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ON H1–INTEGRABLE FUNCTIONS

Abstract

In this note we deal with some problems related to the H1-integral
introduced recently by Garces, Lee, and Zhao. We give a new definition
of that integral and characterize H1-integrable functions almost every-
where equal to zero. We also discuss some results stated in the original
paper on the H1-integral.

1 Basic Notation

Let 〈a, b〉 denote compact subinterval of R. By a partial tagged partition
of 〈a, b〉 we understand any collection P of pairs (I, x) where I is a compact
subinterval of 〈a, b〉 and x ∈ I satisfying the following condition

• for every (I, x), (J, y) ∈ P we have int I ∩ J = ∅ or (I, x) = (J, y).

If moreover

•
⋃

(I,x)∈P I = 〈a, b〉,

then P is called a tagged partition of 〈a, b〉. Partial tagged partitions will be
denoted by the letter P, tagged partitions by π.

If f : 〈a, b〉 → R and 〈c, d〉 = I ⊂ 〈a, b〉, by ∆f(I) we mean f(d)− f(c) and
by |I| the length of I. If P is a partial tagged partition of 〈a, b〉 then we denote

• σ(P, f) =
∑

(I,x)∈P f(x)|I|,

• ∆f(P) =
∑

(I,x)∈P ∆f(I).
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Any positive function δ defined on 〈a, b〉 we call a gauge. We say that a partial
tagged partition P is δ-fine if for every (I, x) ∈ P we have I ⊂ (x− δ(x), x+
δ(x)).

Finally let χE denote the characteristic function of a set E and let µ(E)
denote the Lebesgue measure of a measurable set E.

2 Introduction

In [2], Garces, Lee, and Zhao remarked that the Riemann integral may be
defined using Moore-Smith limits. In the set Θ of all tagged partitions of 〈a, b〉
they introduced two relations:

• π1wπ2 if and only if for every (I, x) ∈ π2, I is the union of some intervals
from π1,

• π1≥π2 if and only if π1wπ2 and the set of all tags from π2 is a subset of
the set of tags from π1.

Both (Θ,w) and (Θ,≥) are nets. It was remarked that the R-integral may be
obtained as a limit of Riemann sums in the sense of (Θ,w).

Definition 2.1. We call a function f : 〈a, b〉 → R, R-integrable to I ∈ R if for
any ε > 0 there is a tagged partition π1 of 〈a, b〉 such that for every πwπ1

|σ(π, f)− I| < ε.

The H1-integral was defined using the relation ≥:

Definition 2.2. We call a function f : 〈a, b〉 → R, H1-integrable to I ∈ R if
there exists a gauge δ defined on 〈a, b〉 such that for any ε > 0 one can find
a tagged partition π1 of 〈a, b〉 such that for every δ-fine π≥π1

|σ(π, f)− I| < ε.

(This last definition is a little bit different from the one given in [2], but,
of course equivalent – here we do not demand π1 to be δ-fine.)

However, using the relation ≥ in Definition 2.2 is redundant too. It is
enough to usew – the same one which is used in the Moore-Smith Definition 2.1
of the Riemann integral. We define a new integral and prove its equivalence
to the H1-integral.

Definition 2.3. We call a function f : 〈a, b〉 → R, H0-integrable to I ∈ R if
there exists a gauge δ defined on 〈a, b〉 such that for any ε > 0 one can find
a tagged partition π0 of 〈a, b〉 such that for every δ-fine πwπ0

|σ(π, f)− I| < ε.
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Of course every H0-integrable function is H1-integrable and the integrals
coincide. The opposite is also true.

Theorem 2.4. Every H1-integrable function is H0-integrable.

Proof. Suppose f : 〈a, b〉 → R is H1-integrable using the gauge δ. Fix an ε >
0, and let π1 be a tagged partition of 〈a, b〉 such that for any δ-fine π≥π1,

∣∣∣σ(π, f)− (H1)
∫ b

a

f
∣∣∣ < ε

3
.

