b). Note also that from (iv) 7" is d-fine
and 7 > m;. We may evaluate

o)~ ) [ 1] <ot ) ot )+ ot ) - ) [
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Of course |o (", f) — (Hy) f:f‘ < £ and from (iii)
(7", f) —a(x’, f)
S| T G+ AL + o\ ) — ol 1)

(I,,x.)EP
= > WL+ f@EAL) > S
(I.,z.)EP I.,z2)EP
2
< Y U@L+ Y @)l < ge
(Izal'z)efp (Iz,wz)ep
So
b
o' p— ) [ 1] <
and f is Hp-integrable. O

Corollary 2.5. A function f: {(a,b) — R is Hy-integrable to I € R if and only
if there exists a gauge § on {(a,b) such that for any e > 0 one can find a tagged
partition w1 of {a,b) such that for any §-fine wJm;

lo(m, f) — 1| < e.

Comparing Definitions 2.1 and 2.3 we see that every Riemann integrable
function is Hy-integrable. However, there are R-nonintegrable functions which
are Hp-integrable — for example the classical Dirichlet function (see Example 2
in [2]). It is nice that using the same relation as in Definition 2.1 we may
obtain — having only at the start of integrating some suitable gauge which is
independent of € — an essentially wider class of integrable functions.

3 Some Facts from [2]

The following theorems were proved in [2] (respectively Lemma 4 and Lemma 6).

Theorem 3.1. Let f: (a,b) — R be Hy-integrable on a closed set Xo C (a, by,
and — using gauge 61 — on another closed set X1 C Xo. Assume f(z) =0 for
x € {(a,b) \ Xa. If the Hy-primitive F' of f is absolutely continuous on {(a,b),
then f is Hy-integrable on Xo using gauge 6 equal to d1 on X;.

It was asserted in [2] that Theorem 3.1 holds even if X; ¢ X3 (with X,
replaced by X7 U X5), but the proof was done only for the situation described
above. It is not clear that the assumption of absolute continuity of F' is enough
for Hy-integrability of f on X; U Xa (look Section 6 of this paper).
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Theorem 3.2. Let X be a closed subset of {a,b). If function f: {(a,b) — R is
H; -integrable and bounded on (a,b), then it is Hy-integrable on X.

4 Hy-Integrability on Null Sets

Lemma 4.1. Let f: {a,b) — R be Hy-integrable on closed sets X1, Xa, X3, ...
all of measure zero and such that X1 C X9 C X3 C .... Then f is Hy-
integrable on X = J;2, X;.

PROOF. There exists a decreasing sequence (d;)7°, of gauges on (a,b) such

that for §;-fine partial tagged partition P,

1
< —

|U(P7fXXi) 9

(This follows from the ordinary Saks-Henstock Lemma.) Inductively using
Theorem 3.1 we obtain a gauge ¢’ on X such that for every i there is a
positive 0, on (a,b) equal to ¢’ on X; such that for arbitrary & > 0 there
exist respective tagged partitions m; . of (a,b) such that for any J;-fine tagged
partition 7J7; . the following inequality holds,

|0(7T? fXX7) <e.

(This follows from the Hp-integrability of f on X;.) Put

(5( min {5/(1‘),51(17)} ifx e Xi\Xi—l
xTr) =

anything ife g X.
where Xog = (). Fix an € > 0. Let N be a positive integer such that
Yo ni1 3 < 5. For any d-fine nJmN,e we use the Saks-Henstock Lemma
for the Hy-integral to obtain

o0

o, PXO] < Jo(m, PXx )+ Y lolm fXxax )l <e
i=N+1

O

The statement of Lemma 4.1 for positive f, any ascending X7, X5, X3, ...
and with the assumption of the integrals’ convergence appeared in [2] as The-
orem 5. But in this general form it is false — as we shall soon show. However,
the technique we use to prove Lemma 4.1 is the same technique Garces, Lee,
and Zhao use. The same scheme of proving convergence of Hy-integrals will
be used to prove Theorems 5.3 and 5.5.
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Theorem 4.2. Suppose f: (a,b) — R is equal to zero almost everywhere in
(a,b). Then, f is Hy-integrable if and only if the set

E={z € (ab): f(z)# 0}
is contained in an F, null set.

PROOF. (=) We will prove f* = max {0, f} is Hy-integrable. There is an in-
creasing sequence of sets (E,)52; such that |J,—, E, = E and for all n
u(clE,) = 0. For fixed n € N put D, = E, N{z € {(a,b): 0 < fH(z) < n}.
For every tagged partition 7w of (a,b) we have

0<o(m fXap,) < o(m,nXag,)- (1)

From Theorem 3.2, the function nX g, is Ho-integrable (to zero). From (1),
fT is Hy-integrable on clD,,. Applying Lemma 4.1 we conclude fT is Hy-
integrable on (J;~, c1 D, so f* is Hy-integrable on (a,b). In the same way
we prove that f~ is Hp-integrable.