Let π0≥π1 be a tagged partition having the same tags as π1 and let all intervals
from π0 have tags at their ends.

Now take any δ-fine tagged partition π′wπ0. Denote Z = {z : (I, z) ∈ π0}.
For every z ∈ Z choose (Iz, xz) ∈ π′ such that z ∈ Iz. We may assume that
for z1 6= z2, the intervals Iz1 and Iz2 are different. By P denote family of all
(Iz, xz) for which xz 6= z. For every (Iz, xz) ∈ P let Jz be a closed interval
such that

(i) xz 6∈ Jz⊂Iz,

(ii) z ∈ Jz.

It is seen that intervals Iz and Jz have one common end in z. It is always
possible to take Jz sufficiently short so that

(iii) |f(xz)||Jz| < ε
3l and |f(z)||Jz| < ε

3l , (where l = cardZ) and

(iv) Jz⊂(xz − δ(xz), xz + δ(xz)).

Note that

π′′ = (π′\P) ∪
⋃

(Iz,xz)∈P

{
(Jz, z), (cl (Iz\Jz), xz)

}
is tagged partition of the interval 〈a, b〉. Note also that from (iv) π′′ is δ-fine
and π′′ ≥ π1. We may evaluate

∣∣∣σ(π′, f)− (H1)
∫ b

a

f
∣∣∣ ≤ |σ(π′′, f)− σ(π′, f)|+

∣∣∣σ(π′′, f)− (H1)
∫ b

a

f
∣∣∣.
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Of course
∣∣σ(π′′, f)− (H1)

∫ b
a
f
∣∣ < ε

3 and from (iii)

|σ(π′′, f)− σ(π′, f)|

=
∣∣∣ ∑
(Iz,xz)∈P

(
f(z)|Jz|+ f(xz)|Iz\Jz|

)
+ σ(π′\P, f)− σ(π′, f)

∣∣∣
=
∣∣∣ ∑
(Iz,xz)∈P

(
f(z)|Jz|+ f(xz)|Iz\Jz|

)
−

∑
(Iz,xz)∈P

f(xz)|Iz|
∣∣∣

≤
∑

(Iz,xz)∈P

|f(z)||Jz|+
∑

(Iz,xz)∈P

|f(xz)||Jz| <
2
3
ε.

So ∣∣∣σ(π′, f)− (H1)
∫ b

a

f
∣∣∣ < ε

and f is H0-integrable.

Corollary 2.5. A function f : 〈a, b〉 → R is H1-integrable to I ∈ R if and only
if there exists a gauge δ on 〈a, b〉 such that for any ε > 0 one can find a tagged
partition π1 of 〈a, b〉 such that for any δ-fine πwπ1

|σ(π, f)− I| < ε.

Comparing Definitions 2.1 and 2.3 we see that every Riemann integrable
function is H0-integrable. However, there are R-nonintegrable functions which
are H0-integrable – for example the classical Dirichlet function (see Example 2
in [2]). It is nice that using the same relation as in Definition 2.1 we may
obtain – having only at the start of integrating some suitable gauge which is
independent of ε – an essentially wider class of integrable functions.

3 Some Facts from [2]

The following theorems were proved in [2] (respectively Lemma 4 and Lemma 6).

Theorem 3.1. Let f : 〈a, b〉 → R be H1-integrable on a closed set X2 ⊂ 〈a, b〉,
and – using gauge δ1 – on another closed set X1 ⊂ X2. Assume f(x) = 0 for
x ∈ 〈a, b〉 \X2. If the H1-primitive F of f is absolutely continuous on 〈a, b〉,
then f is H1-integrable on X2 using gauge δ equal to δ1 on X1.