(«<=) There exists positive number M for which the set

D ={z € {(a,b): |f(x)| > M}

is not contained in an F, set of measure zero. For any fixed gauge ¢ on (a, b)
there is a positive integer n such that the closure of the set

1
En:{xeD: 5(9;)>}
n
has measure m > 0.
Consider any tagged partition 7y of (a,b) and put
P={,zx)€m: INE, #0}.

Then u(P) > m, because the sum of intervals from P contains cl E,,. Consider
the family of closed intervals

AZ{J:IO<Z7Z+1> : (I,x) e P, z€7Z, JﬂEn#@}.

n n

It follows that

> I =m.

JeA
For every J € A take an x; € J N E,. Note that the partial partition
{(Jyxy): J € A} is d-fine and

S f @)l = Mm,

JeA
so the Saks-Henstock Lemma for the Hp-integral is not valid for f. O
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Corollary 4.3. Let E C (a,b) be a set of measure zero. If E is contained in
an F, set of measure zero, then Xg is Hy-integrable (on {(a,b)).

Using Theorem 4.2 it is easy to obtain examples of almost everywhere
equal to zero functions which are not Hy-integrable (thus solving the problem
stated at the end of [2]). These can be characteristic functions of generic
null sets or even 2nd category null sets. From these examples we see that
not every characteristic function of an F, set is Hy-integrable. This implies
that Levi’s theorem does not hold for the Hy-integral. Let D be a Gs null set
containing Q N (0,1). It is well known that D is generic, so its characteristic
function is Ho-nonintegrable. The complement of D is an F, set, and X (o 1)\p
is Hp-nonintegrable since Xp is.

The last example shows that Theorem 5 in [2] is false as it is stated. From
this same example we see that the proof of Theorem 10in [2] is also not correct
—because, for every subset E C (0, 1)\ D with measure u(E) = u((0,1)\D), the
function X g is Hy-nonintegrable. The statement of Theorem 10, however, holds
in this situation. In both proofs in [2], the §-variation of F on (a,b)\ s, X,
was neglected. (For the definition of d-variation look [3].)

Problem 4.4. Is Theorem 10 from [2] true?
Using Lemma 4.3 and Theorem 4.2 we have the following result.

Corollary 4.5. The characteristic function of a set E of measure zero is Hy-
integrable if and only if E is a countable union of sets whose closures are of
measure zero.

It is well known that:

Theorem 4.6. The characteristic function of a set E of measure zero is
Riemann integrable if and only if the closure of E is of measure zero.

Combining these two we obtain a nice characterization of the relationship
between these integrals.

Corollary 4.7. The characteristic function of a set E of measure zero is Hy-
integrable if and only if E is a countable union of sets whose characteristic
functions are Riemann integrable.

Problem 4.8. Characterize sets with Hy-integrable characteristic functions.

5 Improper Hy-Integral and Denjoy Generalization

As was pointed out by the referee, the contents of this section have been
considered in [1], however this paper is not available to the author.
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By the improper T-integral (T—in‘cegrad)7 where T is some kind of integration
on intervals, we mean the integral which arises from taking pointwise limits of
T-integrals.

Definition 5.1. We say that f: {a,b) — R is T-integrable to I € R if one of
the following two conditions is satisfied

o for every ¢ € {a,b), f is T-integrable on {(a,c) and

im (1) [ 7= [ rem,

c—b—

o for every c € (a,b), f is T-integrable on {(c,b) and

Cgrgﬂ)/cbf@)/:fe&.

It is well known that the improper Henstock integral (ﬁ -integral) is equiv-
alent to the Henstock integral — taking limits we obtain nothing new. However,
for the integrals of Riemann and Lebesgue we obtain essentially wider classes
of integrable functions. We shall now look at the improper Hp-integral. But
first we make note of the following technical observation.

Remark 5.2. If the function f is Hy-integrable on closed intervals Iy and I
with Iy C I using functions 1 and 6o respectively, then f is Hy-integrable on
I, using 6 defined as follows
1 ] L\ I
5(x) = 1(z) Z.fi’?6 1\ I
52 (lL’) Zf.’ﬂ € IQ.

Lemma 5.3. FEvery PTo—integmble function is Hy-integrable and the integrals
coincide.

PRrOOF. Let f: (a,b) — R be ﬁg-integrable and assume, for convenience, that
a < b—1. Then f is Henstock integrable and we let F' be a Henstock primitive
of f. Consider the sequence of intervals I, = {(a,b — %) From the ordinary
Saks-Henstock Lemma there are gauges §, on I, respectively such that for
any J,-fine partial tagged partition P of I,,, we have

0(P, /)~ AF(P)| < 5. )

Using Remark 5.2 inductively, we obtain a gauge ¢’ on (a,b) such that for all n
and arbitrary € > 0 there are tagged partitions m, . of I,, such that for every
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¢'-fine 77, . we have

ot )~ (to) [ 1] <= 3)

Put

(o9
—
8
I

min{(Sn(m),é'(x),b—%—x} ifb—ﬁ §x<b—%
anything ifx=2»%

(here b — § = a). Fix an e. There is an integer N such that
o |[(H) [P fl < & forallce (b—+,b),
o Ne>6|f(b)l;
* o <%

Take any d-fine 7 (ﬂ'N’% U {(<b — %, b> ,b)}). All tagged intervals from =
excluding the last one whose tag is b are contained in some [ for k > N.
Therefore, from (2) and (3) we have

b
o= [r]=] X swin-[ 1

(I,x)enr, ICIN

HooX (ﬂmn—zﬂymg<§+§+§:a

(I,x)em, ICcl (Ix\IN)

Corollary 5.4. The Hy-integral is not absolute.