It was asserted in [2] that Theorem 3.1 holds even if X1 6⊂ X2 (with X2

replaced by X1 ∪X2), but the proof was done only for the situation described
above. It is not clear that the assumption of absolute continuity of F is enough
for H1-integrability of f on X1 ∪X2 (look Section 6 of this paper).
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Theorem 3.2. Let X be a closed subset of 〈a, b〉. If function f : 〈a, b〉 → R is
H1-integrable and bounded on 〈a, b〉, then it is H1-integrable on X.

4 H0-Integrability on Null Sets

Lemma 4.1. Let f : 〈a, b〉 → R be H0-integrable on closed sets X1, X2, X3, . . .
all of measure zero and such that X1 ⊂ X2 ⊂ X3 ⊂ . . . . Then f is H0-
integrable on X =

⋃∞
i=1Xi.

Proof. There exists a decreasing sequence (δi)∞i=1 of gauges on 〈a, b〉 such
that for δi-fine partial tagged partition P,

|σ(P, fχXi
)| < 1

2i
.

(This follows from the ordinary Saks-Henstock Lemma.) Inductively using
Theorem 3.1 we obtain a gauge δ′ on X such that for every i there is a
positive δ′i on 〈a, b〉 equal to δ′ on Xi such that for arbitrary ε > 0 there
exist respective tagged partitions πi,ε of 〈a, b〉 such that for any δ′i-fine tagged
partition πwπi,ε the following inequality holds,

|σ(π, fχXi
)| < ε.

(This follows from the H0-integrability of f on Xi.) Put

δ(x) =

{
min {δ′(x), δi(x)} if x ∈ Xi\Xi−1

anything if x 6∈ X.

where X0 = ∅. Fix an ε > 0. Let N be a positive integer such that∑∞
i=N+1

1
2i < ε

2 . For any δ-fine πwπN, ε
2

we use the Saks-Henstock Lemma
for the H0-integral to obtain

|σ(π, fχX)| ≤ |σ(π, fχXN
)|+

∞∑
i=N+1

|σ(π, fχXi\Xi−1)| < ε.

The statement of Lemma 4.1 for positive f , any ascending X1, X2, X3, . . .
and with the assumption of the integrals’ convergence appeared in [2] as The-
orem 5. But in this general form it is false – as we shall soon show. However,
the technique we use to prove Lemma 4.1 is the same technique Garces, Lee,
and Zhao use. The same scheme of proving convergence of H0-integrals will
be used to prove Theorems 5.3 and 5.5.
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Theorem 4.2. Suppose f : 〈a, b〉 → R is equal to zero almost everywhere in
〈a, b〉. Then, f is H0-integrable if and only if the set

E = {x ∈ 〈a, b〉 : f(x) 6= 0}

is contained in an Fσ null set.

Proof. (⇒) We will prove f+ = max {0, f} is H0-integrable. There is an in-
creasing sequence of sets (En)∞n=1 such that

⋃∞
n=1En = E and for all n

µ(clEn) = 0. For fixed n ∈ N put Dn = En ∩ {x ∈ 〈a, b〉 : 0 < f+(x) ≤ n}.
For every tagged partition π of 〈a, b〉 we have

0 ≤ σ(π, f+χ
clDn

) ≤ σ(π, nχclEn). (1)

From Theorem 3.2, the function nχclEn is H0-integrable (to zero). From (1),
f+ is H0-integrable on clDn. Applying Lemma 4.1 we conclude f+ is H0-
integrable on

⋃∞
n=1 clDn, so f+ is H0-integrable on 〈a, b〉. In the same way

we prove that f− is H0-integrable.
(⇐) There exists positive number M for which the set

D = {x ∈ 〈a, b〉 : |f(x)| > M}

is not contained in an Fσ set of measure zero. For any fixed gauge δ on 〈a, b〉
there is a positive integer n such that the closure of the set

En =
{
x ∈ D : δ(x) >

1
n

}
has measure m > 0.

Consider any tagged partition π0 of 〈a, b〉 and put

P = {(I, x) ∈ π0 : I ∩ En 6= ∅}.