Next we state a theorem dealing with Denjoy’s generalization of the Hy-
integral.

Lemma 5.5. Let P be a nonempty perfect subset of {(a,b). Let f: (a,b) —
R be equal to zero on P and Hy-integrable on the closures Iy, 1o, I3,... of
intervals contiguous to P in (a,b). If F' is a Henstock primitive of f and

Yoo w(F,I,) < +oo, then f is Hy-integrable and (Hy) fab f=3," AF(I,).

Proor. It follows from the Henstock integrability of f on I,, that there exist
gauges (5%1) on I,, n =1,2,..., such that for every 5%1)-ﬁne partial tagged
partition P, of I,, we have

(0(Pus ) = AF(P)] < o1
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Let gauges 57(?) come from Hy-integrability of f on I,, and put

S(x) — min {57(11), 5 ), p(z,{a,b)\intI,,)} ifxeintl,
B anything ifx e P.
Fix an € > 0. There is an integer N such that

o0 oo

> 2%<% and Y w(FI,) <

n=N+1 n=N-+1

For n = 1,2,... N, let m, be a tagged partition of I,, such that |o(7, f) —
AF(I,)| < 5% for every 62 fine 73, Complete Uf:f:l T, to any tagged
partition m of {(a,b) and consider an arbitrary é-fine 7#Jdmy. For each n let
Pn,={(,z) €r: ICI,}, and note that o (7\J,—; Pn, f) = 0. Then,

jo(r, 1) = Y- AF(L)
n=1

| M

N o] 00
< 1P )= AFE)I+ 3 [o(Pu )= AP+ AF(m\ | Pa)
n=1 n=N+1 n=1
e € €
<o + Z 2n+2 Z L)<g+z+2;=¢
n=N+1 n=N+1
Hence, f is Hp-integrable. O

Theorem 5.6. Suppose f: (a,b) — R is Hy-integrable. If P C {(a,b) is closed
and f is Henstock integrable on P, then f is Hy-integrable on P.

PROOF. If ¢ = fX 4\ p, then ¢ is Henstock integrable on (a,b). We will
prove it is Hp-integrable. Let @ be the set of points & € (a,b) such that for
every interval I with x € int I the function ¢ is not Hy-integrable on I. It is
easy to see that @ is closed and Q C P. Moreover, it follows from Lemma 5.3
that @ is perfect and that ¢ is Hp-integrable on the closure of every interval
contiguous to Q. Suppose @ # 0. As the Henstock primitive F' of ¢ is ACG,
on @, it follows from the Baire Category Theorem that there is a portion
R=QnNJ# 0 of Q on which F' is AC,. But then the series of oscillations
of F' on intervals contiguous to R converges. Therefore, from Lemma 5.5, ¢ is
Hy-integrable on J \ Q. Because ¢ = 0 on @ it follows that ¢ is Hp-integrable
on J, a contradiction.

As Q =0, for every z € (a,b) there exists an interval I having z as a point
of interior such that ¢ is Hy-integrable on I. But then the compactness of
(a, b) implies Hy-integrability of ¢ on (a,b). O
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Note that this theorem is an extension of Theorem 3.2.

6 Other Problems

In [2] it was remarked that the following is obvious:
(*) Let f be Hp-integrable on A and B. Then f is Hy-integrable on AU B.

Actually this is false. Divide the interval (0, 1) into sequence of closed nonover-
lapping intervals Iy, I, I3,... having 1 as the only point of accumulation.
Next divide every I; into three nonoverlapping intervals, Ji,.Js, Ji and let
f:(0,1) — R be such that

(Ho) [ f=—mo) [ r=io) [ f=1.
Ji J3 Ji

i
Now consider A = |J2,(J; U J4) and B = |Ji2,(J4 U Ji). Evidently f is
Hy-integrable on both A and B. Moreover, it follows from Lemma 5.3 that

(Hyp) fAf = (Ho)fo = 0. But, (L) fAﬂBf =3, % = +00, so f cannot be
Hy-integrable on A N B and consequently not on A U B. The question is:

Problem 6.1. Is (*) true when we add the hypothesis that f is Henstock
integrable on AU B?

Let us finally state the next problems.
Problem 6.2. Is every Henstock integrable Baire one function Hy-integrable?
Problem 6.3. Is every derivative Hy-integrable?

Problem 6.4. Characterize Hy-integrable functions in the “Riemann man-
”

ner”.
By the “Riemann manner” we mean the kind of characterization which
is used in the theorem asserting that the class of Riemann integrable func-
tions coincides with the class of bounded and almost everywhere continuous
functions. After studying the nature of Hy-integrable functions the author
conjectures that such a characterization is possible.
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