Then µ(P) ≥ m, because the sum of intervals from P contains clEn. Consider
the family of closed intervals

A =
{
J = I ∩

〈
z

n
,
z + 1
n

〉
: (I, x) ∈ P, z ∈ Z, J ∩ En 6= ∅

}
.

It follows that ∑
J∈A
|J | ≥ m.

For every J ∈ A take an xJ ∈ J ∩ En. Note that the partial partition
{(J, xJ) : J ∈ A} is δ-fine and∑

J∈A
|f(xJ)||J | ≥Mm,

so the Saks-Henstock Lemma for the H0-integral is not valid for f .
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Corollary 4.3. Let E ⊂ 〈a, b〉 be a set of measure zero. If E is contained in
an Fσ set of measure zero, then χ

E is H0-integrable (on 〈a, b〉).

Using Theorem 4.2 it is easy to obtain examples of almost everywhere
equal to zero functions which are not H0-integrable (thus solving the problem
stated at the end of [2]). These can be characteristic functions of generic
null sets or even 2nd category null sets. From these examples we see that
not every characteristic function of an Fσ set is H0-integrable. This implies
that Levi’s theorem does not hold for the H0-integral. Let D be a Gδ null set
containing Q ∩ 〈0, 1〉. It is well known that D is generic, so its characteristic
function is H0-nonintegrable. The complement of D is an Fσ set, and χ〈0,1〉\D
is H0-nonintegrable since χD is.

The last example shows that Theorem 5 in [2] is false as it is stated. From
this same example we see that the proof of Theorem 10 in [2] is also not correct
– because, for every subset E ⊂ 〈0, 1〉\D with measure µ(E) = µ(〈0, 1〉\D), the
function χE is H0-nonintegrable. The statement of Theorem 10, however, holds
in this situation. In both proofs in [2], the δ-variation of F on 〈a, b〉\

⋃∞
n=1Xn

was neglected. (For the definition of δ-variation look [3].)

Problem 4.4. Is Theorem 10 from [2] true?

Using Lemma 4.3 and Theorem 4.2 we have the following result.

Corollary 4.5. The characteristic function of a set E of measure zero is H0-
integrable if and only if E is a countable union of sets whose closures are of
measure zero.

It is well known that:

Theorem 4.6. The characteristic function of a set E of measure zero is
Riemann integrable if and only if the closure of E is of measure zero.

Combining these two we obtain a nice characterization of the relationship
between these integrals.

Corollary 4.7. The characteristic function of a set E of measure zero is H0-
integrable if and only if E is a countable union of sets whose characteristic
functions are Riemann integrable.

Problem 4.8. Characterize sets with H0-integrable characteristic functions.

5 Improper H0-Integral and Denjoy Generalization

As was pointed out by the referee, the contents of this section have been
considered in [1], however this paper is not available to the author.
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By the improper T -integral (T̃ -integral), where T is some kind of integration
on intervals, we mean the integral which arises from taking pointwise limits of
T -integrals.

Definition 5.1. We say that f : 〈a, b〉 → R is T̃ -integrable to I ∈ R if one of
the following two conditions is satisfied

• for every c ∈ 〈a, b), f is T -integrable on 〈a, c〉 and

lim
c→b−

(T)
∫ c

a

f = (T̃)
∫ b

a

f ∈ R,

• for every c ∈ (a, b〉, f is T -integrable on 〈c, b〉 and

lim
c→a+

(T)
∫ b

c

f = (T̃)
∫ b

a

f ∈ R.

It is well known that the improper Henstock integral (H̃-integral) is equiv-
alent to the Henstock integral – taking limits we obtain nothing new. However,
for the integrals of Riemann and Lebesgue we obtain essentially wider classes
of integrable functions. We shall now look at the improper H0-integral. But
first we make note of the following technical observation.

Remark 5.2. If the function f is H0-integrable on closed intervals I1 and I2
with I2 ⊂ I1 using functions δ1 and δ2 respectively, then f is H0-integrable on
I1 using δ defined as follows

δ(x) =

{
δ1(x) if x ∈ I1 \ I2
δ2(x) if x ∈ I2.

Lemma 5.3. Every H̃0-integrable function is H0-integrable and the integrals
coincide.

Proof. Let f : 〈a, b〉 → R be H̃0-integrable and assume, for convenience, that
a < b−1. Then f is Henstock integrable and we let F be a Henstock primitive
of f . Consider the sequence of intervals In = 〈a, b − 1

n 〉. From the ordinary
Saks-Henstock Lemma there are gauges δn on In respectively such that for
any δn-fine partial tagged partition P of In, we have

|σ(P, f)−∆F (P)| < 1
2n
. (2)

Using Remark 5.2 inductively, we obtain a gauge δ′ on 〈a, b) such that for all n
and arbitrary ε > 0 there are tagged partitions πn,ε of In such that for every
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δ′-fine πwπn,ε we have ∣∣∣σ(π, f)− (H0)
∫
In

f
∣∣∣ < ε. (3)

Put

δ(x) =

{
min

{
δn(x), δ′(x), b− 1

n − x
}

if b− 1
n−1 ≤ x < b− 1

n

anything if x = b

(here b− 1
0 = a). Fix an ε. There is an integer N such that

• |(H)
∫ b
c
f | < ε

6 for all c ∈ 〈b− 1
N , b〉,

• Nε > 6|f(b)|,

• 1
2N < ε

3 .

Take any δ-fine πw
(
πN, ε

3
∪
{(〈

b− 1
N , b

〉
, b
)})

. All tagged intervals from π
excluding the last one whose tag is b are contained in some Ik for k > N .
Therefore, from (2) and (3) we have∣∣∣σ(π, f)−

∫ b

a

f
∣∣∣ ≤ ∣∣∣ ∑

(I,x)∈π, I⊂IN

f(x)|I| −
∫
IN

f
∣∣∣

+
∣∣∣ ∑
(I,x)∈π, I⊂ cl (Ik\IN )

(
f(x)|I| −

∫
I

f
)∣∣∣+ 2

ε

6
<
ε

3
+
ε

3
+
ε

3
= ε.

Corollary 5.4. The H0-integral is not absolute.

Next we state a theorem dealing with Denjoy’s generalization of the H0-
integral.

Lemma 5.5. Let P be a nonempty perfect subset of 〈a, b〉. Let f : 〈a, b〉 →
R be equal to zero on P and H0-integrable on the closures I1, I2, I3, . . . of
intervals contiguous to P in 〈a, b〉. If F is a Henstock primitive of f and∑∞
n=1 ω (F, In) < +∞, then f is H0-integrable and (H0)

∫ b
a
f =

∑∞
n=1 ∆F (In).

Proof. It follows from the Henstock integrability of f on In that there exist
gauges δ(1)n on In, n = 1, 2, . . . , such that for every δ

(1)
n -fine partial tagged

partition Pn of In we have

|σ(Pn, f)−∆F (Pn)| < 1
2n
.
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Let gauges δ(2)n come from H0-integrability of f on In and put

δ(x) =

{
min {δ(1)n , δ

(2)
n , ρ (x, 〈a, b〉 \ int In)} if x ∈ int In

anything if x ∈ P .

Fix an ε > 0. There is an integer N such that
∞∑

n=N+1

1
2n

<
ε

3
and

∞∑
n=N+1

ω (F, In) <
ε

6
.

For n = 1, 2, . . . N , let πn be a tagged partition of In such that |σ(π, f) −
∆F (In)| < ε

3N for every δ
(2)
n -fine πwπn. Complete

⋃N
n=1 πn to any tagged

partition π0 of 〈a, b〉 and consider an arbitrary δ-fine πwπ0. For each n let
Pn = {(I, x) ∈ π : I ⊂ In}, and note that σ (π\

⋃∞
n=1 Pn, f) = 0. Then,∣∣∣σ(π, f)−

∞∑
n=1

∆F (In)
∣∣∣

≤
N∑
n=1

|σ(Pn, f)−∆F (In)|+
∞∑

n=N+1

|σ(Pn, f)−∆F (Pn)|+
∣∣∣∆F(π\ ∞⋃

n=1

Pn
)∣∣∣

<
ε

3
+

∞∑
n=N+1

1
2n

+ 2
∞∑

n=N+1

ω (F, In) <
ε

3
+
ε

3
+ 2

ε

6
= ε.

Hence, f is H0-integrable.

Theorem 5.6. Suppose f : 〈a, b〉 → R is H0-integrable. If P ⊂ 〈a, b〉 is closed
and f is Henstock integrable on P , then f is H0-integrable on P .

Proof. If φ = fχ〈a,b〉\P , then φ is Henstock integrable on 〈a, b〉. We will
prove it is H0-integrable. Let Q be the set of points x ∈ 〈a, b〉 such that for
every interval I with x ∈ int I the function φ is not H0-integrable on I. It is
easy to see that Q is closed and Q ⊂ P . Moreover, it follows from Lemma 5.3
that Q is perfect and that φ is H0-integrable on the closure of every interval
contiguous to Q. Suppose Q 6= ∅. As the Henstock primitive F of φ is ACG∗
on Q, it follows from the Baire Category Theorem that there is a portion
R = Q ∩ J 6= ∅ of Q on which F is AC∗. But then the series of oscillations
of F on intervals contiguous to R converges. Therefore, from Lemma 5.5, φ is
H0-integrable on J \Q. Because φ = 0 on Q it follows that φ is H0-integrable
on J , a contradiction.

As Q = ∅, for every x ∈ 〈a, b〉 there exists an interval I having x as a point
of interior such that φ is H0-integrable on I. But then the compactness of
〈a, b〉 implies H0-integrability of φ on 〈a, b〉.
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Note that this theorem is an extension of Theorem 3.2.

6 Other Problems

In [2] it was remarked that the following is obvious:

(*) Let f be H0-integrable on A and B. Then f is H0-integrable on A ∪B.

Actually this is false. Divide the interval 〈0, 1〉 into sequence of closed nonover-
lapping intervals I1, I2, I3, . . . having 1 as the only point of accumulation.
Next divide every Ii into three nonoverlapping intervals, J i1, J

i
2, J

i
3 and let

f : 〈0, 1〉 → R be such that

(H0)
∫
Ji
1

f = − (H0)
∫
Ji
2

f = (H0)
∫
Ji
3

f =
1
i
.

Now consider A =
⋃∞
i=1(J i1 ∪ J i2) and B =

⋃∞
i=1(J i2 ∪ J i3). Evidently f is

H0-integrable on both A and B. Moreover, it follows from Lemma 5.3 that
(H0)

∫
A
f = (H0)

∫
B
f = 0. But, (L)

∫
A∩B f =

∑∞
i=1

1
i = +∞, so f cannot be

H0-integrable on A ∩B and consequently not on A ∪B. The question is:

Problem 6.1. Is (*) true when we add the hypothesis that f is Henstock
integrable on A ∪B?

Let us finally state the next problems.

Problem 6.2. Is every Henstock integrable Baire one function H0-integrable?

Problem 6.3. Is every derivative H0-integrable?

Problem 6.4. Characterize H0-integrable functions in the “Riemann man-
ner”.

By the “Riemann manner” we mean the kind of characterization which
is used in the theorem asserting that the class of Riemann integrable func-
tions coincides with the class of bounded and almost everywhere continuous
functions. After studying the nature of H0-integrable functions the author
conjectures that such a characterization is possible.
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